JPS6129570B2 - - Google Patents

Info

Publication number
JPS6129570B2
JPS6129570B2 JP12874379A JP12874379A JPS6129570B2 JP S6129570 B2 JPS6129570 B2 JP S6129570B2 JP 12874379 A JP12874379 A JP 12874379A JP 12874379 A JP12874379 A JP 12874379A JP S6129570 B2 JPS6129570 B2 JP S6129570B2
Authority
JP
Japan
Prior art keywords
sub
reflector
mirror
reference direction
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12874379A
Other languages
Japanese (ja)
Other versions
JPS5652904A (en
Inventor
Tadashi Takano
Takamasa Furuno
Mizuho Yamamae
Koji Abe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Nippon Telegraph and Telephone Corp
Original Assignee
Mitsubishi Electric Corp
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Nippon Telegraph and Telephone Corp filed Critical Mitsubishi Electric Corp
Priority to JP12874379A priority Critical patent/JPS5652904A/en
Publication of JPS5652904A publication Critical patent/JPS5652904A/en
Publication of JPS6129570B2 publication Critical patent/JPS6129570B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/18Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces
    • H01Q19/19Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces comprising one main concave reflecting surface associated with an auxiliary reflecting surface
    • H01Q19/191Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces comprising one main concave reflecting surface associated with an auxiliary reflecting surface wherein the primary active element uses one or more deflecting surfaces, e.g. beam waveguide feeds

Description

【発明の詳細な説明】 この発明は中心軸をもつ一次放射器と、非対称
な回転放物面鏡からなる2枚の副反射鏡および主
反射鏡とから構成されるアンテナ装置において、
上記構成品をそれぞれの反射鏡で発生する交さ偏
波成分が互いに打ち消し合うように配置、構成し
たことを特徴とするアンテナ装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides an antenna device comprising a primary radiator having a central axis, and two sub-reflectors and a main reflector each consisting of an asymmetric parabolic mirror of rotation.
The present invention relates to an antenna device characterized in that the components described above are arranged and configured so that cross-polarized components generated by the respective reflecting mirrors cancel each other out.

近年、主反射鏡、副反射鏡と中心軸をもつ一次
放射器からなるアンテナには、良好な広角放射特
性を得るため、非対称な鏡面を用い副反射鏡や一
次放射器およびその支持柱をブロツキングとなら
ないように配置したアンテナが知られている。し
かし、このアンテナでは、鏡面が回転対称でない
ため交さ偏波成分が発生するという欠点がある。
この欠点を除くため、これまで第1図に示すよう
に円錐ホーン1と回転放物面鏡からなる主反射鏡
2および双曲面鏡やだ円鏡からなる副反射鏡3と
から構成されるアンテナにおいて、円錐ホーン1
を主反射鏡2の回転軸、すなわち電波の進行方向
5に対して所定の角度だけ傾けることによつて、
主反射鏡2で発生する交さ偏波成分を副反射鏡3
で発生する交さ偏波成分で打ち消すようにしたア
ンテナの例が知られている。しかしながら、第1
図のような鏡面系ではアンテナの設計上自由度が
十分でなく、例えば円錐ホーン1が主反射鏡2の
回転軸に対して、平行な場合、交さ偏波成分を除
去するような鏡面系は構成できず、また、円錐ホ
ーン1が主反射鏡2の回転軸に対して垂直な場
合、実用的な鏡面系を構成することが困難である
という欠点を有している。
In recent years, antennas consisting of a main reflector, a sub-reflector, and a primary radiator with a central axis have been developed using asymmetric mirror surfaces to block the sub-reflector, primary radiator, and their support columns in order to obtain good wide-angle radiation characteristics. An antenna is known that is arranged so that this does not occur. However, this antenna has the disadvantage that cross-polarized components are generated because the mirror surface is not rotationally symmetrical.
In order to eliminate this drawback, as shown in Fig. 1, an antenna has been constructed which consists of a conical horn 1, a main reflecting mirror 2 consisting of a parabolic mirror of revolution, and a sub-reflecting mirror 3 consisting of a hyperboloid mirror or an ellipsoidal mirror. , conical horn 1
By tilting by a predetermined angle with respect to the rotation axis of the main reflecting mirror 2, that is, the direction of radio wave propagation 5,
The cross-polarized components generated by the main reflector 2 are transferred to the sub-reflector 3.
There are known examples of antennas that cancel out cross-polarized components generated by However, the first
A mirror system like the one shown in the figure does not have enough freedom in designing the antenna. For example, if the conical horn 1 is parallel to the rotation axis of the main reflector 2, a mirror system that removes cross-polarized components may be used. Furthermore, if the conical horn 1 is perpendicular to the rotation axis of the main reflecting mirror 2, it is difficult to construct a practical mirror system.

