JPS61292572A - Static electricity measuring apparatus - Google Patents

Static electricity measuring apparatus

Info

Publication number
JPS61292572A
JPS61292572A JP13482185A JP13482185A JPS61292572A JP S61292572 A JPS61292572 A JP S61292572A JP 13482185 A JP13482185 A JP 13482185A JP 13482185 A JP13482185 A JP 13482185A JP S61292572 A JPS61292572 A JP S61292572A
Authority
JP
Japan
Prior art keywords
polarity
waveform
output
sector
rectifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13482185A
Other languages
Japanese (ja)
Other versions
JPH0460551B2 (en
Inventor
Yuzo Takahashi
高橋 雄造
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DENSHI SEIGYO GROUP KK
Original Assignee
DENSHI SEIGYO GROUP KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DENSHI SEIGYO GROUP KK filed Critical DENSHI SEIGYO GROUP KK
Priority to JP13482185A priority Critical patent/JPS61292572A/en
Publication of JPS61292572A publication Critical patent/JPS61292572A/en
Publication of JPH0460551B2 publication Critical patent/JPH0460551B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measurement Of Current Or Voltage (AREA)

Abstract

PURPOSE:To obtain a measuring apparatus with an excellent operability, by driving a rotary sector at a fixed speed with a DC motor while a polarity discriminator is added to a circuit configured section to switch the polarity in a rectifier in order to realize a smaller size, a lighter weight, a higher sensitivity and the like. CONSTITUTION:This measuring apparatus is made up of a mill head 1, a circuit configured section comprising an amplifier 2 for amplifying the output thereof and a rectifier 3, an indicator 4 for display of measured values and a polarity discriminator 5 added thereto. The mill head 1 incorporates a rotary sector 7 and a detection electrode 8 into a cylinder housing 6 sealed, and particularly the sector 7 is driven at a fixed speed with a DC motor with a governor. Then, the use of a peak comparison type of FF type polarity discriminator 5 enables the discrimination of the voltage area or the time area of a signal. The polarity of the rectifier 3 is switched over according to the polarity of the waveform having an excessively jumped peak value detected and the information on the measured value can be obtained by integrating the output waveform thereof.

Description

【発明の詳細な説明】 〈産業−Hの利用分野〉 本発明は1回転セクタ形の静電気測定器に関し、特に、
帯電体における静電電荷の極性判別手段に特徴を宥する
もので、小型携帯用器具として各種帯電体の静!気測定
に供し得るものである。
[Detailed Description of the Invention] <Field of Application of Industry-H> The present invention relates to a one-rotation sector type static electricity meter, and in particular,
This is a means for determining the polarity of electrostatic charge on a charged object, and can be used as a small portable device to detect static electricity on various charged objects. It can be used for air measurement.

〈従来の技術〉 静電気測定器として、電気的増幅手段を用いて感度なら
びに読取り精度などの向上を計るようになしたフィード
ミルと呼ばれる装置は、すでに良く知られているところ
である。そして、このような装置では、検知入力を安定
に高増幅するために交流増幅手段が採られる。そのため
に、検知入力を周期変化させる交流化手段が必要であり
、その−例として、被検体と対向させる検知電極との間
のシャッターとして機能する回転セクタを設けた回転セ
クタ形静電気測定器がある。
<Prior Art> A device called a feed mill, which uses electrical amplification means to improve sensitivity and reading accuracy, is already well known as a static electricity measuring device. In such a device, AC amplification means is employed to stably and highly amplify the detection input. For this purpose, an alternating current means is required to change the detection input periodically.An example of this is a rotating sector electrostatic meter that has a rotating sector that functions as a shutter between the subject and the opposing detection electrode. .

ところで、被検体に滞留する静電界には正電界と負電界
のものとがあり、前記測定器による場合に、極性判別を
施さなければならない。この極性判別手段として、従来
では次の二つの方法がある。
By the way, there are two types of electrostatic fields that remain in the subject: positive electric fields and negative electric fields, and when using the above-mentioned measuring device, it is necessary to perform polarity discrimination. Conventionally, there are the following two methods as means for determining polarity.

