JPS61295733A - Transmission system for high frequency synchronizing signal - Google Patents

Transmission system for high frequency synchronizing signal

Info

Publication number
JPS61295733A
JPS61295733A JP60137519A JP13751985A JPS61295733A JP S61295733 A JPS61295733 A JP S61295733A JP 60137519 A JP60137519 A JP 60137519A JP 13751985 A JP13751985 A JP 13751985A JP S61295733 A JPS61295733 A JP S61295733A
Authority
JP
Japan
Prior art keywords
signal
synchronizing signal
transmission
high frequency
cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60137519A
Other languages
Japanese (ja)
Inventor
Yukio Kanezaki
兼崎 幸雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OYO CHISHITSU KK
Original Assignee
OYO CHISHITSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OYO CHISHITSU KK filed Critical OYO CHISHITSU KK
Priority to JP60137519A priority Critical patent/JPS61295733A/en
Publication of JPS61295733A publication Critical patent/JPS61295733A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radar Systems Or Details Thereof (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

PURPOSE:To transmit precisely a synchronizing signal at any time by providing an electrooptic signal converter to a transmission part side and an optoelectric signal converter and a PLL circuit to a reception part, and using an optical fiber cable as a cable. CONSTITUTION:A high frequency signal outputted from an oscillator 3 is passed through a frequency divider 4 and applied to respective synchronizing signal output parts as a transmission synchronizing signal Tx and a reception synchronizing signal Rx and then converted into light pulse signals, which are outputted. Those light pulse signals are inputted to a synchronizing signal input part 7 through the optical fiber cable 6 and converted into electric signals, which are outputted to the PLL circuit. Said signal output is passed through a phase detector 81, an integrator 82, and a VCO 83 and transmitted at a frequency corresponding to its voltage, and the signal is inputted to the phase detector 81 as a reference signal and also outputted to the pulse generator 21 of an antenna unit 2 as the transmission synchronizing signal Tx.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は高周波同期信号の伝送方式に関し、詳しくは
、ケーブルによって接続された送信部と受信部とを有し
てなる装置において、送信部から受信部への同期信号伝
送を極めて精度よく行なうことのできる高周波同期信号
の伝送方式%式% 〈従来の技術〉 上記のように送信部から受信部への高周波同明信号伝送
を行なう装置としては、例えば、浅層地下探査を行なう
のに用いられる所謂地下レーダシステムが挙げられる。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a high frequency synchronization signal transmission method, and more specifically, in a device having a transmitting section and a receiving section connected by a cable, A high-frequency synchronizing signal transmission method that allows highly accurate synchronizing signal transmission to the receiving section % <Prior art> As described above, the device for transmitting high-frequency synchronizing signals from the transmitting section to the receiving section is as follows. For example, there are so-called underground radar systems used for shallow underground exploration.

一般的な地下レーダシステムでは、電磁波発信手段並び
に電磁波受信手段を具備したアンテナユニットとレーダ
システム本体とを同軸ケーブルによって接続し、同軸ケ
ーブルを介してレーダシステム本体よりアンテナユニッ
トに周波数5 Q K11Z 、パルス幅3〜10ns
程度の同期信号を伝送している。アンテナユニツl〜側
では受信した同期信号を1〜すガとして用い、同期信号
の入力タイミングで電磁波発信手段から立上り時間1n
s程度の鋭い立上り特性を有し極めて短い電磁波パルス
を地中に放射する。一方、地中よりの反射電磁波パルス
あるいは地中を介して伝達された電磁波パルスを電磁波
受信手段により受信し同期信号を用いた→ノンプリング
手法によって受信した高周波電磁波パルス信号を取扱い
の容易な低周波信号に変換し再生している。
In a typical underground radar system, an antenna unit equipped with an electromagnetic wave transmitting means and an electromagnetic wave receiving means is connected to the radar system main body by a coaxial cable, and a frequency of 5 Q K11Z, pulse is transmitted from the radar system main body to the antenna unit via the coaxial cable. Width 3~10ns
It transmits a synchronous signal of about The antenna unit l~ side uses the received synchronization signal as 1~suga, and at the input timing of the synchronization signal, the rise time of 1n is transmitted from the electromagnetic wave transmitting means.
It emits an extremely short electromagnetic wave pulse into the ground with a sharp rise characteristic of about 1.5 seconds. On the other hand, the electromagnetic wave pulse reflected from underground or the electromagnetic wave pulse transmitted through the ground is received by an electromagnetic wave receiving means, and a synchronization signal is used → The high-frequency electromagnetic wave pulse signal received by the non-pulling method is converted into a low-frequency signal that is easy to handle. is being converted and played.

