JPS6129624B2 - - Google Patents

Info

Publication number
JPS6129624B2
JPS6129624B2 JP57132642A JP13264282A JPS6129624B2 JP S6129624 B2 JPS6129624 B2 JP S6129624B2 JP 57132642 A JP57132642 A JP 57132642A JP 13264282 A JP13264282 A JP 13264282A JP S6129624 B2 JPS6129624 B2 JP S6129624B2
Authority
JP
Japan
Prior art keywords
conductivity
hca
resin
copper powder
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57132642A
Other languages
Japanese (ja)
Other versions
JPS5922938A (en
Inventor
Koichi Saruwatari
Yoshitomo Urata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANKO KAGAKU KK
Original Assignee
SANKO KAGAKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SANKO KAGAKU KK filed Critical SANKO KAGAKU KK
Priority to JP57132642A priority Critical patent/JPS5922938A/en
Publication of JPS5922938A publication Critical patent/JPS5922938A/en
Publication of JPS6129624B2 publication Critical patent/JPS6129624B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は導電性の改善された金属銅粉末を含ん
でなる樹脂組成物に関し、特に耐久的導電性を有
する導電性塗料組成物に関する。 金属粉末を導電体として含む樹脂組成物は導電
性塗料、ペースト、接着剤および導電性樹脂成形
品として実用に供され、金属として銀、ニツケ
ル、銅などが使用されている。金、パラジウム、
銀などの貴金属は酸化に対して安定で、樹脂組成
物として優れた導電性を与えるばかりではなく長
期的に安定した導電性を保持する点で好ましい
が、これら貴金属粉末は高価であり、たとえば最
近問題となつている電磁波遮蔽用塗料、有形品な
どの用途に用いる場合、コストの関係で実用が困
難である。そのため、ニツケル、銅などの安価な
金属粉末を使用する試みがなされ、一部実用化さ
れている。 貴金属の中でも安価である銀に比べて約100分
の1程度の価格で市場に大量に供給されている銅
を使用して導電性樹脂組成物が開発されればその
実用上の価値は非常に大である。然しながら、銅
粉は樹脂組成物中にあつても酸化され易く、非導
電性の酸化被膜が表面に形成され、組成物の導電
性が経時的に低下する傾向が著しく、実用的に満
足すべき製品が末だ見当らない状況にある。 市販銅粉は通常表面が非導電性の酸化物被膜で
覆われており、そのまゝ樹脂に混合しても導電性
は発揮されない。また塩酸などの酸水溶液で洗浄
して表面の酸化物被膜を取り除いて樹脂に混合分
散させた場合、当初は導電性を示すが、室温で数
日間放置した状態でも酸化が進行して導電性が失
なわれる。別途として、銅粒子と樹脂からなる混
合物をロールなどの手段で銅粒子を微粉状に摺り
つぶして、金属表面を形成させると、組成物は導
電性を発現し、前記の酸処理に比べてやや安定し
た導電性を示すが、長期的にはやはり酸化反応の
進行により次第に導電性を失ない、満足すべき結
果は得られない。 銅粉を硬化性液状樹脂に分散させ持続的な導電
性を発揮する有効な方法として、酸化銅などの銅
化合物を金属銅に還元する作用を有する亜燐酸系
化合物を添加する方法が提案されている(特開昭
51−61545,115691,昭52−145796,昭54−
22449)。この方法によれば、亜燐酸の還元作用に
より銅粉表面の酸化物被膜が金属銅に還元され、
樹脂組成物に導電性を付与するばかりでなく、経
時的にも金属状態が保持されて持続的な導電性を
示す。この場合にも亜燐酸の効果は長期的に安定
ではなく、比較的高温下の条件で導電性が失なわ
れることが判明した。このことは銅化合物の酸素
による酸化反応を通じて、亜燐酸が消費されて燐
酸に転化し、その還元能が失なわれる為と理解さ
れる。 本発明者らは先に一般式〔〕 (一般式〔〕で、X1,X2はハロゲン原子、
アルキル基、シクロアルキル基、アラルキル基、
アリール基を表わし、m,nは0〜3の整数であ
る)。 で表わされる有機燐化合物の銅化合物に対する特
異な作用を見出し、この化合物を添加した銅粉末
を含む耐久的な導電性を有する樹脂組成物を発明
した。 上記一般式〔〕の有機燐化合物は、特公昭48
−41009号、昭49−45397号、昭50−17979号各公
報に示される化合物であり、有機高分子化合物に
卓越した安定化効果を有し、安定剤として用いら
れる(例えば、特公昭51−47173、特開56−50956
など)。該有機燐化合物はその商品名に因んで以
後HCAと称する。 HCAは銅化合物と特異な反応性を有し、例え
ば表面が酸化された銅板にHCAアルコール溶液
を塗布すると、酸化銅被膜が除去されて、あたか
も金属銅に還元された如き様相を呈する。本発明
者らの解釈によれば、HCAの燐原子は5価であ
るにも拘らず、銅化合物と反応して安定な錯体被
膜を形成し、その際酸化銅被膜が除去される。驚
くべき事であるが、5価燐化合物であるHCAを
酸化物被膜で覆われた非導電性銅務に作用させる
と、導電性が発揮されることが判明した。それ自
体では導電性を示さない銅粉末をHCAのアルコ
ール溶液で洗浄処理すると導電性が付与され、し
かも銅粉末の導電性は、前記した如き酸水溶液で
洗浄処理した場合などと異なり、長期的に導電性
が保持される。 かゝる顕著なる発見に基づき、本発明者らは銅
粉末と樹脂から成る組成物にHCAを含有せしめ
ることにより長期的な導電性を示す樹脂組成物を
得ることを先に発明した。 本発明はさらにHCAと特定の有機チタネート
化合物を組合わせて銅粉末を処理するか、銅粉末
を含有する樹脂組成物に添加することにより導電
性の発現とその持続効果が一段と改善されるとい
う相乗効果の発見に基づいて完成された。 銅粉末を含んで構成される塗料組成物にある種
の有機チタネート化合物を添加することにより組
成物の導電性が改善されることは特開昭56−
36553号公報に記載されている。 本発明の目的に使用される有機チタネート化合
物は銅粉末に対して通常0.5〜10%(重量、以下
同じ)添加される。好ましい有機チタネート化合
物はピロ燐酸塩類の型で、モノアルコシチタネー
ト類またはチタニウムキレート類の化合物から選
ばれる。特に好適な有機チタネート化合物として
次のものがあげられる。 イソプロピルトリ(ジオクチルピロホスフアー
ト)チタネート、チタニウムジ(ジオクチルピロ
ホスフアト)オキシアセテート、トリ(ブチル、
オクチルピロホスフアト)イソブロピルチタネー
トモノ(ジオクチル、水素ホスフイート)、チタ
ニウムジ(ブチル、オクチルピロホスフアート)
ジ(オクチル、水素ホスフイート)オキシアセテ
ート、ジ(ブチル、メチルピロホスフアト)イソ
ブロピルチタネートモノ(ジオクチル、水素)ホ
スフイート、ジ(ブチル、メチルピロホスフア
ト)エチレンチタネートモノ(ジオクチル、水素
ホスフアート)。 HCAと該有機チタネート化合物の添加は次の
ようにして行なわれる。銅粉末100部(重量、以
下同じ)に対して0.5〜10部のHCAを数%のアル
コール溶液として加え、さらに有機チタネート化
合物0.5〜10部を添加して混合物をかきまぜてか
ら溶剤を揮発させた後樹脂と混合する。 あるいは銅粉末と樹脂の混合物にHCAと有機
チタネート化合物を直接添加して均一に分散させ
るなど、添加の方法は特に限定されない。有機チ
