JPS612966A - Fluid transmission device with variable torque transmission efficiency - Google Patents

Fluid transmission device with variable torque transmission efficiency

Info

Publication number
JPS612966A
JPS612966A JP12313284A JP12313284A JPS612966A JP S612966 A JPS612966 A JP S612966A JP 12313284 A JP12313284 A JP 12313284A JP 12313284 A JP12313284 A JP 12313284A JP S612966 A JPS612966 A JP S612966A
Authority
JP
Japan
Prior art keywords
fluid
torque
clutch
input shaft
transmission efficiency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12313284A
Other languages
Japanese (ja)
Inventor
Tamotsu Kamiya
保 神谷
Masaaki Takizawa
正明 滝沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP12313284A priority Critical patent/JPS612966A/en
Publication of JPS612966A publication Critical patent/JPS612966A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D37/00Clutches in which the drive is transmitted through a medium consisting of small particles, e.g. centrifugally speed-responsive
    • F16D37/008Clutches in which the drive is transmitted through a medium consisting of small particles, e.g. centrifugally speed-responsive the particles being carried by a fluid, to vary viscosity when subjected to electric change, i.e. electro-rheological or smart fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type

Abstract

PURPOSE:To reduce variations in torque and enhance the economy of fuel consumption, by disposing an electrical viscofluid clutch which varies its transmission efficiency of torque. CONSTITUTION:Power transmitted from an engine to an input shaft 10, is transmitted to an output shaft 14 through a fluid transmission device 12. A fluid transmission device 12 comprises an electrical viscofluid clutch 16 and a torque converter 18. A flange 20 is formed at its end face of the input shaft 10. The output shaft 14 is disposed coaxially with the input shaft 10. A clutch disc 30 is incorporated in a chamber 27, and the transmission casing 22 is spaced apart from the clutch disc 30. An electrical viscofluid is filled in the chamber 27, and increases its viscous resistance under d.c. external electric field, that is, it has a characteristic exhibiting an electrical viscous effect as is called as WINTHROW effect. With this arrangement, when a voltage 30 is applied between slip rings 38, 40, the torque transmission efficiency may be increased.

Description

【発明の詳細な説明】 [発明の利用分野] 本発明は車両に用いられる入力軸の動力を流体を介して
出力軸へ伝達するトルク伝達効率の変化し得る流体伝動
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a fluid transmission device used in a vehicle that transmits power from an input shaft to an output shaft via fluid and can change torque transmission efficiency.

[背景技術] 一般的なトルクコンバータ又は流体継手では、トルク伝
達効率は入力軸と出力軸の速度比によって定まり、トル
ク変動の有無によらない。
[Background Art] In a typical torque converter or fluid coupling, the torque transmission efficiency is determined by the speed ratio of the input shaft and the output shaft, and is not dependent on the presence or absence of torque fluctuation.

したがって、]・ルク伝達効率の高い]・ルクコンバー
タ又は流体継手を用いると入力軸のトルクが出力軸へ効
率よく伝達されるが、出力軸のトルク変動もあまり減少
されない、また、この場合、1ルクコンバータや流体継
手の占めるスペースも大きくなってしまう。逆に、出力
軸のトルク変動の伝達を低減させるために、トルク伝達
効率の低いものを用いると入力軸に接続されている動力
源の燃料消費率の悪化を招く。
Therefore,]・High torque transmission efficiency】・When using a torque converter or a fluid coupling, the torque of the input shaft is efficiently transmitted to the output shaft, but the torque fluctuation of the output shaft is not reduced much. The space occupied by the torque converter and fluid coupling also increases. Conversely, if a shaft with low torque transmission efficiency is used in order to reduce the transmission of torque fluctuations from the output shaft, the fuel consumption rate of the power source connected to the input shaft will deteriorate.

そこで、トルク変動の伝達を低減させるとともに燃費の
向上を図るために、磁性粉を媒介させて動力を伝達させ
、磁界の強さを変化させてl・ルク伝達効率を制御可能
としたものが案出されている。
Therefore, in order to reduce the transmission of torque fluctuations and improve fuel efficiency, a proposal was made to transmit power using magnetic powder and to control the l/lux transmission efficiency by changing the strength of the magnetic field. It's being served.

しかしながら、強磁界を作る必要があり、大型コイルを
用いなければならず、また、大スペースが必要となり、
コスト高にもなる。
However, it is necessary to create a strong magnetic field, use a large coil, and require a large space.
It also increases costs.