〈発明が解決しようとする問題点〉 ところで、上記のような地下レーダシステムでは、アン
テナユニットから放射された電磁波の一部か条件によっ
ては同軸ケーブルに混入するという欠点がある。このた
め、アンテナユニッj〜に伝送される同期信号にこれら
の不用な信号が混入し、アンテナユニットからの電磁波
の放射タイミングがずれたり、サンプリング手法による
受信信号の正確な再生ができなくなる等といった不都合
が生じる。特に、電磁波発信手段(送信プローブ)と受
信手段(受信プローブ)とを別々のポーリング孔内に設
置し、地中を介して送信プローブから伝達される電磁波
パルスを受信プローブによって受信する形式の所謂ボア
ボール地下レーダシステムの場合には電磁波パルスがケ
ーブル、特に送信プローブ側のケーブルにのり易いこと
から、特に送信同期信号への影響が大きく、上記不都合
の度合も大きくなる。
<Problems to be Solved by the Invention> By the way, the underground radar system as described above has a drawback in that a part of the electromagnetic waves radiated from the antenna unit may mix into the coaxial cable depending on the conditions. As a result, these unnecessary signals are mixed into the synchronization signal transmitted to the antenna unit, causing inconveniences such as the timing of electromagnetic wave radiation from the antenna unit being shifted and the received signal not being able to be accurately reproduced using the sampling method. occurs. In particular, a so-called boreball is a system in which an electromagnetic wave transmitting means (transmitting probe) and a receiving means (receiving probe) are installed in separate polling holes, and the receiving probe receives electromagnetic wave pulses transmitted from the transmitting probe through the ground. In the case of an underground radar system, electromagnetic wave pulses are easily attached to cables, especially cables on the transmission probe side, and therefore have a particularly large influence on transmission synchronization signals, increasing the degree of the above-mentioned inconvenience.

このような不都合をなくすため、同軸ケーブルに代えて
光ファイバーケーブルを用い、同期信号伝送を光信号に
より行なう方式を採ることによって上記の如き電磁波の
影響をなくすことも考えられる。しかしながらこの場合
には、光ファイバーケーブルの外圧による屈曲、温度変
化による伸縮、伝送路にお()る多重反射や波長選択性
吸収等の影響によって光信号にゆらぎが生じ、その位相
や振幅が変動するためアンテナユニツ1〜に伝送される
同期信号がジッタの多いものとなり、このため、同期信
号を高精度に伝達することはできない。
In order to eliminate such inconveniences, it may be possible to eliminate the influence of electromagnetic waves as described above by using an optical fiber cable instead of the coaxial cable and adopting a system in which synchronous signal transmission is performed by optical signals. However, in this case, fluctuations occur in the optical signal due to the effects of bending of the optical fiber cable due to external pressure, expansion and contraction due to temperature changes, multiple reflections in the transmission line, wavelength selective absorption, etc., and its phase and amplitude fluctuate. Therefore, the synchronization signal transmitted to the antenna units 1~ has a lot of jitter, and therefore the synchronization signal cannot be transmitted with high precision.

〈同順点を解決するための手段〉 この発明の高周波同期信号の伝送方式は、送信部からこ
れとケーブルを介して接続された受信部に高周波同期信
号を伝送するにおたり、送信部側に電気−光信号変換器
を設け、また受信部側に光−電気信号信号変換器及びP
LL回路を設けると共に、ケーブルとして光ファイバー
ケーブルを用い、上記高周波同期信号を電気−光信号変
換器により光信号に変換し、光ファイバーケーブルによ
って受信部に伝送し、光−電気信号変換器によって電気
信号に変換した後、上記PLL回路を介して受信部に入
力することを要旨とする。− く作 用〉 上記手段を用いることにより、受信部に至るまでの間に
光ファイバーケーブル中で生じた光信号のゆらぎによる
受信同期信号の変動はPLL回路により吸収されるため
、送信部から受信部への同期信号伝達を常に極めて精度
よく行なうことができる。
<Means for Resolving Ties> The high frequency synchronization signal transmission method of the present invention is such that when transmitting a high frequency synchronization signal from a transmitting section to a receiving section connected to the transmitting section via a cable, the transmitting section side An electric-to-optical signal converter is provided on the receiver side, and an optical-to-electrical signal converter and P are provided on the receiver side.
In addition to providing an LL circuit, an optical fiber cable is used as the cable, and the above-mentioned high frequency synchronization signal is converted into an optical signal by an electric-to-optical signal converter, transmitted to the receiving section by the optical fiber cable, and converted into an electric signal by the optical-to-electrical signal converter. The gist is that after conversion, the signal is input to the receiving section via the PLL circuit. - Function> By using the above means, fluctuations in the reception synchronization signal due to fluctuations in the optical signal that occur in the optical fiber cable before reaching the receiving section are absorbed by the PLL circuit, so that The synchronization signal can always be transmitted with extremely high accuracy.