一方、第2図に示すように円錐ホーン1、回転
放物面鏡からなる副反射鏡#13,#24、およ
び主反射鏡2から構成されるアンテナにおいて、
円錐ホーン1を主射鏡2の回転軸すなわち電波の
進行方向5に対して垂直に給電するようにしたア
ンテナも知られている。
On the other hand, as shown in FIG. 2, in an antenna consisting of a conical horn 1, sub-reflectors #13 and #24 consisting of parabolic mirrors of revolution, and a main reflector 2,
An antenna is also known in which power is fed to the conical horn 1 perpendicularly to the rotational axis of the main mirror 2, that is, to the propagation direction 5 of radio waves.

しかしながら、上記アンテナは、鏡面系が鏡面
で発生する交さ偏波成分を互いに打ち消し合うよ
うに構成されていないため、アンテナの交さ偏波
特性はあまり良好でないという欠点がある。
However, the antenna described above has a drawback that the cross-polarized wave characteristics of the antenna are not very good because the mirror system is not configured to mutually cancel the cross-polarized wave components generated on the mirror surface.

この発明は上述した欠点を解決するため、中心
軸をもつ一次放射器と主反射鏡および副反射鏡に
回転放物面鏡を用いた3枚の非対称な鏡面からな
るアンテナ装置において、鏡面で発生する交さ偏
波成分を除去するように鏡面系を構成し、かつ一
次放射器の中心軸と主反射鏡の回転軸とのなす角
を任意にできるようにしたもので 以下、図によつてこの発明を詳細に説明する。
第3図aは、この発明の一実施例を示すもので1
は一次放射器となる円錐ホーン、2は主反射鏡、
3は副反射鏡#1、4は副反射鏡#2であり、
2,3および4は回転放物面鏡からなり、F1
F2は副反射鏡#13,#24の焦点で、F1は円
錐ホーン1の位相中心、F2は主反射鏡2の焦点
でもある。幾何光学的に考えたとき、円錐ホーン
1の中心軸に沿つて放射される光線が、それぞれ
の反射鏡にあたる点を順にM1,M2,Mとし、主
反射鏡2で反射した光線上に点Wをとるとき、
F1,M1,M2,M,Wが同一平面内にあり、
M1M2を基準方向とし、基準方向側からみて、反
時計方向に測つた角度を正として、円錐ホーン1
の中心軸方向F1M1が基準方向に対して成す角が
180゜未満に定めたときF1M1,MWおよびF1F2
基準方向となす角度をそれぞれθ,θ,θ
とする。また、副反射鏡#13,#24の焦点距
離をそれぞれf1,f2とし、F1F2の距離をとす
る。
In order to solve the above-mentioned drawbacks, this invention has an antenna device consisting of a primary radiator with a central axis and three asymmetric mirror surfaces using rotating parabolic mirrors as the main reflecting mirror and the sub-reflecting mirror. The mirror system is configured to remove cross-polarized components, and the angle between the central axis of the primary radiator and the rotation axis of the main reflecting mirror can be set arbitrarily. This invention will be explained in detail.
FIG. 3a shows one embodiment of the present invention.
is the conical horn which becomes the primary radiator, 2 is the main reflector,
3 is sub-reflector #1, 4 is sub-reflector #2,
2, 3 and 4 are parabolic mirrors of revolution, F 1 ,
F 2 is the focal point of the sub-reflecting mirrors #13 and #24, F 1 is the phase center of the conical horn 1, and F 2 is also the focal point of the main reflecting mirror 2. When considered from the perspective of geometrical optics, the points where a ray of light emitted along the central axis of the conical horn 1 hits each reflecting mirror are M 1 , M 2 , M in order, and the ray reflected by the main reflecting mirror 2 is When taking point W,
F 1 , M 1 , M 2 , M and W are in the same plane,
M 1 M 2 is the reference direction, and when viewed from the reference direction, the angle measured counterclockwise is positive, and the conical horn 1
The angle that the central axis direction F 1 M 1 makes with the reference direction is
When set to less than 180°, the angles that F 1 M 1 , MW and F 1 F 2 make with the reference direction are θ 0 , θ 1 , θ 2 , respectively.
shall be. Also, let the focal lengths of the sub-reflecting mirrors #13 and #24 be f 1 and f 2 , respectively, and the distance of F 1 F 2 be.

