JPS61293673A - Magnetic stirring welding method - Google Patents

Magnetic stirring welding method

Info

Publication number
JPS61293673A
JPS61293673A JP13605085A JP13605085A JPS61293673A JP S61293673 A JPS61293673 A JP S61293673A JP 13605085 A JP13605085 A JP 13605085A JP 13605085 A JP13605085 A JP 13605085A JP S61293673 A JPS61293673 A JP S61293673A
Authority
JP
Japan
Prior art keywords
welding
welding torch
molten metal
magnetic stirring
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13605085A
Other languages
Japanese (ja)
Inventor
Ikuo Wakamoto
郁夫 若元
Nagio Minami
南 渚夫
Masazumi Nagareda
流田 正純
Yusaku Sugimoto
杉本 裕策
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP13605085A priority Critical patent/JPS61293673A/en
Publication of JPS61293673A publication Critical patent/JPS61293673A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To avoid the changeover of the normal and reverse rotation in a magnetic stirring on the gap of a welding material and to obtain a good penetration bead by chnchronizing the oscillating of a welding torch or welding material and the direction of the magnetic field. CONSTITUTION:The welding torch performs a welding with moving in the regular order of A O B O A by an oscillating device. On the other hand an oscillating position detector 8 detects the moving position of the welding torch 1 and transmits it to an alternating current generater 7. And in case of the welding torch 1 being under moving on A B the exciting power source 16 in normal direction is outputted and the molten metal is rotated in the arrow mark continuous line direction inside a molten pool 13. In case of B A similarly the molten metal inside the molten metal 13 is rotated in the arrow mark dot line direction and the burn through of the welding metal is eliminated without suspending the rotation of the molten metal while the welding torch 1 is moving on the gap G of the center O of the welding groove.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、磁気撹拌溶接方法の改良に関し、特に容易に
良好な裏波ビードが得られる磁気撹拌溶接方法に関する
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an improvement in a magnetic stirring welding method, and particularly to a magnetic stirring welding method that can easily obtain a good uranami bead.

(従来の技術) 従来、鋼板、鋼管等の継手溶接では、片面溶接が多用さ
れるが、初層溶接で良好な裏波ビードを得る必要がある
。そのため、溶接方法の改良、溶接開先の工夫、溶接条
件の管理等がなされている。しかし、上記のいずれの溶
接方法においても、良好な裏波ビードを得るための適正
溶接条件範囲が狭く、安定した良好な裏波ビードが得ら
れないのが現状である。
(Prior Art) Conventionally, single-sided welding is often used in joint welding of steel plates, steel pipes, etc., but it is necessary to obtain a good under-wave bead in the first layer welding. Therefore, efforts are being made to improve welding methods, create welding grooves, and manage welding conditions. However, in any of the above welding methods, the range of appropriate welding conditions for obtaining a good Uranami bead is narrow, and the current situation is that a stable and good Uranami bead cannot be obtained.

従来の方法による鋼板の継手溶接の1例を、第5図、第
6図、第7図、第8図に示す。
An example of joint welding of steel plates by a conventional method is shown in FIGS. 5, 6, 7, and 8.

第5図は、通常のTrG溶接法を示す。図中、1はTI
G溶接トーチ、2は被溶接材、3はタングステン電極を
示す。このT工G溶接法は、タングステン電極3と被溶
接材2間に発生するアーク熱によシ被溶接材2の開先部
t−S融し、裏波ビードを得る方法である。しかしなが
ら、かかるTIG溶接法では、良好な裏波ビードが得ら
れるが、次の欠点がある。
FIG. 5 shows a conventional TrG welding method. In the figure, 1 is TI
G welding torch, 2 indicates a material to be welded, and 3 indicates a tungsten electrode. This T-G welding method is a method in which the groove portion of the welded material 2 is t-S melted by arc heat generated between the tungsten electrode 3 and the welded material 2 to obtain an underwave bead. However, although such a TIG welding method can obtain a good Uranami bead, it has the following drawbacks.