また、スリップや渦電波によって発生する熱間も大きく
、その冷却のために別途冷却装置が必要となる。
In addition, the heat generated by slip and eddy waves is large, and a separate cooling device is required to cool it.

さらに、m M粉には磁気ヒステリシスがあり、制御が
容易でない。
Furthermore, mM powder has magnetic hysteresis, which is not easy to control.

[発明の目的] 本発明はト記事実を考慮し、トルク変動伝達の低減と燃
費向1−を両立させることができるとともに、構造が筒
中で小型化でき、しかも冷却が容易であり、さらに制御
が容易となるトルク伝達効率の変化しtt+る流体伝動
装置を得ることを目的とする。
[Object of the Invention] Taking into account the above facts, the present invention is capable of achieving both reduction of torque fluctuation transmission and improvement of fuel efficiency, the structure can be downsized in the cylinder, cooling is easy, and control is possible. It is an object of the present invention to provide a fluid transmission device in which the torque transmission efficiency changes easily.

[発明の構成] 本発明に係るトルク伝達効率の変化し得る流体伝動装置
では電気粘性流体を介して入力軸と出カモ11が接続さ
れ電気粘性流体に電圧が印加されてトルク伝達効率が変
化される電気粘性流体クラッチと、7L気粘性流体クラ
ッチと並列かつ同軸的に配設さね流体を介して入力軸と
出力軸を接続するトルクコンバータ又は流体継手と、を
有している。
[Structure of the Invention] In the fluid transmission device according to the present invention in which the torque transmission efficiency can be changed, the input shaft and the output duck 11 are connected via an electrorheological fluid, and a voltage is applied to the electrorheological fluid to change the torque transmission efficiency. The 7L pneumatic fluid clutch has an electrorheological fluid clutch, and a torque converter or a fluid coupling that connects an input shaft and an output shaft via a tongue fluid disposed in parallel and coaxially with the 7L pneumatic fluid clutch.

[発明の実施例コ 図面にしたがって本発明に係るトルク伝達効率の変化し
得る流体伝動装置の実施例を説明する。
[Embodiments of the Invention] An embodiment of a fluid transmission device in which torque transmission efficiency can be changed according to the present invention will be described with reference to the drawings.

第1図に示す如く、エンジンから入力軸]0へ伝達され
た動力は流体伝動装置12を介して出力軸14へ伝達さ
れるようになっている。
As shown in FIG. 1, power transmitted from the engine to the input shaft 0 is transmitted to the output shaft 14 via a fluid transmission device 12.

この流体伝動装置12は電気粘性流体クラッチ16とト
ルクコンバータ18を備えている。入力軸lOの端面に
はフランジ2oが設けられている。フランジ20には伝
動ケース22がボルト24で螺着されている。伝動ケー
ス22に対面してクラッチカバー26がその縁部で溶着
され室27.47を形成している。
The fluid transmission device 12 includes an electrorheological fluid clutch 16 and a torque converter 18. A flange 2o is provided on the end surface of the input shaft lO. A transmission case 22 is screwed onto the flange 20 with bolts 24. Facing the transmission case 22, a clutch cover 26 is welded at its edge to form a chamber 27.47.

出力軸14は入力軸1oと同軸に配置されており、フラ
ンジ2oと対面する端面にはフランジ28が設けられて
いる。フランジ28にはクラッチディスク30がリベッ
ト32で溶着されている。
The output shaft 14 is arranged coaxially with the input shaft 1o, and a flange 28 is provided on the end face facing the flange 2o. A clutch disk 30 is welded to the flange 28 with rivets 32.