〈実施例〉 第2図は地下レーダシステムにあけるアンテナユニツ1
〜及びレーダシステム本体の関連部分を示したもので、
レーダシステム本体中のレーダモジュール部1は、スキ
ャンゼネレータ11、スキャンコントローラ12、ケー
ブルドライバー13、AGCアンプ14及びTVGアン
プ15により構成されており、また、アンテナユニッ!
〜2は、パルス発生器21、送信アンテナ22、受信ア
ンテナ23、サンプリング回路24により構成されてい
る。これらの機能並びに動作は次の通りである。まず、
スキャンゼネレータ11、スキャンコントローラ12に
おいて、送信同期信号、受信同期信号、リンプリング同
期信号、その他信号処理で用いるタイミング信号を発生
させ、送信同期信号、受信同期信号、サンプリング同期
信号等はケーブルドライバー13で増幅され、ケーブル
を介してアンテナユニット2に出力される。このうち、
送信同期信号はパルス発生器21に入力され、送信同明
信号の入力タイミングで送信アンテナ22より電磁波パ
ルスが地中へ放射される。地中よりの反q」電磁波パル
スあるいは地中を介して伝達された電磁波パルスは、受
信アンテナ23において受信され、リンプリング回路2
4に出力され、サンプリング手法により低周波信号に変
換された後、レーダモジュール部1のAGCアンプ14
、TVGアンプ15を介してデータ処理部へ信号出力さ
れる。尚、AGCアンプ14は入力信号をその振幅に反
比例したゲインで増幅し出力し、また、TVGアンプ1
5は時間の経過とともに入力信号のゲインを徐々に増大
させて出力する。
<Example> Figure 2 shows antenna unit 1 installed in an underground radar system.
~ and the related parts of the radar system body,
The radar module section 1 in the radar system main body is composed of a scan generator 11, a scan controller 12, a cable driver 13, an AGC amplifier 14, and a TVG amplifier 15, and also includes an antenna unit!
2 is composed of a pulse generator 21, a transmitting antenna 22, a receiving antenna 23, and a sampling circuit 24. Their functions and operations are as follows. first,
The scan generator 11 and scan controller 12 generate transmission synchronization signals, reception synchronization signals, limp ring synchronization signals, and other timing signals used in signal processing, and the cable driver 13 generates transmission synchronization signals, reception synchronization signals, sampling synchronization signals, etc. The signal is amplified and output to the antenna unit 2 via a cable. this house,
The transmission synchronization signal is input to the pulse generator 21, and an electromagnetic wave pulse is radiated underground from the transmission antenna 22 at the input timing of the transmission synchronization signal. The electromagnetic wave pulse from underground or the electromagnetic wave pulse transmitted through the ground is received by the receiving antenna 23 and sent to the limp ring circuit 2.
4, and after being converted into a low frequency signal by a sampling method, it is output to the AGC amplifier 14 of the radar module section 1.
, the signal is outputted to the data processing section via the TVG amplifier 15. The AGC amplifier 14 amplifies the input signal with a gain inversely proportional to its amplitude and outputs the amplified signal.
5 gradually increases the gain of the input signal over time and outputs it.

第1図は本発明の伝送方式を以上説明したレーダモジュ
ール部1からアンテナユニツi〜2に送信同期信号を伝
送する場合に適用した実施例を示したものであり、以下
にその動作を説明する。
FIG. 1 shows an embodiment in which the transmission method of the present invention is applied to the case where the transmission synchronization signal is transmitted from the radar module section 1 described above to the antenna units i to 2, and the operation thereof will be explained below. .