(1)溶接開先加工費が高い。(加工精度が要求される
。) (2)開先が密着していることが必要である。
(1) Welding groove processing costs are high. (Processing accuracy is required.) (2) It is necessary that the grooves are in close contact.

第6図は、多用されているオシレートT工G溶接法を示
し、1はT工G溶接トーチ、2は被溶接材、3はタング
ステン電極、4は溶加棒、ま次矢印5は、TIG溶接ト
ーチ1の左右のオシレートの方向を示す。このオシレー
トT工G溶接法は、タングステン電極3と被溶接材2間
に発生するアーク中に溶加棒4を送給しながら溶融金属
を作シ、さらに、溶接トーチ1を左右に周期的にオシレ
ートしながら溶接する方法であるが、次の欠点がある。
Figure 6 shows the commonly used oscillating T welding method, where 1 is the T welding torch, 2 is the material to be welded, 3 is the tungsten electrode, 4 is the filler rod, and the arrow 5 is the TIG welding method. The left and right oscillation directions of the welding torch 1 are shown. In this oscillating T-type G welding method, molten metal is produced while feeding a filler rod 4 into an arc generated between a tungsten electrode 3 and a workpiece 2, and the welding torch 1 is moved from side to side periodically. This is a method of welding while oscillating, but it has the following drawbacks.

(1)許容開先幅が狭い。(1) Allowable groove width is narrow.

(2)適正溶接条件範囲が狭いため、安定した裏波ビー
ドが得られ難い。
(2) Since the range of appropriate welding conditions is narrow, it is difficult to obtain a stable Uranami bead.

なお、第7図の(&)、(b)は、オシレートT工G溶
接法の代表的な開先形状の1例を示す。
Note that (&) and (b) in FIG. 7 show an example of a typical groove shape of the oscillated T-type G welding method.

第8図は、磁気撹拌TIG溶接法の1例を示す。図中、
6は磁場発生コイル、7は前記コイルに供給する交番電
流発生電源、1はT工G溶接トーチ、3はタングステン
電極、4は溶加棒、2は被溶接材、5はTIG溶接トー
チの左右オシレート方向を示す。
FIG. 8 shows an example of the magnetic stirring TIG welding method. In the figure,
6 is a magnetic field generating coil, 7 is an alternating current generating power supply that supplies the coil, 1 is a TIG welding torch, 3 is a tungsten electrode, 4 is a filler rod, 2 is a workpiece to be welded, 5 is the left and right side of a TIG welding torch Indicates the oscillation direction.

この磁気撹拌T工GIW接法は、タングステン電極3と
被溶接材2間に発生したアーク中に溶加棒4を送給しな
がら溶融金属を得る方法である。そして、TIG溶接ト
ーチ1に備えた磁場発生コイル6に交番電流を流すと、
交番磁場が発生し、交番磁場とアーク電流とによって発
生する力によって、前記溶融金属が撹拌される。
This magnetically stirred GIW welding method is a method of obtaining molten metal while feeding a filler rod 4 into an arc generated between a tungsten electrode 3 and a workpiece 2 to be welded. Then, when an alternating current is passed through the magnetic field generating coil 6 provided in the TIG welding torch 1,
An alternating magnetic field is generated and the molten metal is stirred by the force generated by the alternating magnetic field and the arc current.

したがって、撹拌され表から溶接は進行する。Therefore, the welding progresses from the surface under stirring.

なお、溶接トーチ1は、直進又は左右にオシレートシな
がら溶接進行し、裏波ビードを得る。
Note that the welding torch 1 advances the welding while moving straight or oscillating from side to side to obtain an underwave bead.