即ち、その一つは前記回転セクタによる交流化入力と同
期した信号による同期検波手段と、他の一つは回転セク
タに一定の直流バイアスを与えておく中点整合手段であ
る。
That is, one of them is a synchronous detection means using a signal synchronized with the alternating current input from the rotating sector, and the other is a midpoint matching means for applying a constant DC bias to the rotating sector.

〈発明が解決しようとする問題点〉 このような従来装置において、前記同期検波手段では回
転セクタを駆動するモータとして同期モータを用いるが
、しかし、同期モータは商用交流を電源とする限り、そ
の回転数が限度以下に制限されるので、高速化を望むこ
とが出来ない、従って、この種装置が前記セクタの回転
速度が大きい程、即ち、検知電極に対して全解放並びに
全閉鎖状態を有した上でこれらの間の周期変化が多い程
、その感度を高め得るが、何期モータによる場合は先の
理由によって、装置の高感度化が困難であり。
<Problems to be Solved by the Invention> In such a conventional device, a synchronous motor is used as a motor for driving the rotating sector in the synchronous detection means, but as long as the synchronous motor is powered by commercial AC, its rotation is Since the number is limited below a certain limit, it is not possible to increase the speed; therefore, the higher the rotational speed of the sector, the more this kind of device has a fully open as well as a fully closed state for the sensing electrode. The greater the number of periodic changes between these, the higher the sensitivity can be. However, if a motor is used for several periods, it is difficult to increase the sensitivity of the device due to the reasons mentioned above.

かつ、装置の小型化並びに携帯化は望み得ない。Moreover, it is impossible to expect the device to be smaller and more portable.

他方、前記中点整合手段では測定の都度無感知状態で前
記バイアス電圧によって指示計の指針が目盛中央の零値
を指すように増幅器の増幅度を調整する必要があり、測
定操作が面倒である。
On the other hand, with the center point matching means, it is necessary to adjust the amplification degree of the amplifier so that the pointer of the indicator points to the zero value at the center of the scale using the bias voltage in a non-sensing state each time a measurement is made, which makes the measurement operation troublesome. .

そこで、本発明は、上記従来装置の問題点に鑑み、フィ
ールドミルにおける回転セクタ形静電気測定器であって
、操作性に優れ、装置の小型軽量化、高感度化並びに低
廉化を実現させることを目的として開発されたものであ
る。
In view of the above-mentioned problems of the conventional device, the present invention aims to provide a rotating sector type electrostatic meter for field mills, which has excellent operability, and which realizes a smaller size, lighter weight, higher sensitivity, and lower cost. It was developed for this purpose.

く問題点を解決するための手段〉 この目的のために、本発明では、回転セクタを閉鎖域の
大きい金属円盤で構成すると共に該セクタの定速駆動源
として直流モータを用いる。ピーク検出器からの信号を
比較器によって判別するピーク比較形回路又は波形整形
器を介して作動するフリップフロップ回路からの信号を
比較器によって判別するフリップフロップ形回路等の電
子回路からなる極性判別器を用いて、整流器における極
性切替を計るように構成する。
Means for Solving the Problems> For this purpose, in the present invention, the rotating sector is constructed of a metal disk with a large closed area, and a DC motor is used as a constant speed drive source for the sector. A polarity discriminator consisting of an electronic circuit such as a peak comparison circuit that uses a comparator to determine the signal from a peak detector, or a flip-flop circuit that uses a comparator to determine the signal from a flip-flop circuit that operates via a waveform shaper. is used to measure polarity switching in the rectifier.

く作 用〉 回転セクタ形静電気測定器からなる本発明では、測定対
象の帯電体と測定器の検出電極との間に位置させた回転
セクタを定速回転させることによって、該帯電体からの
直流的信号を交流信号に変換して、増幅を容易にし、そ
の出力を整流して直流指示計器を振らせて読取る。
In the present invention, which is composed of a rotating sector type electrostatic meter, by rotating a rotating sector located between a charged body to be measured and a detection electrode of the measuring device at a constant speed, direct current from the charged body is removed. The target signal is converted to an AC signal to facilitate amplification, and the output is rectified and read by swinging a DC indicator.