タネート化合物は銅粉末と樹脂の均一な分散を助
成する効果がある。 本発明のHCAと有機チタネート化合物の銅粉
末に対する顕著なる相乗効果は次のように説明さ
れる。 有機チタネート化合物は無機質フイラーを有機
樹脂類に混合分散させる際にカツプリング剤とし
て作用する。有機チタネート化合物のモノアルコ
キシ基が金属表面で反応してアルコキシ基を通じ
て金属と結合し、残余の有機基を通じて樹脂マト
リツクスとの緊密な分散を助成する。その際銅粉
表面において前述したHCAと相互作用をおよぼ
し、酸化に対して安定な導電性被覆を形成すると
同時に銅粉末と樹脂の緊密な分散状態が形成され
る。 本発明の組成物に配合される樹脂は目的に応じ
て選定され、特に限定されない。樹脂は高分子固
体状、液体状、溶液状、モノマー状あるいはそれ
らの混合物が用いられ、さらに顔料、安定剤など
の添加物が加えられる。具体的には不飽和ポリエ
ステル樹脂、アクリル樹脂、アルキツド樹脂、フ
エノール系樹脂、アミノ系樹脂、セルロース系樹
脂、ウレタン系樹脂、エボシキ系樹脂、その他石
油樹脂などのポリマー化合物、シリコーン樹脂な
どがあげられる。これら樹脂の形態は有機溶剤を
用いる溶液型、モノマーを含む100%液状樹脂
型、固形樹脂型などのいずれの形態でもよい。 本発明に使用される銅粉末は市販金属粉末がそ
のまゝ使用でき、あるいは粒状銅を樹脂成分と混
合し、ボールミル又はロールなどで摺りつぶして
使用してもよい。 HCAおよび有機チタネート化合物が添加され
た銅粉末と樹脂からなる混合組成物の製造方法は
それぞれの目的、用途に応じて通常知られる方法
によつて行なわれる。たとえば、導電性塗料を得
る目的では、ボールミル、三本ロールなどの混練
機が用いられ、導電性接着剤の製造も同様の手段
で行なわれる。またフイルム又はシート状の導電
性成形品を得る場合、カレンダーロール、押出
機、熱プレスなどの成形手段が選ばれる。 次に本発明の実施例について説明する。 実施例 1 本実施例はHCAおよび有機チタネート化合物
の効果を知るための予備実験について記す。 銅粉末(325メツシユパスの市販品)100部を容
器に入れ、テスターを用いて導電性を調べたが導
電性は認められなかつた。次にこの銅粉末を5%
塩酸の水―メタノール(1:1)溶液で洗浄し、
さらにアセトンで洗つて乾燥したものは導電性を
示したが、2日間室温に放置後に導電性は失なわ
れた。 これに対し、末処理銅粉末100部に、9,10―
シヒドロ―9―ホスフア―10―オキサフエナンス
レン―9―オキシド(以下H―HCAと称する)
の4%メタノール溶液100部を加えて混合し、溶
媒を減圧にて揮発乾燥したものは導電性を示し、
さらに1周間室温に放置後も同じ導電性を示し
た。同様の実験をH―HCAに同量のチタニウム
ジ(ジオクチルピロホスフアート)オキシアセテ
ートを加えたメタノール溶液を用いて行なつた結
果、同様な導電性が示された。一方、同じ有機チ
タネートのみで同様の処理を行つた場合、導電性
は認められなかつた。 実施例1におけるH―HCAの代りに次の化合物
を使用して同様に試験し、同様の結果が得られ
た。 9,10―ジヒドロ―1―シクロヘキシル―9―
ホスフア―10―オキサフエナンスレン―9―オキ
シド。(1―CH―HCAと略記) 9,10―ジヒドロ―3―(α,α―ジメチルベ
ンジル)―9―ホスフア―10―オキサフエナンス
レン―9―オキシド。(3―DMB―HCAと略記) 9,10―ジヒドロ―3―t―ブチル―9―ホス
フア―10―オキサフエナンスレン―9―オキシ
ド。(3―B―HCAと略記) 実施例 2 フエノール樹脂(大日本インキ製ブライオーフ
エン5010、不揮発分60%)80部に、H―HCA4
部、ジ(ブチル、メチルピロホスフアト)イソプ
ロピルチタネートモノ(ジオクチル、水素)ホス
フイト6部をエタノール30部に溶解した液を加
え、これに実施例1と同じ銅粉末150部を加え、
室温にて予備混合し、4時間放置後、3本ロール
を用いて均一に混練して塗料組成物を調製した。 一方、比較例2―1としてチタネート化合物を
添加しないこと、比較例2−2としてH―HCA
を添加しないこと、以外はそれぞれ実施例2と同
様にして試料を作成した。 これらの組成物をガラス板上に幅10mm、長さ
100mmに塗布し、90℃にて30分間加熱乾燥後、120
℃にて2時間加熱硬化して厚さ100μの硬化塗膜
を形成させた。これら試料の導電性をホイストー
ンダブルブリツジ抵抗計を用いて測定して比抵抗
を求めた。その結果を表―1に示す。
The present invention relates to a resin composition comprising metallic copper powder with improved electrical conductivity, and more particularly to a conductive coating composition having durable electrical conductivity. Resin compositions containing metal powder as a conductor are put to practical use as conductive paints, pastes, adhesives, and conductive resin molded products, and silver, nickel, copper, etc. are used as the metal. gold, palladium,
Precious metals such as silver are stable against oxidation and are preferred because they not only provide excellent conductivity for resin compositions but also maintain stable conductivity over a long period of time. However, these noble metal powders are expensive, and When used for applications such as electromagnetic wave shielding paints and tangible products, which have become a problem, it is difficult to put it into practical use due to cost considerations. Therefore, attempts have been made to use inexpensive metal powders such as nickel and copper, and some of these have been put into practical use. If a conductive resin composition could be developed using copper, which is supplied in large quantities on the market at about one-hundredth of the price of silver, which is one of the cheapest precious metals, it would have great practical value. It's large. However, even when copper powder is in a resin composition, it is easily oxidized, and a non-conductive oxide film is formed on the surface, resulting in a significant tendency for the conductivity of the composition to decrease over time. The product is no longer available. The surface of commercially available copper powder is usually covered with a