このとき、このアンテナ装置が幾何光学的に交
さ偏波成分を発生しないためには副反射鏡#13
および副反射鏡#24の焦点距離f1,f2は次の条
件を満足しなければならない。
At this time, in order for this antenna device to not generate geometrically-optically crossed polarized components, the sub-reflector #13
The focal lengths f 1 and f 2 of the sub-reflector #24 must satisfy the following conditions.

f2=sinθ{sinθ(σ+cosθ)+2fsinθ}/2σ σ(σ+cosθ
)(σ+cosθ)(1) ここで、σ,σはそれぞれ副反射鏡#1
3,#24の鏡面の凹凸をあらわすパラメータで
σi(i=1.2)=1のとき凹面鏡σi=−1のと
き凸面鏡である。第1式において、副反射鏡#1
3,#24の焦点距離f1,f2はいずれも正であ
り、これを満足するように構成した鏡面系を第3
図,第4図に示す。なお、図では、実用上副反射
鏡#13は凹面鏡すなわちa1=1としている。
f 2 = sinθ 1 {sinθ 21 +cosθ 0 )+2f 1 sinθ 0 }/2σ 1 σ 21 +cosθ 1
)(σ 1 +cosθ 0 )(1) Here, σ 1 and σ 2 are the sub-reflector #1, respectively.
3, #24 is a concave mirror when σi (i=1.2) = 1, and a convex mirror when σi = -1. In the first equation, sub-reflector #1
3. The focal lengths f 1 and f 2 of #24 are both positive, and the mirror system configured to satisfy this is the third
As shown in Fig. 4. In addition, in the figure, the sub-reflector #13 is practically a concave mirror, that is, a 1 =1.

第3図a,bは、主反射鏡2が副反射鏡#1
3,#24の下位にあり、第4図a,b,cは、
逆に上位にある場合である。
In Fig. 3 a and b, the main reflecting mirror 2 is the sub-reflecting mirror #1.
3. Below #24, Figure 4 a, b, and c are:
On the other hand, this is the case when it is at the top.

第3図aでは、0゜<θ<90゜,−90゜<θ
<0゜の範囲において、 を満たすとき、副反射鏡#24が凹面鏡となる鏡
面系を示している。又、0゜≦θ<90゜の場合
においては、第(1)式より明らかなように、第(2)式
のような制約なしに0゜<θ<90゜の範囲にお
いて、副反射鏡#24を凹面鏡とする鏡面系が構
成できる。
In Figure 3a, 0° < θ 1 < 90°, −90° < θ
2 In the range <0°, This shows a mirror system in which sub-reflector #24 becomes a concave mirror when the following conditions are satisfied. In addition, in the case of 0°≦θ 2 <90°, as is clear from equation ( 1 ), the sub-module is A mirror system can be constructed in which the reflecting mirror #24 is a concave mirror.