この一連の作用の下で、本発明の上記手段によれば、閉
鎖域の大きい回転セクタの定速回転で検出電極に発生す
る周期性の情報信号は、そのピーク値を有する波形のデ
ユーティ比を小さくすることことができ、換言すれば、
負荷抵抗の関係からデユーティ比の小さい波形のピーク
値が他極側の波形のピーク値に比べて大きな格差値を持
つ状態で発生する。
Under this series of actions, according to the above means of the present invention, the periodic information signal generated at the detection electrode during constant speed rotation of the rotating sector with a large closed area has a duty ratio of the waveform having its peak value. can be made smaller, in other words,
Due to the load resistance, the peak value of the waveform with a small duty ratio has a large difference value compared to the peak value of the waveform on the other pole side.

そこで、デユーティ比が異り突出したピーク値を有する
波形を持つ信号の特質を利用して、その波形の判別が可
能である。即ち、本発明の手段によれば、ピーク比較形
の極性判別器を用いることによって、該信号の電圧領域
における判別が可能であり、また、フリップフロップ形
の極性判別器・を用いることによって、該信号の時間領
域における判別が可能となる。
Therefore, by utilizing the characteristics of a signal having a waveform with a different duty ratio and a prominent peak value, it is possible to discriminate the waveform. That is, according to the means of the present invention, by using a peak comparison type polarity discriminator, it is possible to discriminate the signal in the voltage domain, and by using a flip-flop type polarity discriminator, it is possible to discriminate the signal in the voltage domain. Discrimination of signals in the time domain becomes possible.

判知し得た突出したピーク値を有する波形の極性に応じ
て、整流器の極性を切り替え、その出力波形を積分する
ことによって、測定値情報が得られる。
Measurement value information is obtained by switching the polarity of the rectifier according to the polarity of the waveform with the noticeable peak value that can be determined and integrating the output waveform.

次に、本発明の好ましい実施例について説明する。Next, preferred embodiments of the present invention will be described.

〈実施例〉 第1図は、本発明測定器の一実施例を示す構成で、ミル
ヘッドlと、該ミルへラドlの出力を増幅する増幅器2
及び整流器3からなる回路構成部と、測定値表示用の指
示器4と、更に、前記回路構成部に附加した極性判別器
5とからなる。
<Embodiment> FIG. 1 shows the configuration of an embodiment of the measuring device of the present invention, which includes a mill head l and an amplifier 2 for amplifying the output of the mill head l.
and a rectifier 3, an indicator 4 for displaying measured values, and a polarity discriminator 5 added to the circuit component.

そして、前記ミルヘッドlは、第2図及び第3図に示す
如く、シールドされた円筒ハウジング6に回転セクタ7
と検出器8i8とを組込んであり、特に、該セクタ7を
定速駆動するモータとしてガバナー付直流モータ9を用
いである。更に、金属板からなる前記回転セクタ7と検
出電極8との関係は、該セクタ7に後方配置した扇形の
検出電極8と一致する開口部7aを設けてあり、他の閉
鎖部7bに対してその開口角(約36°)を充分に小さ
くしである。なお、回転セクタ7のダイナミックバラン
スを考慮するとき、前記開口部7aをセクタ回動軸の対
称位置に一対に設けても有効である。一方、これらの間
の電気的結合は、@4図に示す如く、結合容量Cと負荷
抵抗Rとからなる等価回路が想定される。
As shown in FIGS. 2 and 3, the mill head l has a rotary sector 7 in a shielded cylindrical housing 6.
In particular, a DC motor 9 with a governor is used as a motor for driving the sector 7 at a constant speed. Furthermore, the relationship between the rotating sector 7 made of a metal plate and the detection electrode 8 is such that the sector 7 is provided with an opening 7a that coincides with the sector-shaped detection electrode 8 arranged at the rear, and is closed to the other closed part 7b. The opening angle (approximately 36°) is made sufficiently small. Note that when considering the dynamic balance of the rotating sector 7, it is also effective to provide a pair of openings 7a at symmetrical positions with respect to the sector rotation axis. On the other hand, the electrical coupling between these is assumed to be an equivalent circuit consisting of a coupling capacitance C and a load resistance R, as shown in Figure @4.