non-conductive oxide film, so even if it is mixed with resin as is, it will not exhibit electrical conductivity. In addition, when the oxide film on the surface is removed by washing with an acid aqueous solution such as hydrochloric acid and mixed and dispersed in a resin, it initially shows conductivity, but even when left at room temperature for several days, oxidation progresses and the conductivity decreases. be lost. Separately, when a mixture of copper particles and resin is ground into fine powder using a roll or other means to form a metal surface, the composition exhibits conductivity, which is slightly more conductive than the acid treatment described above. Although it exhibits stable conductivity, it gradually loses its conductivity over a long period of time due to the progression of oxidation reactions, making it impossible to obtain satisfactory results. As an effective method for dispersing copper powder in a curable liquid resin to achieve sustained conductivity, a method has been proposed that involves adding a phosphorous acid compound that has the effect of reducing copper compounds such as copper oxide to metallic copper. There is (Tokukai Akira
51-61545, 115691, 1984-145796, 1974-
22449). According to this method, the oxide film on the surface of the copper powder is reduced to metallic copper due to the reducing action of phosphorous acid.
Not only does it impart electrical conductivity to the resin composition, but it also retains its metallic state over time and exhibits sustained electrical conductivity. In this case as well, it was found that the effect of phosphorous acid was not stable over a long period of time, and that conductivity was lost at relatively high temperatures. This is understood to be because phosphorous acid is consumed and converted to phosphoric acid through the oxidation reaction of the copper compound with oxygen, and its reducing ability is lost. The present inventors previously proposed the general formula [] (In the general formula [], X 1 and X 2 are halogen atoms,
Alkyl group, cycloalkyl group, aralkyl group,
represents an aryl group, m and n are integers of 0 to 3). The inventors discovered the unique action of the organophosphorus compound represented by the following formula on copper compounds, and invented a resin composition having durable conductivity that contains copper powder to which this compound is added. The organic phosphorus compound of the above general formula [] is
-41009, No. 49-45397, and No. 17979-1979. It has an outstanding stabilizing effect on organic polymer compounds and is used as a stabilizer (for example, 47173, JP 56-50956
Such). The organophosphorus compound is hereinafter referred to as HCA after its trade name. HCA has a unique reactivity with copper compounds. For example, when an HCA alcohol solution is applied to a copper plate whose surface has been oxidized, the copper oxide film is removed and the plate appears as if it had been reduced to metallic copper. According to the present inventors' interpretation, although the phosphorus atom of HCA is pentavalent, it reacts with a copper compound to form a stable complex film, and the copper oxide film is removed at this time. Surprisingly, it has been found that when HCA, a pentavalent phosphorus compound, is applied to non-conductive copper covered with an oxide film, conductivity is exhibited. Copper powder, which does not exhibit conductivity by itself, becomes conductive when cleaned with an alcoholic solution of HCA. Moreover, the conductivity of copper powder is long-lasting, unlike when cleaned with an acid aqueous solution as described above. Conductivity is