この溶接方法によれば、前記第5図、第6図の溶接法の
欠点は、はぼ改善されるが、(り許容開先幅が狭< 、
(2)裏波ビードの溶は落ちが時々発生し、ビード表面
外観とけこみが不規則である、等の欠点が、まだ解消し
ていない。
According to this welding method, the drawbacks of the welding method shown in FIGS.
(2) The disadvantages of Uranami beads, such as occasional drop-off and irregular bead surface appearance and dents, have not been resolved yet.

更に第9図、第10図に従来の磁気撹拌TIG溶接法に
よる溶接状況の原理図を示す。
Furthermore, FIGS. 9 and 10 show principle diagrams of welding conditions by the conventional magnetic stirring TIG welding method.

第9図(a)において、タングステン電極3から溶融池
13内に流れる溶接電流12は、溶融池15及び被溶接
材2内を放射状に流れる。これに、T工G溶接トーチ1
の先端に設けられた磁場発生コイル6によシ、被溶接材
2に垂直な磁場11を与えると、溶接電流12と磁場1
1によって、第9図−(b)に示すように、ローレンツ
力14が発生し、溶融池13が一方向に回転しはじめる
。そして、磁場11を低周波の交番磁場とすることによ
り、溶融池13に周期的に反転力を与えることができる
。したがって、溶融池15の溶融金属は、周期的に正、
逆方向に撹拌されながら、溶接の進行につれて規則的に
凝固する。なお、第9図において、7は交番電流発生器
、4は溶加棒を示す。
In FIG. 9(a), a welding current 12 flowing from the tungsten electrode 3 into the molten pool 13 flows radially within the molten pool 15 and the welded material 2. In FIG. To this, T-worker G welding torch 1
When a magnetic field 11 perpendicular to the workpiece 2 is applied by the magnetic field generating coil 6 installed at the tip of the welding current 12 and the magnetic field 1
1, as shown in FIG. 9-(b), a Lorentz force 14 is generated and the molten pool 13 begins to rotate in one direction. By making the magnetic field 11 a low-frequency alternating magnetic field, a reversal force can be periodically applied to the molten pool 13. Therefore, the molten metal in the molten pool 15 periodically
While being stirred in the opposite direction, it solidifies regularly as welding progresses. In addition, in FIG. 9, 7 indicates an alternating current generator, and 4 indicates a filler rod.

第10図は、第9図の溶融池13付近の部分拡大図を示
す。溶融池16はほぼ水平状態で、溶融池15内には、
ローレンツ力14が働き、正、逆方向に撹拌される。な
お、10は溶接ビードを示す。したがって、磁場の働き
によって、溶融池13内の溶融金属には、水平方向の回
転力が発生し、水平分力として働き、垂直方向の重力軽
減、および垂直方向に働くアーク力も軽減され、溶融金
属の落下、たれ落ちは防止される。
FIG. 10 shows a partially enlarged view of the vicinity of the molten pool 13 in FIG. 9. The molten pool 16 is almost horizontal, and inside the molten pool 15,
Lorentz force 14 acts to stir in the forward and reverse directions. Note that 10 indicates a weld bead. Therefore, due to the action of the magnetic field, horizontal rotational force is generated in the molten metal in the molten pool 13, which acts as a horizontal component force, reduces the gravity in the vertical direction, and also reduces the arc force acting in the vertical direction. This prevents the product from falling or dripping.

しかし、低周波で溶融金属が正、逆方向に撹拌されるこ
とは、正、逆転時には、一時的に溶融金属は停止の状態
にあるわけである。そして、この停止は、1サイクルの
内2回あるはづである。すなわち、1サイクルの磁気撹
拌のうち、磁気撹拌効果が消滅しているときが2回ある
ことを示す。溶接トーチ1をオシレートしていても、磁
気撹拌効果の消滅が開先ギヤツブG上で起ると溶融金属
の落下が発生する。
However, the fact that the molten metal is stirred in the forward and reverse directions by low frequency means that the molten metal is temporarily stopped during the forward and reverse directions. This stop should occur twice in one cycle. That is, it shows that there are two times in one cycle of magnetic stirring when the magnetic stirring effect disappears. Even if the welding torch 1 is oscillated, if the magnetic stirring effect disappears on the groove gear G, molten metal will fall.