ここで、前記等価回路に基ずき、この種回転セクタ形測
定器における検出特性を考察すると、先ず、原理的に、
前記セクタ7の定速回転によって検出電極8に入る電気
力線は該セクタ7の回転角に比例して増減し、その開口
部7aが該電極8の真上を通過する一定区間は先の電気
力線が変化しないものとするとき、負荷抵抗Rが無限大
ならば2その検出出力波形は第5図中(イ)に示すごと
く一極性の台形となる。そして、前記抵抗Rが有限で結
合間リーク電流が多くなると、前記台形状波形の□フラ
ットであった部分に指数減衰が現われ(時定数で=RC
)、放電直線(第5図中(ロ)下方図)がこれに続く、
その結果、この放電直線は逆極性に振れ込み、さらに逆
極性の指数減衰が統〈ことになる。そして1時定数τが
小さいと、逆極性への振れ込みは大きくなって、出力波
形は正負両極における波形形状が対称に近づき、また回
転セクタ7における閉鎖角が小さくて検出電極8に対す
る閉じの状態の回転区間が短かいと、先行サイクルの波
形における指数減衰が充分でない状態での電圧の影響が
現れて、この場合の出力波形も正負対称の形ちに近づく
こととなる。なお、上記第5図に示す模式図は帯電体が
正電界の場合であって、これが負電界の場合には、その
出力波形は図示状態の正負逆になる。
Now, when considering the detection characteristics of this type of rotating sector type measuring device based on the above-mentioned equivalent circuit, first, in principle,
Due to the constant speed rotation of the sector 7, the lines of electric force entering the detection electrode 8 increase or decrease in proportion to the rotation angle of the sector 7, and a certain section where the opening 7a passes directly above the electrode 8 is affected by the previous electric field. Assuming that the lines of force do not change, if the load resistance R is infinite, the detected output waveform will be a unipolar trapezoid as shown in (a) in FIG. When the resistance R is finite and the leakage current between the bonds increases, an exponential decay appears in the flat part of the trapezoidal waveform (with a time constant = RC
), followed by a discharge straight line (lower view (b) in Figure 5),
As a result, this discharge straight line swings to the opposite polarity, and furthermore, the exponential decay of the opposite polarity becomes uniform. When the time constant τ is small, the swing to the opposite polarity becomes large, and the output waveform becomes symmetrical in both positive and negative polarities, and the closing angle in the rotating sector 7 is small, so that the detection electrode 8 is in a closed state. If the rotation period is short, the influence of the voltage will appear in a state where the exponential attenuation in the waveform of the previous cycle is not sufficient, and the output waveform in this case will also approach a positive-negative symmetrical shape. Note that the schematic diagram shown in FIG. 5 above is for a case where the charged body is in a positive electric field, and when it is in a negative electric field, the output waveform has a polarity opposite to that shown in the diagram.

このことから、この種回転セクタ形測定器における検出
出力波形の特性として以下のことが理解される。
From this, the following can be understood as the characteristics of the detected output waveform in this type of rotating sector type measuring instrument.

a)帯電体の正負電界における出力波形は次の点に差異
がある。
a) The output waveforms in the positive and negative electric fields of the charged body differ in the following points.

■正電界では、正半波が負半波よりも大きいピーク値を
有する。
■In a positive electric field, the positive half wave has a larger peak value than the negative half wave.

負電界では、負半波が正半波よりも大きいピーク値を有
する。
In a negative electric field, the negative half-wave has a larger peak value than the positive half-wave.