maintained. Based on such remarkable discoveries, the present inventors have previously invented a method of obtaining a resin composition exhibiting long-term electrical conductivity by incorporating HCA into a composition consisting of copper powder and resin. The present invention further provides a synergistic effect in which the development of conductivity and its sustained effect are further improved by treating copper powder with a combination of HCA and a specific organic titanate compound, or by adding it to a resin composition containing copper powder. It was completed based on the discovery of effectiveness. It has been reported in Japanese Patent Laid-Open No. 1983-1993 that the conductivity of a coating composition containing copper powder can be improved by adding a certain organic titanate compound to the composition.
It is described in Publication No. 36553. The organic titanate compound used for the purpose of the present invention is usually added in an amount of 0.5 to 10% (by weight, the same hereinafter) based on the copper powder. Preferred organic titanate compounds are of the pyrophosphate type and are selected from monoalcosititanate or titanium chelate compounds. Particularly suitable organic titanate compounds include the following. Isopropyl tri(dioctyl pyrophosphate) titanate, titanium di(dioctyl pyrophosphato) oxyacetate, tri(butyl,
octyl pyrophosphate) isopropyl titanate mono(dioctyl, hydrogen phosphite), titanium di(butyl, octyl pyrophosphate)
Di(octyl, hydrogen phosphite) oxyacetate, di(butyl, methyl pyrophosphato) isopropyl titanate mono(dioctyl, hydrogen) phosphite, di(butyl, methyl pyrophosphato) ethylene titanate mono(dioctyl, hydrogen phosphate). Addition of HCA and the organic titanate compound is carried out as follows. 0.5 to 10 parts of HCA was added as a several percent alcohol solution to 100 parts of copper powder (weight, same below), and 0.5 to 10 parts of an organic titanate compound was added, the mixture was stirred, and the solvent was evaporated. After mixing with resin. Alternatively, the method of addition is not particularly limited, such as directly adding HCA and organic titanate compound to a mixture of copper powder and resin and uniformly dispersing them. The organic titanate compound has the effect of promoting uniform dispersion of the copper powder and resin. The remarkable synergistic effect of the HCA and organic titanate compound of the present invention on copper powder is explained as follows. The organic titanate compound acts as a coupling agent when the inorganic filler is mixed and dispersed in the organic resin. The monoalkoxy group of the organotitanate compound reacts on the metal surface to bond to the metal through the alkoxy group and promotes intimate dispersion with the resin matrix through the remaining organic groups. At this time, the copper powder interacts with the aforementioned HCA on the surface of the copper powder to form a conductive coating that is stable against oxidation, and at the same time, a tightly dispersed state of the copper powder and resin is formed. The resin blended into the composition of the present invention is selected depending on the purpose and is not particularly limited. The resin may be in the form of a polymer solid, liquid, solution, monomer, or a mixture thereof, and additives such as pigments and stabilizers may be added. Specific examples include unsaturated polyester resins, acrylic resins, alkyd resins, phenolic resins, amino resins, cellulose resins, urethane resins, epoxy resins, other polymer compounds such as petroleum resins, and silicone resins. These resins may be in any form such