JPS61295334A - Smelting furnace - Google Patents

Smelting furnace

Info

Publication number
JPS61295334A
JPS61295334A JP13528985A JP13528985A JPS61295334A JP S61295334 A JPS61295334 A JP S61295334A JP 13528985 A JP13528985 A JP 13528985A JP 13528985 A JP13528985 A JP 13528985A JP S61295334 A JPS61295334 A JP S61295334A
Authority
JP
Japan
Prior art keywords
furnace
depth
lance
smelting
hearth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13528985A
Other languages
Japanese (ja)
Other versions
JPH0129857B2 (en
Inventor
Nobuo Kikumoto
菊本 伸夫
Hiroaki Ikoma
生駒 弘明
Akiyoshi Yamashiro
山城 明義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP13528985A priority Critical patent/JPS61295334A/en
Publication of JPS61295334A publication Critical patent/JPS61295334A/en
Publication of JPH0129857B2 publication Critical patent/JPH0129857B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Furnace Charging Or Discharging (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To obtain compact furnace having high productivity and safety, by equalizing bath depth just under a lance almost to permeating depth of blown smelting material, in furnace in which smelting material is blasted through lance provided at furnace ceiling. CONSTITUTION:Since a hearth of smelting furnace in continuous smelting, etc. of sulfide metal ore, is formed to inverse arch state concaving most at the center generally, the bath depths of a melt 3 from a bath level 3a to the hearth 5 are different in places. Here, the bath depth D just under the lance 1 for blasting smelting material such as refined ore, flux, solid fuel and pressed gas such as air, inserted vertically toward the melt 3 from a furnace ceiling 2 is equalized almost to permeating depth of smelting material blasted from the lance 1. The permeating depth means advancing distance of blasted smelting material particles in the melt 3, i.e. the depth permeated toward the hearth 5 from the level 3a. In this way, the erroding action of blasted smelting material received by hearth is relaxed, further the bath depth becomes to necessary and sufficient depth and the aimed furnace is obtd.

Description

【発明の詳細な説明】 「技術分野」 本発明は、n練炉の構造、より具体的には、炉床までの
バス深さに関するものでめる。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to the structure of an n-drilling furnace, and more specifically, to the depth of the bath to the hearth.

[従来技術およびその問題点] 一般に硫化金属鉱の連続製t!11等においては、粉状
あるいは粒状の稽鉱、播剤、固体燃料等、&l練原料を
、酸素富化した空気等の圧力気体と共に、炉内溶体に吹
き込み、冶金反応を進行させ溶錬する方法が採らnる。
[Prior art and its problems] Generally, continuous production of sulfide metal ore is carried out. In No. 11, etc., powdered or granular smelting material, seeding agent, solid fuel, etc., are blown into the melt in the furnace together with pressurized gas such as oxygen-enriched air, and the metallurgical reaction proceeds to smelt it. A method is adopted.

これに用いる製錬炉には、通常第1図および第2図に示
すように、製錬原料(以下、原料と略称する)を吹き込
む±めのランスト・・が炉天井2から炉内の溶体8に向
けて垂直にさし込まれている。そして、ランスト・・全
通して吹き込まれる原料は、ノズル1aから約/IjO
m/s以上の速度で放出さn、溶体8の湯面8aに衝突
してスプラッシュ4t−発生させた後、溶体8中に侵入
する。
In the smelting furnace used for this purpose, as shown in Figures 1 and 2, a runt for injecting smelting raw materials (hereinafter referred to as raw materials) is usually inserted from the furnace ceiling 2 into the melt inside the furnace. It is inserted vertically towards 8. Then, the raw material that is completely blown into the runt is approximately /IjO from the nozzle 1a.
It is released at a speed of m/s or more, collides with the surface 8a of the solution 8 to generate a splash 4t, and then enters the solution 8.