まず、水晶発1辰器の如き発振器3から出力された10
00にHzの高周波信号は分周器4により100にHz
に分周された後、送信同期信号Tx及び受信同期信号R
Xとして、それぞれの同期信号出力部に注入される。即
ら、送信同期信号側について説明すれば、送信同明信号
Txは送信同期信号出方部5に入力され、図中のコンデ
ンサーC1抵抗R1て微分され、1〜ランジスタQ1の
ベースに注入される。1〜ランジスタQ1はアバランシ
ェモードスイッチングの動作領域で動作し、コンデンサ
C2に充電された電荷は極めて高速で1〜ランスT1の
一次側巻線を流れる。
First, 10
The high frequency signal of 00 Hz is divided into 100 Hz by frequency divider 4.
After the frequency is divided into the transmission synchronization signal Tx and the reception synchronization signal R
X is injected into each synchronization signal output. That is, to explain the transmission synchronization signal side, the transmission synchronization signal Tx is input to the transmission synchronization signal output section 5, differentiated by the capacitor C1 in the figure, resistor R1, and injected into the bases of transistors Q1 to 1. . Transistor Q1 operates in the avalanche mode switching operating region, and the charge charged in capacitor C2 flows through the primary winding of lance T1 at an extremely high speed.

トランスT1の二次側巻線に発生した電圧は1〜ランジ
スタQ2のベースに注入され、I〜ランジスタQ2は同
じくアバランシェモードスイッチングの動作領域で動作
し、コンデンサC3に充電された電荷は極めて高速でレ
ーザダイオードD1に流れ、レーザダイオードDTから
は立上り時間の非常に早い光パルス信号が出力される。
The voltage generated in the secondary winding of the transformer T1 is injected into the base of the transistor Q2, which also operates in the avalanche mode switching region, and the charge charged in the capacitor C3 is extremely fast. The light flows into the laser diode D1, and the laser diode DT outputs an optical pulse signal with a very fast rise time.

この光パルス信号は、レーダモジュール部1とアンテナ
ユニツl〜2との間に連結された光ファイバーケーブル
6を介して、アンテナユニツ1〜側に設けられた送信同
期信号入力部7に入力される。
This optical pulse signal is input to a transmission synchronization signal input section 7 provided on the antenna units 1-2 through an optical fiber cable 6 connected between the radar module section 1 and the antenna units 1-2.

送信同明信号入力部7に入力した光パルス信号はアバラ
ンシエフ第1〜ダイオードD2に注入され、アバランシ
エフ第1〜ダイオードD2は極めて高速で一定の入力光
以上でON、OFF動作を行ない、このON、OFF動
作によってアバランシェ型の1〜ランジスタQ3のコレ
クタ側に接続されているコンデンサC5の電荷が1ヘラ
ンスT2の一次側巻線に極めて高速で流れ、1〜ランス
T2の二次側巻線からPLL回路8へ信号出力される。
The optical pulse signal inputted to the transmitting signal input section 7 is injected into the first avalanche eff diode D2, and the first avalanche eff diode D2 performs ON and OFF operations at extremely high speed above a certain input light level. Due to the OFF operation, the electric charge of the capacitor C5 connected to the collector side of the avalanche type transistors Q1 to Q3 flows at an extremely high speed to the primary windings of the transistors T2, and from the secondary windings of the transistors T2 to PLL circuit. A signal is output to 8.

P L L回路8は位相検波器81、ミラー積分回路の
如き積分器82、VCO83により構成され、上記信号
出力は位相検波器81の一方の入力端子に入力される。
The PLL circuit 8 is composed of a phase detector 81, an integrator 82 such as a Miller integration circuit, and a VCO 83, and the above signal output is input to one input terminal of the phase detector 81.

位相検波器81の他方の端子にはVCO83の出力信号
(送信同期信号TX )が入力されており、位相検波器
81はこれら2つの信号の位相差を検出して積分器82
に出力し、積分器82はこの位相差に応じた電圧をVC
O83に出力し、VC083はその電圧に応じた周波数
で発信し信号出力する。このVC○83の出力信号は基
準信号として上述如く位相検波器81に入力されると共
に、送信同期信号TXとして、アンテナユニッ1〜2の
パルス発生器21に出力される。
The output signal of the VCO 83 (transmission synchronization signal TX) is input to the other terminal of the phase detector 81, and the phase detector 81 detects the phase difference between these two signals and outputs the signal to the integrator 82.
The integrator 82 outputs a voltage corresponding to this phase difference to VC.
The voltage is output to O83, and VC083 transmits and outputs a signal at a frequency corresponding to the voltage. The output signal of this VC○ 83 is input as a reference signal to the phase detector 81 as described above, and is also output as a transmission synchronization signal TX to the pulse generator 21 of the antenna units 1 and 2.