as a solution type using an organic solvent, a 100% liquid resin type containing a monomer, or a solid resin type. As the copper powder used in the present invention, a commercially available metal powder may be used as is, or granular copper may be mixed with a resin component and ground with a ball mill or roll. The mixed composition of copper powder and resin to which HCA and an organic titanate compound are added can be produced by a commonly known method depending on the purpose and use of the composition. For example, for the purpose of obtaining a conductive coating material, a kneading machine such as a ball mill or a three-roll mill is used, and the production of a conductive adhesive is also carried out by the same means. Further, when obtaining a film or sheet-like conductive molded article, a molding means such as a calender roll, an extruder, or a hot press is selected. Next, examples of the present invention will be described. Example 1 This example describes preliminary experiments to learn the effects of HCA and organic titanate compounds. 100 parts of copper powder (commercially available 325 mesh pass) was placed in a container, and conductivity was examined using a tester, but no conductivity was observed. Next, add 5% of this copper powder
Wash with a water-methanol (1:1) solution of hydrochloric acid,
Furthermore, those washed with acetone and dried showed conductivity, but the conductivity was lost after being left at room temperature for 2 days. On the other hand, 9,10-
Cyclhydro-9-phosphor-10-oxaphenanthrene-9-oxide (hereinafter referred to as H-HCA)
100 parts of a 4% methanol solution was added and mixed, and the solvent was evaporated and dried under reduced pressure.
Furthermore, the same conductivity was exhibited even after leaving it at room temperature for one week. A similar experiment was conducted using a methanol solution containing H-HCA and the same amount of titanium di(dioctylpyrophosphate) oxyacetate, and the results showed similar conductivity. On the other hand, when similar treatment was performed using only the same organic titanate, no conductivity was observed. The following compound was used in place of H-HCA in Example 1 and tested in the same manner, and similar results were obtained. 9,10-dihydro-1-cyclohexyl-9-
Phosphor-10-oxaphenanthrene-9-oxide. (abbreviated as 1-CH-HCA) 9,10-dihydro-3-(α,α-dimethylbenzyl)-9-phosphor-10-oxaphenanthrene-9-oxide. (abbreviated as 3-DMB-HCA) 9,10-dihydro-3-t-butyl-9-phosphor-10-oxaphenanthrene-9-oxide. (abbreviated as 3-B-HCA) Example 2 80 parts of phenolic resin (Bryauphene 5010 manufactured by Dainippon Ink, non-volatile content 60%), H-HCA4
A solution prepared by dissolving 6 parts of di(butyl, methyl pyrophosphato) isopropyl titanate mono(dioctyl, hydrogen) phosphite in 30 parts of ethanol was added, and 150 parts of the same copper powder as in Example 1 was added thereto.
The mixture was premixed at room temperature, left to stand for 4 hours, and then uniformly kneaded using three rolls to prepare a coating composition. On the other hand, as Comparative Example 2-1, no titanate compound was added, and as Comparative Example 2-2, H-HCA
Samples were prepared in the same manner as in Example 2, except that no . These compositions were placed on a glass plate with a width of 10 mm and a length of
Apply to 100mm and heat dry at 90℃ for 30 minutes, then apply 120mm
It was cured by heating at ℃ for 2 hours to form a cured coating film with a thickness of 100μ. The conductivity of these samples was measured using a Whistone double bridge resistance meter to determine the specific resistance. The results are shown in Table-1.