ところで、この種の製錬炉においては、一般に、炉内番
こ滞留する溶体8の債が少ないほど炉の生曜性が高く、
中間製品滞留量を少なくでき、また炉がコンパクトであ
るほど設備投資を少なくすることができるので、炉のバ
ス深さdt−(湯面8aから炉床5までの距離)を浅く
して、溶体8の滞留量の低減、炉のコンパクト化を図る
ことが行なわnており、従来のa錬炉では、炉中心部で
のバス深さdが約1090mmとなるように設計さnて
い九。
By the way, in this type of smelting furnace, generally speaking, the less the amount of melt 8 that remains in the furnace, the higher the durability of the furnace.
The amount of intermediate product retained can be reduced, and the more compact the furnace, the less equipment investment can be made. Conventional a-melting furnaces are designed so that the bath depth d at the center of the furnace is approximately 1090 mm.

ところが、このようなバス深さdの製錬炉にあっては、
ランスト・・から吹き込まれ溶体8中に侵入する製錬原
料によって炉床5をなす煉瓦が酷く浸食さn、逆アーチ
状に岨まれてい之炉床煉瓦のセリが緩んで煉瓦が脱けて
しまったり、互いの圧縮応力に耐えらnずに煉瓦が破損
して、炉から溶体8が流出する事故が起きる危険が増大
する恐nがあった。
However, in such a smelting furnace with a bath depth of d,
The bricks forming the hearth 5 were severely eroded by the smelting raw materials that were blown into the melt 8 from the runst, and the bricks forming the hearth 5 were carved in an inverted arch shape, and the selvage of the hearth bricks loosened and the bricks fell off. If the bricks are not able to withstand each other's compressive stress, the bricks may be damaged, increasing the risk of the melt 8 flowing out of the furnace.

「発明の目的」 本発明は上記事情に鑑みてなされたもので、主項性が高
く、コンパクトで、しかも安全性の高い製錬炉を提供す
ることを目的とする。
``Object of the Invention'' The present invention was made in view of the above circumstances, and an object of the present invention is to provide a smelting furnace with high principal property, compactness, and high safety.

「問題点を解決する九めの手段」 本発明者らは、長胡にわたる研究の結果、ランス直下に
おけるバス深さを、ランスから吹き込まnる製錬原料の
侵入深さとほぼ等しく設定することにより上記問題点を
解決し得ることを見い出した。
"Ninth Means to Solve the Problem" As a result of extensive research, the present inventors determined that by setting the bath depth directly below the lance approximately equal to the penetration depth of the smelting raw material blown from the lance. We have found that the above problems can be solved.

「実施例」 以下、実施例に沿って本発明の詳細な説明する。"Example" Hereinafter, the present invention will be described in detail with reference to Examples.

製錬炉の炉床は、一般に、炉中央が最も凹む逆アーチ状
に形成さnているので、湯面8aから炉床5までのバス
深さは、場所によって異なる。本発明の製錬炉にあって
は、ランス8・・・直下におけるバス深さDが、ランス
8から吹き込まnる製錬原料の侵入深さとほぼ等しい寸
法とさnている。
The hearth of a smelting furnace is generally formed in an inverted arch shape with the center of the furnace concave most, so the depth of the bath from the hot water surface 8a to the hearth 5 varies depending on the location. In the smelting furnace of the present invention, the bath depth D directly below the lance 8 is approximately equal to the penetration depth of the smelting raw material injected from the lance 8.

ここでいう侵入深さとは、吹き込まnた原料の粒子が溶
体8中を進行する距離、すなわち溶体8の湯面3aから
炉床5に向かって侵入した深さでめる。
The penetration depth here is defined as the distance that the injected raw material particles travel through the solution 8, that is, the depth of penetration from the melt surface 3a of the solution 8 toward the hearth 5.

この原料粒子の侵入深さは、種々の要因で変化する。主
な要因としては、次のよつなものが挙げらnる。
The penetration depth of the raw material particles varies depending on various factors. The main factors include the following.

a)原料粒子の速度が増すと侵入深さは深くなる。a) The penetration depth increases as the velocity of the raw material particles increases.

b)ランスlのノズルIaの単位断面積当りにおける原
料粒子の供給量が増加すると、侵入深さは深くなる。
b) As the amount of raw material particles supplied per unit cross-sectional area of the nozzle Ia of the lance l increases, the penetration depth becomes deeper.