(発明が解決しようとする問題点) 鋼板、鋼管等の継手溶接、特に鋼管の継手溶接において
、片面溶接裏波ビードの良否は、製品生命を左右する重
要なポイントである。そこで、本発明の目的は、上記従
来の溶接方法の欠点を解消し、良好な表、裏ピードを得
ることができ、かつ磁気撹拌効果が消滅して溶融金属の
落下することが防止でき、しかも許容開先幅、適正溶接
条件範囲の広い磁気撹拌溶接方法を提供しようとするも
のである7、 (問題点を解決するための手段) 本発明は、溶接アークと同軸方向に磁場を働かせて溶接
を行う磁気撹拌溶接方法において、溶接トーチ又は被溶
接材のオシレートと磁場方向を同期させることを特徴と
する磁気撹拌溶接方法に関する。
(Problems to be Solved by the Invention) In joint welding of steel plates, steel pipes, etc., especially joint welding of steel pipes, the quality of the single-sided welding uranami bead is an important point that affects the life of the product. SUMMARY OF THE INVENTION Therefore, an object of the present invention is to eliminate the drawbacks of the conventional welding method described above, to obtain good front and back peeds, to eliminate the magnetic stirring effect and to prevent molten metal from falling. The present invention aims to provide a magnetic stirring welding method with a wide allowable groove width and a wide range of appropriate welding conditions. The present invention relates to a magnetic stir welding method characterized in that the direction of the magnetic field is synchronized with the oscillation of a welding torch or a workpiece.

すなわち、従来の磁気撹拌溶接法による裏波ビードを得
る方法において、溶接トーチのオシレート周期と磁気撹
拌とは無関係であったが、本発明では、 (1)  溶接トーチのオシレート周期と磁気撹拌周期
を同期させること、及び (2)溶接トーチのオシレート方向並びにオシレート位
置と、磁気撹拌による溶融金属の撹拌方向(回転方向)
を常に一定とした磁気撹拌溶接方法 を特長とするものである。
That is, in the conventional method of obtaining a uranami bead using the magnetic stirring welding method, the oscillation period of the welding torch and the magnetic stirring were unrelated, but in the present invention, (1) the oscillation period of the welding torch and the magnetic stirring period are and (2) the oscillation direction and position of the welding torch and the stirring direction (rotation direction) of the molten metal by magnetic stirring.
This method is characterized by a magnetic stirring welding method that maintains a constant constant.

かかる特長を有する本発明の溶接方法は、溶接加工によ
シ製作される製品全般で、特に初層裏波溶接および全姿
勢溶接に有効である。
The welding method of the present invention having such features is effective for all products manufactured by welding, particularly for first-layer Uranami welding and all-position welding.

以下に、本発明を図面に基づき説明する。The present invention will be explained below based on the drawings.

第1図に、本発明に係る磁気撹拌TIG溶接装置の構成
図2示す。第1図中、6は磁場発生コイル、7は交番を
流発生′tIL源、1はT工G溶接トーチ、5はタング
ステン゛電極、4は溶加棒、2は被溶接材、8はオシレ
ート位置検出器、5は溶接トーチの左右オシレート方向
を示す。
FIG. 1 shows a configuration diagram 2 of a magnetic stirring TIG welding apparatus according to the present invention. In Fig. 1, 6 is a magnetic field generating coil, 7 is an alternating current generating 'tIL source, 1 is a T/G welding torch, 5 is a tungsten electrode, 4 is a filler rod, 2 is a material to be welded, and 8 is an oscillator. A position detector 5 indicates the left and right oscillation directions of the welding torch.