即ち、波形の電圧領域における相違がある。That is, there are differences in the voltage range of the waveforms.

II正電界では、正半波が負半波に先行する。II For positive electric fields, the positive half-wave precedes the negative half-wave.

負電界では、負半波が正半波に先行する。In a negative electric field, the negative half-wave precedes the positive half-wave.

即ち、波形の時間領域における相違がある。That is, there are differences in the time domain of the waveforms.

b)回転セクタの検知電極に対する閉鎖区間が短 。b) The closed section of the rotating sector with respect to the sensing electrode is short.

かくなると、前項a)における相違は■、IIとも消失
し、出力波形は正負両極において対称形に近づき、特に
、「先行する半波」と「後続する半波」との区別がなく
なる。
In this case, the difference in the previous item (a) disappears in both (1) and (II), and the output waveform approaches a symmetrical shape in both positive and negative poles, and in particular, there is no distinction between the "leading half wave" and the "following half wave."

このような条件下において1本発明の図示実施例では、
その回転セクタ7を閉鎖部Bに対してその開口角(約3
6°)を充分に小さくしであるので、これにより規制さ
れる検出電極8の出力を前記増幅器2によって増幅した
波形(整流器3への入力波形)は第6図に示す状態(負
電界対応)となる。
Under these conditions, in one illustrated embodiment of the invention,
The rotating sector 7 is connected to the closing part B at an opening angle (approximately 3
6°) is made sufficiently small, the waveform (input waveform to the rectifier 3) obtained by amplifying the output of the detection electrode 8 regulated by this by the amplifier 2 is in the state shown in Fig. 6 (compatible with negative electric field). becomes.

この整流器入力波形の特質からして、その極性判別器5
としては、先ず、第7図に示すピーク比較形回路構成が
適用される。即ち、前記増幅器2からの波形は、ダイオ
ードとオペアンプとを組合せて構成した理想ダイオード
からなる正ピーク検波器10と負ピーク検波器11とに
よって検出され、その状態の信号は抵抗加算器12を介
して、コンパレータ13よって比較されて、ピーク値の
大きい状態に応じて後段のリレー14を駆動して前記整
流器3の極性を切り替える。これによって、前記波形の
前後して発生する正負ピーク値はこれ等再検波器10及
び11における一時記憶下に該波形の電圧領域における
判別が可能となる。
Considering the characteristics of this rectifier input waveform, the polarity discriminator 5
First, the peak comparison type circuit configuration shown in FIG. 7 is applied. That is, the waveform from the amplifier 2 is detected by a positive peak detector 10 and a negative peak detector 11 which are made up of ideal diodes constructed by combining a diode and an operational amplifier, and the signal in this state is detected via a resistor adder 12. are compared by a comparator 13, and depending on the state in which the peak value is large, the relay 14 at the subsequent stage is driven to switch the polarity of the rectifier 3. As a result, positive and negative peak values that occur before and after the waveform can be temporarily stored in the re-detectors 10 and 11 and can be discriminated in the voltage region of the waveform.

次に、該波形の時間領域における相違に基き、この極性
判別器5としてフリップフロー、プ形回路構成が適用で
きる。その構成を第8図に示す。核間において、15及
びlθはコンパレータ構成からなる正半波波形整型器及
び負半波波形整型器、17及び18はピーク検波器構成
からなる正フローティングレファレンス電圧発生器及び
負フローティングレファレンス電圧発生器で、前記増幅
器2からの該波形はこれ等両フローティングレファレン
ス電圧発生器17及び1日によって両極のレファレンス
電圧(第9図参照)が決定されて、該電圧を受ける前記
両波形整型器15及び16で、同図に示す如く、該電圧
レベルを越える波形域で論理L(グラントン。
Next, based on the difference in the time domain of the waveforms, a flip-flow or flip-type circuit configuration can be applied as the polarity discriminator 5. Its configuration is shown in FIG. Between the cores, 15 and lθ are a positive half-wave waveform shaper and a negative half-wave shaper consisting of a comparator configuration, and 17 and 18 are a positive floating reference voltage generator and a negative floating reference voltage generator consisting of a peak detector configuration. 9, the waveform from the amplifier 2 is passed through the floating reference voltage generator 17 and the waveform shaper 15 which receives the reference voltage of both poles (see FIG. 9). and 16, as shown in the figure, logic L (Glanton) in the waveform range exceeding the voltage level.