C)#体8の比重、粘度が増すと、原料粒子の侵入深さ
が浅くなる。
C) As the specific gravity and viscosity of #body 8 increase, the penetration depth of raw material particles becomes shallower.

d)湯面8aからランス【までの高さが増すと、原料粒
子の浸入深さが浅くなる。
d) As the height from the hot water level 8a to the lance increases, the penetration depth of raw material particles becomes shallower.

本発明者らは、これらの知見から、原料粒子の侵入と各
要因との関係が次式で表わせることを見い出した。
Based on these findings, the present inventors have discovered that the relationship between the penetration of raw material particles and each factor can be expressed by the following equation.

Hp −y lJ6 dp 1j66 、 u、 (L
lll 、 7” L −uos 。
Hp −y lJ6 dp 1j66 , u, (L
lll, 7” L-uos.

、Ps 112 、、、−024 、 Np   、 
u cU 512似TI ・(d6+2Ho−tanθ)      −(1)こ
こで、 Ho/d・o<3.gの場合 Np−WS/(π/ b *dp ”m Ps−3o 
)  ・・・(りHe/di≧3gの場合 Np−(Ws/(g/ 6edp”sps * S!0
))X tgA−”・・・(3) A=/、09 /−0,9’/q(Log()ip/d
、))”+lψ613 夏Og(H・d /dj)−a
ogψ3 /  lo、g(u a/ 100)+Q2
3;3  Jog(Ws/S  )   ”−(<4)
(記号の説明) Hp:原料粒子の侵入深さくcs) pL  :溶体の密度(g/d) uCニジエツト中心部のガス速度(ell/ S )d
o・ :ランス内径(am) dp:原料粒子の径(1) So:ランス断面積(d) W3二ランス1本当りの給鉱量(g/S)θ :ガス又
は原料粒子の広がり角度 H1・:湯面からのランス高さく口) pL :溶体の粘度(、g/cs”s>上式中、溶体の
密度(′L)やうZス高さくH・0)等は、#!錬する
金属や、炉のi&適運転条件等を考慮すると自ずと定ま
る。また、生曜量に応じて変化する給鉱量などには、使
用するランスlの本数を変えて対応するので、ランス1
本当りの給鉱量(W s )は、はぼ一定である。
, Ps 112 ,, -024 , Np ,
u cU 512-like TI ・(d6+2Ho−tanθ) −(1) where, Ho/d・o<3. For g, Np-WS/(π/ b *dp ”m Ps-3o
)...(If He/di≧3g, then Np-(Ws/(g/6edp”sps*S!0)
))
,))”+lψ613 Summer Og(H・d/dj)−a
ogψ3 / lo, g (u a / 100) + Q2
3;3 Jog(Ws/S)”-(<4)
(Explanation of symbols) Hp: Penetration depth of raw material particles cs) pL: Density of solution (g/d) Gas velocity at the center of uC nitrogen jet (ell/S) d
o: Internal diameter of lance (am) dp: Diameter of raw material particles (1) So: Cross-sectional area of lance (d) Amount of ore fed per W3 lance (g/S) θ: Spread angle of gas or raw material particles H1・: Lance height from the hot water surface) pL: Viscosity of the solution (, g/cs"s>In the above formula, the density of the solution ('L), the height of the Z-stain H・0), etc. are #! Ren It will be determined automatically by considering the metal to be used and the furnace I & suitable operating conditions.In addition, the number of lances used will be changed to accommodate the amount of ore that changes depending on the amount of raw material.
The true ore supply amount (W s ) is approximately constant.