第3図bでは、−90゜<θ<0゜,−90゜<θ
<0゜の範囲において、 を満たすとき、副反射鏡#24が凹面鏡となる鏡
面系を示している。又、第4図aでは0゜<θ
<90゜,0゜<θ<90゜の範囲において、副反
射鏡#2が凹面鏡となる鏡面系を示している。
In Figure 3b, −90°<θ 1 <0°, −90°<θ
2 In the range <0°, This shows a mirror system in which sub-reflector #24 becomes a concave mirror when the following conditions are satisfied. Also, in Figure 4a, 0°<θ 1
In the range of <90°, 0°<θ 2 <90°, a mirror system in which the sub-reflector #2 becomes a concave mirror is shown.

第4図bでは−90゜<θ<0゜,−90゜<θ
<0゜の範囲において、第2式を満たすとき、
副反射鏡#24が凸面鏡となる鏡面系を示してい
る。又、0゜≦θ<90゜の場合においては、第
1式より明らかなように、第2式のような制約な
しに−90゜<θ<0゜の範囲において、副反射
鏡#24を凸面鏡とする鏡面系が構成できる。
In Figure 4b, -90° < θ 1 < 0°, -90° < θ
2 When the second formula is satisfied in the range <0°,
A mirror system in which sub-reflector #24 is a convex mirror is shown. In addition, in the case of 0°≦θ 2 <90°, as is clear from the first equation, the sub-reflector # A mirror system can be constructed in which 24 is a convex mirror.

第4図cでは、0゜<θ<90゜,−90゜<θ
<0゜の範囲において第3式を満たすとき、副
反射鏡#24が凸面鏡となる鏡面系を示してい
る。
In Figure 4c, 0° < θ 1 < 90°, -90° < θ
This shows a mirror system in which the sub-reflector #24 becomes a convex mirror when the third equation is satisfied in the range of 2 <0°.

第3図,第4図で電波の放射方向MWと基準方
向M1M2とがなす角度θが0゜のとき式(1)より
f2が0となり幾何光学的な交さ偏波消去条件を満
足する鏡面系は存在せず、このことは第3図a,
b,および第4図a,b,cの構成から明らかで
ある。
In Figures 3 and 4, when the angle θ 1 between the radio wave radiation direction MW and the reference direction M 1 M 2 is 0°, from equation (1)
There is no mirror system in which f 2 is 0 and satisfies the geometric optics cross-polarization cancellation condition, and this is shown in Figure 3a,
This is clear from the configurations of FIG. 4b and FIGS. 4a, b, and c.

なお、以上の説明では一次放射器に円錐ホーン
1を使用した場合を述べたが、本発明はこれに限
らず、中心軸をもついかなる一次放射器であつて
もよい。
In addition, although the above description described the case where the conical horn 1 was used as a primary radiator, the present invention is not limited to this, and any primary radiator having a central axis may be used.

また、以上は、副反射鏡#13が凹面鏡の場合
について説明しているが、副反射鏡#13に向か
い収束する波面をもつ一次放射器を用いることに
よつて、凸面鏡の場合にも本発明を適用できる。
Furthermore, although the above description is based on the case where the sub-reflector #13 is a concave mirror, the present invention can also be applied to a convex mirror by using a primary radiator having a wavefront that converges toward the sub-reflector #13. can be applied.

さらに、副反射鏡、主反射鏡には回転放物面鏡
を用いた説明したが、本発明はこれに限らず、鏡
面修正された鏡面系にも適用できる。
Furthermore, although the description has been made using a parabolic mirror of revolution as the sub-reflector and the main reflector, the present invention is not limited to this, and can also be applied to a mirror system whose mirror surface has been corrected.