T工G溶接トーチ1には、磁場発生コイル6が備えられ
、また、磁場発生コイル6には、交番電流発生電源7が
接続され、交番1を流が供給される。TIG溶接トーチ
1には、溶接装置9が接続され、溶接電流、シールドガ
ス等が供給されると同時に、オシレート機構も備えてい
る。
The T-welding torch 1 is equipped with a magnetic field generating coil 6, and an alternating current generating power source 7 is connected to the magnetic field generating coil 6, and an alternating current is supplied to the alternating current generating coil 6. A welding device 9 is connected to the TIG welding torch 1, to which welding current, shielding gas, etc. are supplied, and at the same time, it is also equipped with an oscillation mechanism.

さらに、T工G溶接トーチ1の上部には、オシレート位
置検出器8が取付けられ、交番電流発生電源7に接続さ
れ、オシレート位置検出器8による溶接位置信号によっ
て、交番電流発生器7の出力電流を制御しながら、磁場
発生コイル乙に供給する。磁場発生コイル6に発生した
磁場を溶接部に供給し、溶融金属を磁気撹拌する。
Furthermore, an oscillating position detector 8 is attached to the upper part of the T-worker G welding torch 1, and is connected to an alternating current generating power source 7, and the output current of the alternating current generator 7 is determined by the welding position signal from the oscillating position detector 8. is supplied to the magnetic field generating coil B while controlling the The magnetic field generated by the magnetic field generating coil 6 is supplied to the welding part to magnetically stir the molten metal.

さらに、溶加棒4は、タングステン電極3と被溶接材2
の間に発生したアーク中の溶接部に適正速度で送給され
る。
Furthermore, the filler rod 4 connects the tungsten electrode 3 and the material to be welded 2.
It is fed at an appropriate speed to the welding part in the arc that occurs during this time.

本発明は、第1図に示すように、溶接トーチ1を矢印5
に示す左右にオシレートし、そして、オシレート位置検
出器8により、溶接トーチ1の位置、オシレート方向を
検知して、それに交番電流を同期さすことにより、溶接
トーチ1の位置と溶融金属の正、逆回転方向を常に一定
位置でおこなうようにし九ものである。
In the present invention, as shown in FIG.
The position of the welding torch 1 and the direction of oscillation are detected by the oscillation position detector 8, and the alternating current is synchronized with the position of the welding torch 1, as shown in FIG. The direction of rotation is always kept at a constant position.

第2図(a)は、本発明による溶融池13付近の部分拡
大図を示し、第2図(1))−(e)は、溶接トーチ1
のオシレート軌跡5の模式図を示す。第2図中、2は被
溶接材、10は溶接ビード、13は溶融池、5は溶接ト
ーチ1のオシレート軌跡、0は溶接開先及び溶接トーチ
1の中央線、A。
FIG. 2(a) shows a partially enlarged view of the vicinity of the molten pool 13 according to the present invention, and FIGS. 2(1)-(e) show the welding torch 1.
A schematic diagram of an oscillation trajectory 5 is shown. In FIG. 2, 2 is the material to be welded, 10 is the weld bead, 13 is the molten pool, 5 is the oscillation locus of the welding torch 1, 0 is the welding groove and the center line of the welding torch 1, and A.

Bは溶接トーチ1の左右オシレート範囲を示す。B indicates the left and right oscillation range of the welding torch 1.

また、溶融池13内の矢印15は、磁気撹拌による溶融
金属の回転方向を、16は励磁電流波形を示す。
Further, an arrow 15 in the molten pool 13 indicates the direction of rotation of the molten metal by magnetic stirring, and 16 indicates an excitation current waveform.