クラッチディスク30は室27へ内在されており、伝動
ケース22とクラッチディスク3oとから離間している
。室27内には電気粘性流体が満たされている。この電
気粘性流体34は、例えばA  (OH)3被膜アルミ
ニウム粒子のような分散相を水またはスピンドル油のよ
うな分散媒中に分散さぜた固体粒子分散溶液である。電
気粘性流体は、第2図に示す如く、直流外部電場のもと
で、電界の強さとともに粘性抵抗が増大するいわゆるウ
ィンスロウ(WINSLOW)効果として知られる電気
粘性効果を示す特性を持つ。電気粘+J1流体はエレク
トロレオロジカル流体とも呼ばれ、rAutomoti
ve  Engineering  November
  1983J、1984年1月161−1発行のrN
IKKEI  MECHANICALJにも掲載されて
いる。クラッチカバー26の中心部には孔35が設けら
れており、シールリング36を介して入力軸14が嵌入
されている。したがって、電気粘性流体34は室27内
へ密封されている。伝動ケース22と出力軸14にはそ
れぞれスリップリング38.40が圧接され、伝動ケー
ス22及びクラッチカバー26とクラッチディスク30
とに電圧が印加されるようになっている。すなわち、電
気粘性流体34には軸方向の電場が生成されるようにな
っている。
The clutch disc 30 is contained in the chamber 27 and is spaced apart from the transmission case 22 and the clutch disc 3o. The chamber 27 is filled with electrorheological fluid. The electrorheological fluid 34 is a solid particle dispersion solution in which a dispersed phase such as A (OH) 3 coated aluminum particles is dispersed in a dispersion medium such as water or spindle oil. As shown in FIG. 2, an electrorheological fluid exhibits an electrorheological effect known as the so-called WINSLOW effect, in which viscous resistance increases with the strength of the electric field under a DC external electric field. Electrorheological + J1 fluid is also called electrorheological fluid, rAutomoti
ve Engineering November
1983J, rN published January 1984 161-1
It is also published in IKKEI MECHANICALJ. A hole 35 is provided in the center of the clutch cover 26, into which the input shaft 14 is fitted through a seal ring 36. Therefore, electrorheological fluid 34 is sealed into chamber 27 . Slip rings 38 and 40 are pressed into contact with the transmission case 22 and the output shaft 14, respectively, and the transmission case 22, the clutch cover 26, and the clutch disc 30
A voltage is applied to both. That is, an axial electric field is generated in the electrorheological fluid 34.

車体へ固定される固定ベース42の中心部にはバイブ4
4が設けられている。このバイブ44と伝動ケース22
の内端面の間にはヘアリングメタル46が介在されてい
る。
A vibrator 4 is installed in the center of a fixed base 42 that is fixed to the vehicle body.
4 is provided. This vibe 44 and transmission case 22
A hair ring metal 46 is interposed between the inner end surfaces of.

前記トルクコンバータ18は従来の構造と同様になって
いる。すなわち、伝動ケース22とクラッチカバー26
とによって形成される室47には、タービン羽根車48
、ポンプ羽根車5o、ステータ羽根車52が内在されて
いる。タービン羽根車48は出力軸14へ外嵌されてお
り、タービン羽根車48が回転されると出力軸14が一
体となって回転するようになっている。ポンプ羽根車5
0は伝動ケース22の内面へ設けられており、タービン
羽根車48と対向して配置されている。
The torque converter 18 has a conventional structure. That is, the transmission case 22 and the clutch cover 26
In the chamber 47 formed by the turbine impeller 48
, a pump impeller 5o, and a stator impeller 52. The turbine impeller 48 is externally fitted onto the output shaft 14, so that when the turbine impeller 48 is rotated, the output shaft 14 rotates together. pump impeller 5
0 is provided on the inner surface of the transmission case 22 and is disposed facing the turbine impeller 48.

また、ステータ羽根車52はワンウェイクラッチ54を
介してバイブ44へ取付けられている。室47は作動油
56で満たされている。
Further, the stator impeller 52 is attached to the vibrator 44 via a one-way clutch 54. Chamber 47 is filled with hydraulic oil 56.

したがって、伝動ケース22が回転すると作動油56が
第1図矢印で示す如く循環し、作動油56を介して人力
軸10の動力が出力軸14へ伝達されるようになってい
る。
Therefore, when the transmission case 22 rotates, the hydraulic oil 56 circulates as shown by the arrow in FIG. 1, and the power of the human power shaft 10 is transmitted to the output shaft 14 via the hydraulic oil 56.

スリップリング38と40との間に電圧が印加されない
場合には、゛屯気粘性流体34の粘性は作動油56の粘
性よりも充分小さく、クラッチディスク30は電気粘性
流体34から粘性力をほとんど受けない、したがって、
流体伝動装置12のトルク伝達効率はトルクコンバータ
18のみによるj・ルク伝達効率に等しくなる。
When no voltage is applied between the slip rings 38 and 40, the viscosity of the electroviscous fluid 34 is sufficiently lower than the viscosity of the hydraulic oil 56, and the clutch disc 30 receives almost no viscous force from the electrorheological fluid 34. No, therefore
The torque transmission efficiency of the fluid transmission device 12 is equal to the j·lux transmission efficiency by the torque converter 18 alone.