以上のように、この発明によれば、一次放射器
に交さ偏波成分の少ない、例えばコルゲート円錐
ホーンを併用することにより、主反射鏡開口にお
ける交さ偏波成分もきわめて少なくでき、交さ偏
波特性のすぐれたアンテナが得られるとともに、
一次放射器の中心軸を電波の進行方向MWに対
し、任意の方向に傾けることができるという利点
を持つことから衛星通信における地球局用アンテ
ナ等にきわめて有効なアンテナ装置を提供するも
のである。
As described above, according to the present invention, by using, for example, a corrugated conical horn with few cross-polarized wave components in the primary radiator, the cross-polarized wave components at the main reflecting mirror aperture can be extremely reduced. In addition to obtaining an antenna with excellent polarization characteristics,
The present invention provides an antenna device that is extremely effective for earth station antennas in satellite communications because it has the advantage that the central axis of the primary radiator can be tilted in any direction with respect to the propagation direction MW of radio waves.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図,第2図は従来のアンテナ装置を示す構
成図、第3図a,b,第4図a,b,cはこの発
明の実施例によるアンテナ装置を示す構成図であ
り、図中、1は円錐ホーン、2は主反射鏡、3,
4は副反射鏡#1,#2,5は電波の進行方向で
ある。 なお、図中同一あるいは相当部分は同一符号を
付して示してある。
1 and 2 are configuration diagrams showing a conventional antenna device, and FIGS. 3 a, b, and 4 a, b, and c are configuration diagrams showing an antenna device according to an embodiment of the present invention. , 1 is a conical horn, 2 is a main reflector, 3,
Reference numeral 4 indicates sub-reflecting mirrors #1, #2, and 5 in the direction of propagation of radio waves. In addition, the same or equivalent parts in the figures are indicated by the same reference numerals.

Claims (1)

【特許請求の範囲】 1 一次放射器と、副反射鏡および主反射鏡に回
転放物面鏡を用いた3枚の非対称な鏡面系とから
なるアンテナ装置において、上記一次放射器の位
相中心をF1、主反射鏡の焦点をF2として幾何光
学的に考えたとき一次放射器の中心軸に沿つて放
射される光線が2枚の副反射鏡R1,R2に当る点
を順にM1,M2、主反射鏡Rに当る点をMとし、
Rで反射された光線上に点Wをとるとき、F1
M1,M2,F2,M,Wが同一面(基準面)内にあ
り、M1M2を基準方向とし、基準方向側からみて
反時計方向に測つた角度を正として、一次放射器
の中心軸方向F1M1が基準方向に対して成す角度
を180゜未満に定め、さらにMWとF1F2が基準方
向に対して成す角度をそれぞれθ,θで表わ
したとき上記主反射鏡Rが上記副反射鏡R1,R2
の下位にある場合、0゜<θ<90゜,−90゜<
θ<90゜もしくは−90゜<θ<0゜,−90゜
<θ<0゜の範囲において、上記副反射鏡R2
を凹面鏡としたことを特徴とするアンテナ装置。 2 一次放射器と、副反射鏡および主反射鏡に回
転放物面鏡を用いた3枚の非対称な鏡面系とから
なるアンテナ装置において、上記一次放射器の位
相中心をF1、主反射鏡の焦点をF2として幾何光
学的に考えたとき一次放射器の中心軸に沿つて放
射される光線が2枚の副反射鏡R1,R2に当る点
を順にM1,M2、主反射鏡Rに当る点をMとし、
Rで反射された光線上に点Wをとるとき、F1
M1,M2,F2,M,Wが同一面(基準面)内にあ
り、M1M2を基準方向とし、基準方向側からみて
反時計方向に測つた角度を正として、一次放射器
の中心軸方向F1M1が基準方向に対して成す角度
を180゜未満に定め、さらにMWとF1F2が基準方
向に対して成す角度をそれぞれθ,θで表わ
したとき上記主反射鏡Rが上記副反射鏡R1,R2
の上位にある場合、0゜<θ<90゜,0゜<θ
<90゜の範囲において、上記副反射鏡R2を凹
面鏡、または−90゜<θ<0゜,−90゜<θ
<90゜あるいは0゜<θ<90゜,−90゜<θ
<0゜の範囲において、上記副反射鏡R2を凸面
鏡としたことを特徴とするアンテナ装置。
[Claims] 1. In an antenna device consisting of a primary radiator and a three-piece asymmetric mirror system using parabolic mirrors of revolution as a sub-reflector and a main reflector, the phase center of the primary radiator is Considering geometric optics with F 1 and the focal point of the main reflector as F 2 , the points where the rays emitted along the central axis of the primary radiator hit the two sub-reflectors R 1 and R 2 are sequentially M 1 , M 2 , the point corresponding to the main reflecting mirror R is M,
When we take a point W on the ray reflected by R, F 1 ,
If M 1 , M 2 , F 2 , M, and W are in the same plane (reference plane), M 1 M 2 is the reference direction, and the angle measured counterclockwise when viewed from the reference direction is positive, the primary radiation When the angle that the central axis direction F 1 M 1 of the device makes with the reference direction is set to less than 180°, and the angles that MW and F 1 F 2 make with the reference direction are expressed as θ 1 and θ 2 , respectively. The main reflecting mirror R is the sub-reflecting mirror R 1 , R 2
If it is below 0° < θ 1 < 90°, −90° <
In the range of θ 2 < 90° or -90° < θ 1 < 0°, -90° < θ 2 < 0°, the sub-reflector R 2
An antenna device characterized by using a concave mirror. 2. In an antenna device consisting of a primary radiator and a three-piece asymmetric mirror system using parabolic mirrors of rotation as a sub-reflector and a main reflector, the phase center of the primary radiator is F 1 and the main reflector is Considering geometric optics with the focal point of F2 as the focal point of Let the point corresponding to the reflecting mirror R be M,
When we take a point W on the ray reflected by R, F 1 ,
If M 1 , M 2 , F 2 , M, and W are in the same plane (reference plane), M 1 M 2 is the reference direction, and the angle measured counterclockwise when viewed from the reference direction is positive, the primary radiation When the angle that the central axis direction F 1 M 1 of the device makes with the reference direction is set to less than 180°, and the angles that MW and F 1 F 2 make with the reference direction are expressed as θ 1 and θ 2 , respectively. The main reflecting mirror R is the sub-reflecting mirror R 1 , R 2
If it is above 0° < θ 1 < 90°, 0° < θ
2 In the range <90°, the sub-reflector R 2 is a concave mirror, or -90°<θ 1 <0°, -90°<θ 2
<90° or 0°<θ 1 <90°, -90°<θ 2
An antenna device characterized in that the sub-reflector R 2 is a convex mirror in the range <0°.
JP12874379A 1979-10-05 1979-10-05 Antenna equipment Granted JPS5652904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12874379A JPS5652904A (en) 1979-10-05 1979-10-05 Antenna equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12874379A JPS5652904A (en) 1979-10-05 1979-10-05 Antenna equipment