【表】 実施例2のH―HCAの代りに、1―CH―
HCA.3―DMB―HCA又は3―B―HCAを用いて
同様に試験し、同様の結果が得られた。 実施例 3 実施例1と同じ銅粉末100部にH―HCA5部お
よびイソプロピルトリ(ジオクチルピロホスフア
ート)チタネート5部をメタノール30部に溶解し
た液を加え、均一にかきまぜた後室温にて5時間
放置後温風にてメタノールを揮発させた。アクリ
ル樹脂(ロームアンドハース社製アクリロイドB
―66)60部をトルエン30部、エタノール10部に溶
解し、次に上記により処理した銅粉末を70部を加
え、実施例2と同様に混練して塗料組成物を調製
した。 一方、比較例3―1としてチタネート化合物を
添加しないこと、比較例3―2としてH―HCA
を添加しないこと、以外はそれぞれ実施例3と同
様にして試料を作成した。 これら途料組成物を実施例2と同様にガラス板
に塗布し、90℃にて30分、さらに120℃にて2時
間乾燥して厚さ100μの塗膜を形成させた。導電
性試験は実施例2と同様にして行なつた。その結
果を表―2に示す。
[Table] Instead of H-HCA in Example 2, 1-CH-
A similar test was conducted using HCA.3-DMB-HCA or 3-B-HCA, and similar results were obtained. Example 3 A solution prepared by dissolving 5 parts of H-HCA and 5 parts of isopropyltri(dioctylpyrophosphate) titanate in 30 parts of methanol was added to 100 parts of the same copper powder as in Example 1, stirred uniformly, and then kept at room temperature for 5 hours. After standing, methanol was evaporated with warm air. Acrylic resin (Acryloid B manufactured by Rohm and Haas)
-66) 60 parts was dissolved in 30 parts of toluene and 10 parts of ethanol, and then 70 parts of the copper powder treated above was added and kneaded in the same manner as in Example 2 to prepare a coating composition. On the other hand, as Comparative Example 3-1, no titanate compound was added, and as Comparative Example 3-2, H-HCA
Samples were prepared in the same manner as in Example 3, except that no . These preliminary compositions were applied to a glass plate in the same manner as in Example 2, and dried at 90° C. for 30 minutes and then at 120° C. for 2 hours to form a coating film with a thickness of 100 μm. The conductivity test was conducted in the same manner as in Example 2. The results are shown in Table-2.