次に、スリップリング38と40との間に直流電圧を印
加すると電気粘性流体34の粘性は作動油56の粘性よ
りも充分太きくなり、クラッチディスク30は電気粘性
流体34から大きな粘性力を受ける。したがって、入力
軸のトルクはトルクコンバータ18のみならず電気粘性
流体クラッチ16によっても出力軸14へ伝達され、流
体伝動装置12のトルク伝達効率が増大することになる
Next, when a DC voltage is applied between the slip rings 38 and 40, the viscosity of the electrorheological fluid 34 becomes sufficiently thicker than the viscosity of the hydraulic oil 56, and the clutch disc 30 receives a large viscous force from the electrorheological fluid 34. . Therefore, the torque of the input shaft is transmitted to the output shaft 14 not only by the torque converter 18 but also by the electrorheological fluid clutch 16, and the torque transmission efficiency of the fluid transmission device 12 is increased.

以1−のことから、トルク変動の少ない通常走行11¥
においてはスリップリング38と40との間に電圧を印
加することにより、流体伝動袋P112のトルク伝達効
率を増大させ燃費を向14させることができる。また、
トルク変動の大きい走行時においては、スリップリング
38と40との間に電圧を印加しないことにより、流体
伝動袋ff112のトルク伝達効率を小さくし、入力軸
】0のトルク変動が出力軸14へ伝達されるのを低減さ
せることができる。
From the above 1-, normal driving with little torque fluctuation 11 yen
By applying a voltage between the slip rings 38 and 40, the torque transmission efficiency of the fluid transmission bag P112 can be increased and fuel efficiency can be improved. Also,
When driving with large torque fluctuations, by not applying voltage between the slip rings 38 and 40, the torque transmission efficiency of the fluid transmission bag ff112 is reduced, and torque fluctuations of 0 on the input shaft are transmitted to the output shaft 14. It is possible to reduce the amount of

なお、スリップリング38と40との間に電圧を印加し
た場合に流れる電流は数ミリアンペアであり、電気粘性
流体クラッチ16の消費電力はきわめて小さく、普通の
バッテリを用いることができる。また、電気粘性流体ク
ラッチにょるl・ルク伝達効率を大きくするためには室
27を複数個形成したり、クラッチディスク3oを何枚
も重ねたりして表面積を増やせばよい。電気粘性流体3
4へ印加される電圧はこの表面積によって相違してくる
Note that the current that flows when a voltage is applied between the slip rings 38 and 40 is several milliamperes, and the power consumption of the electrorheological fluid clutch 16 is extremely small, so that an ordinary battery can be used. Furthermore, in order to increase the l-lux transmission efficiency of the electrorheological fluid clutch, the surface area may be increased by forming a plurality of chambers 27 or stacking a number of clutch disks 3o. Electrorheological fluid 3
The voltage applied to 4 differs depending on this surface area.

[発明の効果] 本発明に係るトルク伝達効率の変化し1!Iる流体伝動
装置では、電圧制御により2 クラッチディスク30を
徐々にロックすることができ、ロックによるショックが
緩和できる。
[Effects of the Invention] Changes in torque transmission efficiency according to the present invention 1! In this fluid transmission device, the two clutch discs 30 can be gradually locked by voltage control, and the shock caused by locking can be alleviated.

マタ、周辺に強制冷却されるトルクコンバータ液が在る
ため、電気粘性流体専用の冷却機構が不要となる。
Since there is a forcedly cooled torque converter fluid in the surrounding area, there is no need for a dedicated cooling mechanism for electrorheological fluid.

さらに、加速時にもクラッチディスク3oをロックすれ
ば、従来のトルクコンバータでは得られない加速感が向
」ニされる。
Furthermore, by locking the clutch disc 3o even during acceleration, a feeling of acceleration that cannot be obtained with a conventional torque converter is improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るトルク伝達効率の変化し10る流
体伝動装置の実施例を示す断面図、第2図は電気粘性流
体の特性図である。 10−参参入力軸、 12・・・流体伝動装置、 14φ・・出力軸、 16−・・電気粘性流体クラッチ、 18−や・トルクコンバータ、 30ψ・拳クラッチディスク、 34・拳拳電気粘性流体。 第1図
FIG. 1 is a sectional view showing an embodiment of a fluid transmission device with variable torque transmission efficiency according to the present invention, and FIG. 2 is a characteristic diagram of an electrorheological fluid. 10-Entry input shaft, 12...Fluid transmission device, 14φ...Output shaft, 16-...Electro-rheological fluid clutch, 18-Ya-torque converter, 30ψ-Fist clutch disc, 34-Fist-fist electro-rheological fluid. Figure 1

Claims (1)