それ以外の域でH(電源電圧)となるパルス化信号とな
って、フリップフロップ回路19のセツ、ト端子S、リ
セット端子Rに夫々与えられる。該フリップフロップ回
路19はその端子Sに論理りが入来すると、その出力Q
はHとなり、他方出力QはLとなって固定され、以後端
子Sに如何なる入力があっても、この状態は変化しない
し、又、端子Rに論理りが入来すると、出力QがHとな
って固定される。従って、その出力4を積分器20によ
って平均化した値(同図参照)でもって、コンパレータ
13に前記同様に判別して、リレー14を制御すること
が出来る。
In other regions, it becomes a pulsed signal that becomes H (power supply voltage) and is applied to the set terminal S, the reset terminal R of the flip-flop circuit 19, respectively. When the flip-flop circuit 19 receives a logic logic at its terminal S, its output Q
becomes H, and the output Q becomes L and is fixed. After that, no matter what input is applied to the terminal S, this state will not change. Also, if a logic logic is applied to the terminal R, the output Q becomes H. It becomes fixed. Therefore, using the value obtained by averaging the output 4 by the integrator 20 (see the figure), the comparator 13 can make a determination in the same manner as described above, and the relay 14 can be controlled.

即ち、この動作の概要を前記第9図に基いて説明すると
、前記両波形整型器15及び1Bの出力は大半の時間域
でH状態であり、入力電圧の絶対値がレファレンス電圧
の絶対値を越えたときだけLとなるのであるから、その
結果、前記波形における正電界と負電界との相違はこれ
等波形整型器15及び16の出力のいずれが先にLにな
るかの違いになる。従って、これを受けるフリップフロ
ップ回路19の出力点は正電界の場合に大半の時間域で
Hで、負電界の場合に大半の時間域でLとなるので、こ
の出力(を前記積分器20で平均して後段のコンパレー
タ13に入れることによって、その判別が可能である。
That is, to explain the outline of this operation based on FIG. 9, the outputs of both waveform shapers 15 and 1B are in the H state most of the time, and the absolute value of the input voltage is equal to the absolute value of the reference voltage. As a result, the difference between the positive electric field and the negative electric field in the waveform is the difference in which of the outputs of the waveform shapers 15 and 16 becomes L first. Become. Therefore, the output point of the flip-flop circuit 19 that receives this is H for most of the time in the case of a positive electric field, and L for most of the time in the case of a negative electric field. This determination can be made by averaging the values and inputting them into the comparator 13 at the subsequent stage.

尚、この場合のコンパレータ13は平均値Hと平均値り
との判別であるので、前記ピーク比較形における場合の
レファレンス電圧が原則として零であったのに対して、
この場合は該電圧は原則として電源電圧の半分である。
In addition, since the comparator 13 in this case discriminates between the average value H and the average value, whereas the reference voltage in the case of the peak comparison type was basically zero,
In this case, the voltage is, in principle, half the power supply voltage.

又、先のピーク比較形では増幅器等のオフセットeドリ
フトに影響されるが、このフリップフロップ形ではその
懸念がない。
Further, while the peak comparison type mentioned above is affected by the offset e drift of the amplifier etc., this flip-flop type does not have this concern.