【表】【table】

Claims (1)

【特許請求の範囲】 1 金属銅粉末を導電体として配合された樹脂組
成物において、一般式〔〕 (一般式〔〕で、X1,X2はハロゲン原子、
アルキル基、シクロアルキル基、アラルキル基、
アリール基を表わし、m,nは0〜3の整数であ
る) で示される有機燐化合物および有機チタネート化
合物を含有させることを特徴とする導電性の改善
された樹脂組成物。
[Claims] 1. In a resin composition containing metallic copper powder as a conductor, the general formula [] (In the general formula [], X 1 and X 2 are halogen atoms,
Alkyl group, cycloalkyl group, aralkyl group,
1. A resin composition with improved conductivity, characterized by containing an organic phosphorus compound and an organic titanate compound (representing an aryl group, m and n are integers of 0 to 3).
JP57132642A 1982-07-28 1982-07-28 Electrically conductive resin composition Granted JPS5922938A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57132642A JPS5922938A (en) 1982-07-28 1982-07-28 Electrically conductive resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57132642A JPS5922938A (en) 1982-07-28 1982-07-28 Electrically conductive resin composition

Publications (2)

Publication Number Publication Date
JPS5922938A JPS5922938A (en) 1984-02-06
JPS6129624B2 true JPS6129624B2 (en) 1986-07-08

Family

ID=15086094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57132642A Granted JPS5922938A (en) 1982-07-28 1982-07-28 Electrically conductive resin composition

Country Status (1)

Country Link
JP (1) JPS5922938A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1059329A1 (en) * 1999-06-09 2000-12-13 Matsushita Electric Works, Ltd. Flame retardant resin composition
WO2006046117A1 (en) * 2004-10-28 2006-05-04 Basf Coatings Japan Ltd. White basecoat coating composition, method for forming coating film and coated article
JP2008237940A (en) * 2005-01-14 2008-10-09 Basf Coatings Japan Ltd Coating film-forming method and coated product

Also Published As

Publication number Publication date
JPS5922938A (en) 1984-02-06

Similar Documents

Publication Publication Date Title
JP5563607B2 (en) Flaky conductive filler
JPS63165457A (en) Electrically conductive resin composition
CN1908045A (en) Metal salts of organic acids as conductivity promoters
JPS6386205A (en) Conducting composition
KR20180100530A (en) silver powder and manufacturing method of the same
JPS6129624B2 (en)
JPS6129625B2 (en)
JPS63103900A (en) Metal-coated anhydrous calcium sulfate whisker
JP3498184B2 (en) Highly conductive composition
JPS6111976B2 (en)
JPH03140478A (en) Manufacture of anti-oxidative metal powder
JPH06157876A (en) Conductive one-pack epoxy resin composition
JP2017171984A (en) Reactant, conductive composition and manufacturing method of surface treated copper powder
JPH02218762A (en) Copper powder for electrically conductive paint
JPH0214258A (en) Copper powder for electroconductive coating compound and electroconductive coating compound composition
JP3410174B2 (en) Conductive resin composition
JPH09310029A (en) Encapsulated conductive powder, its production and electroconductive resin composition
KR20180047528A (en) silver powder and manufacturing method of the same
JPS6017392B2 (en) Conductive paint using silver-copper composite powder
JPH08283517A (en) Conductive resin composition
JPH0368702A (en) Method for treating surface of copper powder
JP3997071B2 (en) Antistatic polymer composition
JPS6221045B2 (en)
JPH04146972A (en) Conductive paste composition
JPH0320341A (en) Copper powder for thick film composition