Publications (2)

Publication Number Publication Date
JPS5652904A JPS5652904A (en) 1981-05-12
JPS6129570B2 true JPS6129570B2 (en) 1986-07-08

Family

ID=14992350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12874379A Granted JPS5652904A (en) 1979-10-05 1979-10-05 Antenna equipment

Country Status (1)

Country Link
JP (1) JPS5652904A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0226870U (en) * 1988-08-04 1990-02-21

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04274311A (en) * 1991-03-01 1992-09-30 Nec Corp Electrical double-layer capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0226870U (en) * 1988-08-04 1990-02-21

Also Published As

Publication number Publication date
JPS5652904A (en) 1981-05-12

Similar Documents

Publication Publication Date Title
JPS5991708A (en) Antenna device
US4166276A (en) Offset antenna having improved symmetry in the radiation pattern
JPS58139503A (en) Beam feeding device
JPS6129570B2 (en)
JPS6128247B2 (en)
JPS6129569B2 (en)
JP2710416B2 (en) Elliptical aperture double reflector antenna
JPH0720012B2 (en) Antenna device
JP2822768B2 (en) Antenna device
JPS6019303A (en) Antenna
JP2712922B2 (en) Double reflector antenna
JP3034262B2 (en) Aperture antenna device
JPS5892106A (en) Multibeam antenna
JP2001156539A (en) Antenna system
JPS5936443B2 (en) Folded horn reflector antenna device
JPH053762B2 (en)
JP2001156540A (en) Antenna system
JP2000151266A (en) Antenna system
JPS605619Y2 (en) Offset type aperture antenna
JPH0352244B2 (en)
JPH0347764B2 (en)
JP2001156541A (en) Antenna system
JP2002185244A (en) Four-piece reflector offset antenna
JPH0582119U (en) Dual frequency antenna device
JPS58175302A (en) Antenna device