溶接中の溶接トーチ1は、オシレート装置によってA→
0→B→0→Aと規則正しく移動しながら溶接を行こな
う。一方、オシレート位置検出器8は、溶接トーチ1へ
移動位置を検出し、例えばAの位置、Bの位置を、交番
電流発生器7に伝える。交番電流発生器7は溶接トーチ
1がA −+ Hに移動中の場合は、例えば16に示す
ように正方向の励磁電源を出力すると、溶融池13内は
、実線の矢印方向に溶融金属が回転する。同様に、B4
Aの場合には溶融金属13内の溶融金属が点線の矢印の
方向に回転すれば、溶接開先中心0のギヤツブG上に溶
接トーチ1が移動中に溶融金属の回転が中止(反転)す
ることはない。
The welding torch 1 during welding is controlled by the oscillation device from A→
Perform welding while moving regularly from 0 → B → 0 → A. On the other hand, the oscillating position detector 8 detects the moving position of the welding torch 1 and transmits, for example, the position A and the position B to the alternating current generator 7. When the welding torch 1 is moving to A - + H, the alternating current generator 7 outputs the excitation power in the positive direction as shown in 16, for example, and the molten metal flows in the molten pool 13 in the direction of the solid arrow. Rotate. Similarly, B4
In case A, if the molten metal in the molten metal 13 rotates in the direction of the dotted arrow, the rotation of the molten metal will stop (reverse) while the welding torch 1 is moving on the gear G with the welding groove center 0. Never.

すなわち、溶融金属の磁気撹拌の正、逆回転の切換えは
、被溶接材2のギヤツブG上を避けて被溶接材2の板厚
のある左右の上部で規則正しく行なうことになp、溶接
金属の溶落ちはなくなる。また第2図(al中の2−2
のように板厚が異なる場合には、オシレート軌跡5−2
(第2図(d) ) 、励起電流16−2(第2図(e
))に示すような入熱コントロールを行えばよい。
In other words, switching between forward and reverse rotation of the magnetic stirring of the molten metal should be carried out regularly at the upper left and right sides of the welded material 2 where the plate thickness is high, avoiding the top of the gear G of the welded material 2. There will be no burn-through. Also, Figure 2 (2-2 in al.
If the plate thickness is different as in
(Fig. 2(d)), excitation current 16-2 (Fig. 2(e)
)) Heat input control can be performed as shown in ()).

(発明の効果) 本発明により、同板厚、異板厚の継手においても、(1
)許容開先幅が広くなり、(2)適正溶接条件範囲が広
くな!0、(3)裏波ビード、表ビード共規則正しい美
しいビード外観が得られ、(4)鋼管の継手溶接の場合
、溶接姿勢として9時−3時のあいだでの実用可能とな
る。すなわち、溶接姿勢許容範囲が広くなる。
(Effect of the invention) According to the present invention, even in joints with the same plate thickness and different plate thickness, (1
) The allowable groove width is wider, and (2) the range of appropriate welding conditions is wider! (3) A regular and beautiful bead appearance can be obtained for both the uranami bead and the front bead, and (4) in the case of joint welding of steel pipes, it is possible to use a welding position between 9 o'clock and 3 o'clock. In other words, the allowable range of welding postures becomes wider.

以下に、実施例を示す。Examples are shown below.

実施例 裏波溶接ビードを得る第5図に示す従来の溶接法の場合
、ルートギャップGの許容範囲は、0〜[L5M1第6
図の溶接法では、2±αsM。
EXAMPLE Obtaining a Uranami weld bead In the conventional welding method shown in FIG. 5, the allowable range of the root gap G is 0 to [L5M1
In the welding method shown in the figure, 2±αsM.

第8図の溶接法では、1〜4mmで、従来法ではルート
ギャップGに対する許容範囲が狭まく、連続して美麗で
、安定したとけ込みの溶接と一ドを得ることが困難でお
った。
In the welding method shown in FIG. 8, the allowable range for the root gap G is 1 to 4 mm, and in the conventional method, the allowable range for the root gap G is narrow, making it difficult to obtain continuous, beautiful, and stable welding and welding.