従って、原料粒子の侵入深さく Hp )は、主にラン
ス径(do2)  およびランス断面積(so)  等
によって定まることになる。ここで、式のうえからは、
ランスlが太いほど原料粒子の侵入深さくHp)が深く
なるが、実際上は、ランスl直下太くすると、ノズル部
分における原料粒子の密度(ρS)、原料粒子の速K 
(us、)  およびジェット中心部のガス速K(uc
)  等が小さくなるので、侵入深さく Hp )  
は逆に浅くなる傾向にある。通常、製錬炉のランスは、
3インチ以上とされるので、このことから計算すると、
製錬炉のランスl直下における適正なバス深さDは一般
に、txt。
Therefore, the penetration depth (Hp) of the raw material particles is determined mainly by the lance diameter (do2) and the lance cross-sectional area (so). Here, from the formula,
The thicker the lance l, the deeper the penetration depth (Hp) of the raw material particles becomes.In practice, if the lance l is made thicker directly below the lance l, the density of the raw material particles at the nozzle part (ρS) and the velocity of the raw material particles K
(us, ) and the gas velocity K (uc
) etc. become smaller, so the penetration depth becomes smaller.
On the contrary, it tends to become shallower. Usually, the lance of the smelting furnace is
Since it is said to be more than 3 inches, calculating from this,
The appropriate bath depth D directly below the lance l of the smelting furnace is generally txt.

〜13りO■程度、よシ好ましくは、約73001以上
とさnる。バス深さLが/30θ謹を越えても、炉床煉
瓦の侵食防止の効果の向上は望めず、炉内に滞留する溶
体蓋が増すのみで不経済である。
It is about 13001 or more, preferably about 73001 or more. Even if the bath depth L exceeds /30θ, no improvement in the effect of preventing corrosion of the hearth bricks can be expected, and the amount of melt remaining in the furnace only increases, which is uneconomical.

「作用」 本発明の製錬炉は、ランス直下のバス深さDが、ランス
1から吹き込まnる原料の侵入深さとほぼ等しく設定さ
れているので、吹き込まれる原料が炉床に衝突するエネ
ルギは大幅に緩和さnる。よって、この製錬炉にあって
は、吹き込まnる原料の侵食作用で炉床が受ける損傷が
少なく、侵食の進行も遅い。
"Function" In the smelting furnace of the present invention, the bath depth D directly below the lance is set to be approximately equal to the penetration depth of the raw material blown from the lance 1, so the energy of the raw material blown into the hearth collides with the hearth. Significant relief. Therefore, in this smelting furnace, the hearth is less damaged by the erosive action of the injected raw material, and the progress of the erosion is slow.

[試験−月 バス深さLを/300mbとした@製錬炉を設計し、築
炉し、2年間の試験運転を行った。試験した炉は、最大
処理nLtffton/日、内径t/qm。
[Test - A smelting furnace with a bath depth L of /300 mb was designed, constructed, and tested for two years. The tested furnace had a maximum throughput of nLtffton/day and an internal diameter of t/qm.

内容積rem、ランス径d6− よ0/am、ランス断
面積S1)箇aoos−oψd、ランス高さHα−!r
Ocsのものであつt。また、試験期間中の炉の運転条
件は、概略以下のようであった。
Internal volume rem, lance diameter d6- 0/am, lance cross-sectional area S1) aoos-oψd, lance height Hα-! r
It's from Ocs. Additionally, the operating conditions of the furnace during the test period were approximately as follows.