尚、上記PLL回路8においで、積分器82に代えて低
域フィルタを用いてもほぼ同様な動作をし、高精度な送
信同期信号Txを得ることができる。但し、低域フィル
タを用いたPIL回路では、光信号のジッターによる影
響等により位相検波器81から低域フィルタへの信号が
中断するとVCO83の入力電圧が低下し、この場合に
は送信同期信号下×を高精度に再生し伝送することがで
きなくなる。一方、実施例のようにミラー積分回路の如
き積分器82を用いた場合、入力信号の中断があっても
積分器82は長時間にわたって信号中断直前の電圧を保
持し、如何なる条件下においても送信同期信号を高精度
に■生じ伝送することができる。
Incidentally, even if a low-pass filter is used in place of the integrator 82 in the PLL circuit 8, almost the same operation can be performed, and a highly accurate transmission synchronization signal Tx can be obtained. However, in a PIL circuit using a low-pass filter, if the signal from the phase detector 81 to the low-pass filter is interrupted due to the influence of jitter in the optical signal, the input voltage of the VCO 83 decreases, and in this case, the input voltage of the VCO 83 decreases. It becomes impossible to reproduce and transmit × with high precision. On the other hand, when the integrator 82 such as a Miller integrator circuit is used as in the embodiment, even if the input signal is interrupted, the integrator 82 maintains the voltage immediately before the signal interruption for a long time, and the integrator 82 maintains the voltage immediately before the signal interruption, and transmits data under any conditions. A synchronization signal can be generated and transmitted with high precision.

〈発明の効果〉 以上のように構成されるこの発明の高周波同期信号の伝
送方式によれば、送信部と受信部とを接続するケーブル
として光ファイバーケーブルを用いたので、例えば地下
レーダシステムに応用した場合には、電磁波パルスの同
期信号への影響をなくすことができることは勿論、受信
部にPLL回路を設けたことにより、光ファイバーケー
ブル中において生じたジッター成分を確実に除去でき、
この結果、送信部から受信部への同期信号伝達を常に精
度よく行なえるという効果を奏する。
<Effects of the Invention> According to the high frequency synchronous signal transmission method of the present invention configured as described above, an optical fiber cable is used as a cable connecting the transmitting section and the receiving section. In addition to eliminating the influence of electromagnetic pulses on the synchronization signal, by providing a PLL circuit in the receiving section, it is possible to reliably remove jitter components generated in the optical fiber cable.
As a result, it is possible to always accurately transmit the synchronization signal from the transmitter to the receiver.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明を地下レーダシステムに適用した実施
例の主要部分を示した説明図、第2図は地下レーダシス
テムにおけるアンテナユニット及びその関係部分を示し
た説明図である。 1・・・レーダモジュール部、2・・・アンテナユニッ
ト、5・・・送信同期信号出力部、6・・・光ファイバ
ーケーブル、7・・・送信同期信号入力部、8・・・P
LL回路、81・・・位相検波器、82・・・積分器、
83・・・VCO。
FIG. 1 is an explanatory diagram showing the main parts of an embodiment in which the present invention is applied to an underground radar system, and FIG. 2 is an explanatory diagram showing an antenna unit and its related parts in the underground radar system. DESCRIPTION OF SYMBOLS 1...Radar module part, 2...Antenna unit, 5...Transmission synchronization signal output part, 6...Optical fiber cable, 7...Transmission synchronization signal input part, 8...P
LL circuit, 81... phase detector, 82... integrator,
83...VCO.

Claims (1)