これに対して、本発明の同期式磁気撹拌オシレート子工
G溶接法によると、ルートギャップGは1mm〜5mm
と広範囲となシ、連続安定した裏波ビードが得られると
同時に、ビード左右のとけ込みが均一でぬれ、角度の良
好なビードが得られる。
On the other hand, according to the synchronous magnetic stirring oscillator G welding method of the present invention, the root gap G is 1 mm to 5 mm.
It is possible to obtain a continuous and stable Uranami bead over a wide range, and at the same time, it is possible to obtain a bead with a uniform wetting on the left and right sides of the bead and a good angle.

第3図に、良好な裏波ビードの得られるオシレート回数
、磁場強度範囲を示す。第3図に示すごとく、磁場強度
100ガウス以上で、溶接トーチのオシレート回数30
回/分〜40v分の範囲が良好であることがわかる。
FIG. 3 shows the number of oscillations and the range of magnetic field strength for obtaining a good Uranami bead. As shown in Figure 3, when the magnetic field strength is 100 Gauss or more, the welding torch oscillates 30 times.
It can be seen that the range of times/min to 40v min is good.

本発明方法によシ、磁場発生コイルを具備したMAG溶
接、MIG溶接、プラズマ溶接による裏波溶接において
も、溶接トーチのオシレートと、溶接金属を磁気撹拌す
る周期とを同期させて、安定した裏波ビードを得るため
の作用、効果は同様であり、前述の同期式磁気撹拌T工
G溶接法とは、溶接条件範囲は若干具るが、良好な裏波
ビードが得られる。
According to the method of the present invention, the oscillation rate of the welding torch and the period of magnetic stirring of the weld metal can be synchronized to provide stable back-up even in uranami welding using MAG welding, MIG welding, and plasma welding equipped with magnetic field generating coils. The action and effect for obtaining a wave bead are the same, and although the welding condition range is slightly different from that of the above-mentioned synchronous magnetic stirring T welding method, a good back wave bead can be obtained.

なお、これまでに溶接トーチをオシレートする場合につ
いて説明したが、溶接トーチをオシレートする代りに、
被溶接材をオシレートしても効果は同等である。
Up to now, we have explained the case of oscillating the welding torch, but instead of oscillating the welding torch,
The effect is the same even if the material to be welded is oscillated.

本発明による炭素鋼の裏波浴接実施結果、良好な裏波ビ
ードの得られた。各溶接方法による溶接条件の1例を第
1表に示す。
As a result of welding carbon steel in a uranami bath according to the present invention, a good uranami bead was obtained. Table 1 shows an example of welding conditions for each welding method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法で採用した磁気撹拌T工G溶接装置
の一実施態様の構成図、第2図は本発明方法の原理を説
明するための図で第2図(+L)は本発明による溶融池
付近の部分拡大図、第2図(b) −(e)は本発明の
溶接トーチのオシレート軌跡と励磁電源の出力との関係
を示す模式図、第3図は本発明による良好な裏波ビード
の得られるオシレート回数、磁場強度範囲を示す図表、
第4図(a)〜(C)は本発明の実施例において採用し
た開先形状を示す図、第5図、第6図及び第8図は従来
の通常のTUG溶接法、その変形法及び磁気撹拌TIG
溶接法を説明するための図、第7図は第6図の溶接法を
実施する場合の開先形状を説明するための図、第9図、
第10図は従来の磁気撹拌TIG溶接法の原理を説明す
るための図でろる。 復代理人  内 1)  明 復代理人  萩 原 亮 − 復代理人  安 西 篤 夫 第3図 磁 場 強 度  (ガラス) 第4図 (a) (b) (C) 1Gl− 第9図(ρつ 第10図
Fig. 1 is a block diagram of an embodiment of the magnetic stirring T welding device adopted in the method of the present invention, Fig. 2 is a diagram for explaining the principle of the method of the present invention, and Fig. 2 (+L) is a diagram of the present invention. 2(b) to 2(e) are schematic diagrams showing the relationship between the oscillation trajectory of the welding torch of the present invention and the output of the excitation power source, and FIG. 3 is a partial enlarged view of the vicinity of the molten pool according to the present invention. Chart showing the number of oscillations and magnetic field strength range obtained by Uranami beads,
4(a) to 4(C) are diagrams showing the groove shapes adopted in the embodiments of the present invention, and FIGS. 5, 6, and 8 are diagrams showing the conventional normal TUG welding method, its modification method, and magnetic stirring TIG
A diagram for explaining the welding method, FIG. 7 is a diagram for explaining the groove shape when implementing the welding method of FIG. 6, FIG.
FIG. 10 is a diagram for explaining the principle of the conventional magnetic stirring TIG welding method. Sub-agent 1) Meikoku agent Ryo Hagiwara - Sub-agent Atsuo Anzai Figure 3 Magnetic field strength (glass) Figure 4 (a) (b) (C) 1Gl- Figure 9 (ρ Figure 10