溶体密度rL−弘り〜よθ g/− 原料粒子密度?s−s、tp〜lA2g/d原料粒子速
度ug−200N2tOm/sジェット中心部のガス速
度ucm20θ〜2jOm/s 原料粒子径dp−コタ〜3j μ 給鉱量Wj−/φ〜/ ’7 T’/h・ランス広がり
角度θ−IAφ〜448:度 溶体の粘度’L−Q/yO,//  g /aaas2
年間の試験運転後、炉を休止して炉床5を調査したとこ
ろ、従来ランス直下には浸食により栗さ90〜/3r調
もの穴が形成さnてい九が、本試験炉にあってはxo−
4co■の深さの穴が形成さnていただけであった。
Solution density rL-Hirokiyo θ g/- Raw material particle density? s-s, tp~lA2g/d Raw material particle speed ug-200N2tOm/s Gas velocity at the center of the jet ucm20θ~2jOm/s Raw material particle diameter dp-Kota~3j μ Ore feed amount Wj-/φ~/'7 T' /h・Lance spread angle θ-IAφ~448: Viscosity of liquid solution 'L-Q/yO, // g /aaas2
After one year of test operation, the furnace was shut down and the hearth 5 was inspected, and it was found that holes as large as 90 to 3R were formed directly under the lance due to erosion, but in this test furnace, xo-
Only a hole with a depth of 4 cm was formed.

「発明の効果」 以上詳しく説明したように、本発明の製錬炉は、ランス
直下におけるバス深さが、吹き込まれる製錬原料の侵入
深さとほぼ等しい深さとさ牡ているので、吹き込まCる
原料により炉床が受ける侵食作用が緩和さnる。従って
、本発明の製、斂炉は、炉床煉瓦の破損等による溶体流
出事故の危険がなく、安全性に優nたものとなる。
"Effects of the Invention" As explained in detail above, in the smelting furnace of the present invention, the depth of the bath directly below the lance is approximately equal to the depth of penetration of the smelting raw material to be blown, so that the smelting furnace cannot be blown. The raw material alleviates the erosive effects on the hearth. Therefore, the hearth furnace of the present invention has excellent safety without the risk of melt spillage caused by breakage of the hearth bricks or the like.

加えて、本発明の炉は、バス深さが必要かつ充分な深さ
とさnているので、炉の生菫性が不硬に低下したり、炉
の規模が不要に大型化することがなく、安全性、主項性
および1を模等のバランスの優れた製錬炉となる。
In addition, since the furnace of the present invention has a bath depth that is necessary and sufficient, the raw violet properties of the furnace will not be deteriorated unnecessarily, and the scale of the furnace will not become unnecessarily large. It is a smelting furnace with an excellent balance of safety, principal property, and model 1.

【図面の簡単な説明】[Brief explanation of the drawing]

@f図および第2図は本発明の詳細な説明するためのも
ので、第1図は炉の縦断面図、第2図は炉の上面図であ
る。 l・・・・・・ランス、2・・・・・・炉天井、8・・
・・・・溶体、8a・・・・・・湯面、5・・・・・・
炉床、D・・・・・・バス深さ。
Figures @f and 2 are for detailed explanation of the present invention, with Figure 1 being a longitudinal sectional view of the furnace, and Figure 2 being a top view of the furnace. l...Lance, 2...Furnace ceiling, 8...
...Solution, 8a...Mountain surface, 5...
Hearth, D... Bath depth.

Claims (1)

【特許請求の範囲】 溶体が滞留する炉本体の天井壁に、精鉱、溶剤、固体燃
料等の製錬原料と空気等の圧力気体を吹き込むためのラ
ンスが設けられてなる製錬炉において、 上記溶体の湯面から炉本体の炉床までのバス深さが、ラ
ンス直下において、ランスから吹き込まれる製錬原料の
侵入深さとほぼ等しく設定されたことを特徴とする製錬
炉。
[Scope of Claims] A smelting furnace in which a lance for blowing smelting raw materials such as concentrate, solvent, solid fuel, and pressurized gas such as air is provided on the ceiling wall of the furnace body where the melt remains, A smelting furnace characterized in that the bath depth from the surface of the melt to the hearth of the furnace body is set to be approximately equal to the penetration depth of smelting raw materials injected from the lance immediately below the lance.
JP13528985A 1985-06-21 1985-06-21 Smelting furnace Granted JPS61295334A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13528985A JPS61295334A (en) 1985-06-21 1985-06-21 Smelting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13528985A JPS61295334A (en) 1985-06-21 1985-06-21 Smelting furnace

Publications (2)