【特許請求の範囲】 1、送信部からこれとケーブルを介して接続された受信
部に高周波同期信号を伝送するにあたり、送信部側に電
気−光信号変換器を設け、また受信部側に光−電気信号
信号変換器及びPLL回路を設けると共に、該ケーブル
として光ファイバーケーブルを用い、該高周波同期信号
を該電気−光信号変換器により光信号に変換し、該光フ
ァイバーケーブルによつて受信部に伝送し、該光−電気
信号変換器によつて電気信号に変換した後、該PLL回
路を介して受信部に入力することを特徴とする高周波同
期信号の伝送方式。 2、該PLL回路が位相検波器とミラー積分回路とVC
Oとから構成されることを特徴とする特許請求の範囲第
1項記載の伝送方式。
[Claims] 1. In transmitting a high frequency synchronization signal from the transmitter to the receiver connected via a cable, an electrical-to-optical signal converter is provided on the transmitter side, and an optical signal converter is provided on the receiver side. - An electric signal signal converter and a PLL circuit are provided, and an optical fiber cable is used as the cable, and the high frequency synchronization signal is converted into an optical signal by the electric-optical signal converter, and transmitted to the receiving section by the optical fiber cable. A transmission system for a high frequency synchronizing signal, characterized in that the signal is converted into an electrical signal by the optical-electrical signal converter and then input to the receiving section via the PLL circuit. 2. The PLL circuit has a phase detector, a Miller integration circuit, and a VC
The transmission system according to claim 1, characterized in that the transmission system comprises O.
JP60137519A 1985-06-24 1985-06-24 Transmission system for high frequency synchronizing signal Pending JPS61295733A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60137519A JPS61295733A (en) 1985-06-24 1985-06-24 Transmission system for high frequency synchronizing signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60137519A JPS61295733A (en) 1985-06-24 1985-06-24 Transmission system for high frequency synchronizing signal

Publications (1)

Publication Number Publication Date
JPS61295733A true JPS61295733A (en) 1986-12-26

Family

ID=15200571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60137519A Pending JPS61295733A (en) 1985-06-24 1985-06-24 Transmission system for high frequency synchronizing signal

Country Status (1)

Country Link
JP (1) JPS61295733A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03211484A (en) * 1990-01-16 1991-09-17 Fujitsu Ltd Transmission system for radar antenna azimuth angle information
CN113810108A (en) * 2021-09-14 2021-12-17 中国科学院国家授时中心 Double-layer locking time signal purification method and system for optical fiber time transmission

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5829232A (en) * 1981-08-17 1983-02-21 Nec Corp Optical signal transmission system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5829232A (en) * 1981-08-17 1983-02-21 Nec Corp Optical signal transmission system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03211484A (en) * 1990-01-16 1991-09-17 Fujitsu Ltd Transmission system for radar antenna azimuth angle information
CN113810108A (en) * 2021-09-14 2021-12-17 中国科学院国家授时中心 Double-layer locking time signal purification method and system for optical fiber time transmission
CN113810108B (en) * 2021-09-14 2022-07-26 中国科学院国家授时中心 Double-layer locking time signal purification method and system for optical fiber time transmission

Similar Documents

Publication Publication Date Title
US6462705B1 (en) Spread spectrum radar clock
US6014241A (en) Method and apparatus for reducing non-linear characteristics of a signal modulator by cross-correlation
US6426822B1 (en) Method and apparatus for reducing non-linear characteristics of a signal modulator by coherent data collection
ES2184689T3 (en) RADIO FREQUENCY RECEIVER CIRCUIT.
AU4867897A (en) Device for calibrating distance-measuring apparatuses
CN109387833B (en) MIMO radar detection method and device based on microwave photon orthogonal difference frequency multiplexing
US5390017A (en) Optical network analyzer for measuring the amplitude characteristics and group delay time dispersion characteristics of an optical circuit device
EP0363478B1 (en) Delayed replica radar test set target
US3788743A (en) Laser receiver system
US20140334824A1 (en) Fiber optic receiver, transmitter, and transceiver systems and methods of operating the same
JPS62231129A (en) Optical time-region reflectiometer by heterodyne reception
CN113676262A (en) Signal remote transmission phase stabilization system based on injection locking photoelectric oscillator
JPS61295733A (en) Transmission system for high frequency synchronizing signal
US4903339A (en) Locally nulled sine-wave total power alarm for intrusion detecting optical communications systems
US4234971A (en) Precise RF timing signal distribution to remote stations
CN115412172A (en) Microwave photon radar receiving and transmitting terminal function integration method based on polarization multiplexing
CN114448512A (en) Remote communication signal sending system based on optical fiber frequency transmission
KR20090113525A (en) System and Method for measuring phase response of human-body in human-body communication
JP2879840B2 (en) Optical fiber transmission equipment for wireless signals
GB1344092A (en) Antenna tracking systems
RU2715492C1 (en) System of one- and two-side comparisons of time scales with an echo generator
CN115469329A (en) Modularized high-resolution situation perception radar based on microwave photon technology
JPS61124881A (en) Synthetic aperture radar transmitter-receiver
JPH02142231A (en) Jitterless optical transmitting system
KR20000072891A (en) Transmitter and receiver of remote controlling signal