Claims (1)

【特許請求の範囲】[Claims] 溶接アークと同軸方向に磁場を働かせて溶接を行う磁気
撹拌溶接方法において、溶接トーチ又は被溶接材のオシ
レートと磁場方向を同期させることを特徴とする磁気撹
拌溶接方法。
A magnetic stir welding method in which welding is performed by applying a magnetic field coaxially with the welding arc, which is characterized by synchronizing the direction of the magnetic field with the oscillation rate of the welding torch or the welded material.
JP13605085A 1985-06-24 1985-06-24 Magnetic stirring welding method Pending JPS61293673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13605085A JPS61293673A (en) 1985-06-24 1985-06-24 Magnetic stirring welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13605085A JPS61293673A (en) 1985-06-24 1985-06-24 Magnetic stirring welding method

Publications (1)

Publication Number Publication Date
JPS61293673A true JPS61293673A (en) 1986-12-24

Family

ID=15166006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13605085A Pending JPS61293673A (en) 1985-06-24 1985-06-24 Magnetic stirring welding method

Country Status (1)

Country Link
JP (1) JPS61293673A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06106348A (en) * 1991-11-20 1994-04-19 Tadahiro Omi Welding equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06106348A (en) * 1991-11-20 1994-04-19 Tadahiro Omi Welding equipment

Similar Documents

Publication Publication Date Title
US11759879B2 (en) Synchronized rotating arc welding method and system
US4806735A (en) Twin pulsed arc welding system
US8610031B2 (en) Method of arc welding root pass
CA2073840C (en) Method of welding nickel or nickel alloy products
CN102892544B (en) Use arc-welding machine and the welding system and method for laser beam sources
US4366362A (en) All position TIG welding process
US3956610A (en) Method for welding iron steel and nonferrous alloy
US3825712A (en) Welding process
JP2015501727A (en) DC electrode minus rotary arc welding method and system
US20080011727A1 (en) Dual fillet welding methods and systems
JP2015523217A (en) Adjustable rotary arc welding method and system
US4295031A (en) Arc welding apparatus with oscillating electrode
US4177373A (en) Oscillating arc welding
GB2038687A (en) Magnetic stirring in TIG welding
JPS61293673A (en) Magnetic stirring welding method
JP2008080355A (en) Plasma mig welding method
JP2019195818A (en) Arc-welding method, manufacturing method of large-sized structure, and welding apparatus
Matsui et al. Reduction of blowholes by vibration of the molten pool in arc welding of galvanised carbon steel sheet
JPS6238768A (en) Three o'clock tig arc welding method
JPH0557072B2 (en)
JP4538616B2 (en) Arc welding method
Foote Welding C-Mn steels using the pulsed current MIG welding process
JPH08243747A (en) Wire filling mig welding method
JPH09220667A (en) Arc welding method
JP2001225168A (en) Consumable electrode gas shielded arc welding method