Publication Number Publication Date
JPS61295334A true JPS61295334A (en) 1986-12-26
JPH0129857B2 JPH0129857B2 (en) 1989-06-14

Family

ID=15148216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13528985A Granted JPS61295334A (en) 1985-06-21 1985-06-21 Smelting furnace

Country Status (1)

Country Link
JP (1) JPS61295334A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63169476A (en) * 1986-12-29 1988-07-13 三菱マテリアル株式会社 Smelting furnace
JPH01290721A (en) * 1988-05-16 1989-11-22 Mitsubishi Metal Corp Method for continuous smelting of sulfide metal ore
WO2000014285A1 (en) * 1998-09-04 2000-03-16 Technological Resources Pty Ltd A direct smelting process
US6267799B1 (en) 1995-04-07 2001-07-31 Technological Resources Pty. Ltd. Method of producing metals and metal alloys
US6322745B1 (en) 1998-07-01 2001-11-27 Technological Resources Pty. Ltd. Direct smelting vessel and direct smelting process

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS579408U (en) * 1980-06-14 1982-01-18
JPS57104634A (en) * 1980-12-19 1982-06-29 Ishikawajima Harima Heavy Ind Co Ltd Refining method for metallic sulfide ore

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS579408U (en) * 1980-06-14 1982-01-18
JPS57104634A (en) * 1980-12-19 1982-06-29 Ishikawajima Harima Heavy Ind Co Ltd Refining method for metallic sulfide ore

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63169476A (en) * 1986-12-29 1988-07-13 三菱マテリアル株式会社 Smelting furnace
JPH01290721A (en) * 1988-05-16 1989-11-22 Mitsubishi Metal Corp Method for continuous smelting of sulfide metal ore
US6267799B1 (en) 1995-04-07 2001-07-31 Technological Resources Pty. Ltd. Method of producing metals and metal alloys
US6322745B1 (en) 1998-07-01 2001-11-27 Technological Resources Pty. Ltd. Direct smelting vessel and direct smelting process
WO2000014285A1 (en) * 1998-09-04 2000-03-16 Technological Resources Pty Ltd A direct smelting process

Also Published As

Publication number Publication date
JPH0129857B2 (en) 1989-06-14

Similar Documents

Publication Publication Date Title
CA2313622C (en) Start-up procedure for direct smelting process
US6585929B1 (en) Direct smelting vessel
ATE258995T1 (en) DIRECT MELTING PROCESS
CN104561452B (en) Dust the device and method of single mouth vacuum deaeration refining molten steel at a kind of end
CN102365373B (en) A direct smelting process and apparatus
US3898078A (en) Method and apparatus for injecting refining oxygen in steelmaking processes
RU2258744C2 (en) Method and device for direct melting process
JPS61295334A (en) Smelting furnace
JPS58144407A (en) Molten iron direct manufacture and device
JP2774265B2 (en) Bath mechanism for smelting of sulfide materials.
ES2249014T3 (en) DIRECT FUSION PROCEDURE.
JPS58144409A (en) Refinement and device for metal bath with solid cooling material
US3150963A (en) Open hearth furnaces and methods of operating the same
US3801305A (en) Process for continuously refining metals,notably,pig-iron
KR880000468B1 (en) Process for adding calcium to a bath of molten ferrous material
JPH06299261A (en) Method for cleaning copper or copper alloy
BR112013015528B1 (en) PROCESS BASED ON MELTING BATH TO DIRECTLY REDUCE METALLIFEROUS MATERIAL
JPS6145681B2 (en)
US1063486A (en) Method of obtaining values from copper-bearing material.
JP2002115007A (en) Structure for inner wall surface at lower part in blast furnace
JP6939828B2 (en) Acid feeding refining method for molten iron
RU2116356C1 (en) Method of steel melting in electric arc steel-melting furnaces and lance for its embodiment
JPS5757819A (en) Converter steel making method
US789648A (en) Method of continuously producing matte by dissolving ores.
US4093190A (en) Process for the protection of a refractory wall in service