【特許請求の範囲】[Claims] 電気粘性流体を介して入力軸と出力軸が接続され電気粘
性流体に電圧が印加されてトルク伝達効率が変化される
電気粘性流体クラッチと、電気粘性流体クラッチと並列
かつ同軸的に配設され流体を介して入力軸と出力軸を接
続するトルクコンバータ又は流体継手と、を有すること
を特徴とするトルク伝達効率の変化し得る流体伝動装置
An electrorheological fluid clutch, in which an input shaft and an output shaft are connected via an electrorheological fluid, and a voltage is applied to the electrorheological fluid to change the torque transmission efficiency; 1. A fluid transmission device with variable torque transmission efficiency, comprising: a torque converter or a fluid coupling that connects an input shaft and an output shaft via a fluid transmission device.
JP12313284A 1984-06-15 1984-06-15 Fluid transmission device with variable torque transmission efficiency Pending JPS612966A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12313284A JPS612966A (en) 1984-06-15 1984-06-15 Fluid transmission device with variable torque transmission efficiency

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12313284A JPS612966A (en) 1984-06-15 1984-06-15 Fluid transmission device with variable torque transmission efficiency

Publications (1)

Publication Number Publication Date
JPS612966A true JPS612966A (en) 1986-01-08

Family

ID=14852974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12313284A Pending JPS612966A (en) 1984-06-15 1984-06-15 Fluid transmission device with variable torque transmission efficiency

Country Status (1)

Country Link
JP (1) JPS612966A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0561231A1 (en) * 1992-03-18 1993-09-22 Eaton Corporation Viscous coupling by-pass element for a torque converter
US5267633A (en) * 1991-02-15 1993-12-07 Bridgestone Corporation Electrorheological fluid-applied apparatus, electrorheological fluid-applied vibration controller, and electrorheological fluid-applied fixing apparatus
FR2784161A1 (en) * 1998-09-16 2000-04-07 Mannesmann Sachs Ag HYDRODYNAMIC CLUTCH HAVING A PARTITION BETWEEN A HYDRODYNAMIC CIRCUIT AND AN AUXILIARY CIRCUIT

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5267633A (en) * 1991-02-15 1993-12-07 Bridgestone Corporation Electrorheological fluid-applied apparatus, electrorheological fluid-applied vibration controller, and electrorheological fluid-applied fixing apparatus
EP0561231A1 (en) * 1992-03-18 1993-09-22 Eaton Corporation Viscous coupling by-pass element for a torque converter
FR2784161A1 (en) * 1998-09-16 2000-04-07 Mannesmann Sachs Ag HYDRODYNAMIC CLUTCH HAVING A PARTITION BETWEEN A HYDRODYNAMIC CIRCUIT AND AN AUXILIARY CIRCUIT

Similar Documents

Publication Publication Date Title
US5823309A (en) Magnetorheological transmission clutch
EP0882904B1 (en) Magnetorheological fluid fan clutch
US5848678A (en) Passive magnetorheological clutch
US5845752A (en) Magnetorheological fluid clutch with minimized reluctance
CN107614916B (en) Magneto-rheological fluid clutch apparatus
JP3623527B2 (en) Torque converter with lock-up mechanism
US6371267B1 (en) Liquid cooled magnetorheological fluid clutch for automotive transmissions
US6733411B1 (en) Electronically controlled hydraulic actuator for limited slip differential assembly
US6173823B1 (en) Viscous clutch assembly
EP0178078B1 (en) Electrically controlled, progressive, frictional, torque transmitting device
CN109944906B (en) Semi-active control variable inertia dual-mass flywheel based on magnetorheological fluid
US5086892A (en) Hydrodynamic torque converter
GB1462276A (en) Clutch-motor assembly
CN107956839A (en) A kind of compound Adjustable transmission system torsional vibration damper with particle damping and electromagnetic damping
US6155392A (en) Hydrodynamic clutch device with a dividing wall between a hydrodynamic circuit and a residual circuit
CN110454526B (en) Magneto-rheological braking system based on wearable exoskeleton
JPS612966A (en) Fluid transmission device with variable torque transmission efficiency
US6489598B1 (en) Heat generator for a motor vehicle using induction heating
US4942951A (en) Liquid friction coupling and motor vehicle comprising the same
CN110259872B (en) Magneto-rheological inertia variable damping torsional vibration damper
JPH07269650A (en) Torsional breaker assembly
US3469665A (en) Electromagnetic connector
US3048046A (en) Power transmission for variable speed and torque
CN201037517Y (en) Magnetorheological fluids soft starter
CN109854637B (en) Permanent magnet excited torque controllable magneto-rheological overload protection safety coupling