ところで、前記第9図に示す作動説咀図からだけで見る
と、このフリップフロップ形回路構成では、入力信号が
大きくなるほど出力4のデユーティ比が1/2に近づき
、帯電体の正電界と負電界とでの差がなくなることが懸
念される。そこで、当該回路構成では、特に、前記正負
両フローティングレファレンス電圧発生器17及び18
を設けて、これ等で入力信号をピーク検波して、その出
力を分圧して前記両波形整型器15及び16としてのコ
ンパレータのレファレンス電圧として、その入力信号に
応じて変化させることによって、極性判別の安定さば入
力信号レベルに関係なくなるように構成しである。
By the way, if we look only at the operation diagram shown in FIG. 9, in this flip-flop type circuit configuration, the duty ratio of output 4 approaches 1/2 as the input signal becomes larger, and the positive electric field of the charged body and the negative electric field There is a concern that the difference between the electric field and the electric field will disappear. Therefore, in this circuit configuration, in particular, the positive and negative floating reference voltage generators 17 and 18
The input signal is peak-detected using these devices, and the output is voltage-divided and used as a reference voltage for the comparators serving as both waveform shapers 15 and 16. By changing the polarity according to the input signal, The structure is such that the stability of the discrimination is independent of the input signal level.

尚、上記レファレンス電圧はそれが大きい程(入力信号
のピーク値に近い程)出力Qの開始時点(例えば正電界
であれば出力QがHからLに変る時点)は遅くなり、出
力Qと出力Qとの差が大きくなって判別し易く、逆に該
電圧が低い程出力Qの終了時点(正電界であれば出力ζ
がHからLになる時点)が早くなって好ましいが、該電
圧があまりに低いと、雑音によって誤動作する虞れがあ
るので、該電圧は入力信号のピーク値の50乃至80%
程度が適当である。
Note that the larger the reference voltage is (the closer it is to the peak value of the input signal), the later the start point of output Q (for example, the point at which output Q changes from H to L in the case of a positive electric field), and the output Q and output will be delayed. The difference from Q becomes larger and easier to distinguish, and conversely, the lower the voltage, the more the output Q ends (if the electric field is positive, the output ζ
It is preferable that the voltage changes from H to L quickly, but if the voltage is too low, there is a risk of malfunction due to noise, so the voltage should be set at 50 to 80% of the peak value of the input signal.
The degree is appropriate.

〈発明の効果〉 このように、本発明測定器によれば、回転セクタを閉鎖
域の大きい金属円盤で構成すると共に該セクタの定速駆
動源として直流モータを用い、ピーク検出器からの信号
を比較器によって判別するピーク比較形回路又は波形整
形器を介して作動するフリップフロップ回路からの信号
を比較器によって判別するフリップフロップ形回路等の
電子回路からなる極性判別器を用いて、整流器における
極性切替を計るように構成したので、電子回路からなる
極性判別器を用いることによって、回転セクタ駆動のた
めに同期モータによることなく直流モータを用いつこと
が可能となり、これによってミルヘッドの小型軽量化を
計り得、かつ、該セクタの高速回転制御が可能となって
、装置の高感度化が容易であると共に電池電源とするこ
とが出来るので携帯器具として構成することができ、し
かも、装置全体を低床に構成することが出来、殊に、極
性判別器として時間領域判別回路手段を採用する場合に
は、例えば、入カインピーダ゛・ンスのい増幅器を用い
ることが可能であるの、で、より安定した高感度測定器
を得ることができる等、本発明測定器はこの種機器とし
て実用上極めて有用なるものである。
<Effects of the Invention> As described above, according to the measuring device of the present invention, the rotating sector is constituted by a metal disk with a large closed area, a DC motor is used as a constant speed drive source of the sector, and the signal from the peak detector is The polarity in the rectifier is determined using a polarity discriminator consisting of an electronic circuit such as a peak comparison circuit that is determined by a comparator or a flip-flop circuit that determines the signal from a flip-flop circuit that operates via a waveform shaper. By using a polarity discriminator consisting of an electronic circuit, it is possible to use a DC motor to drive the rotating sector instead of using a synchronous motor, thereby reducing the size and weight of the mill head. This makes it possible to control the high-speed rotation of the sector, which makes it easy to increase the sensitivity of the device, and because it can be powered by a battery, it can be configured as a portable device, and the entire device is low-cost. In particular, when a time-domain discriminator circuit means is employed as a polarity discriminator, it is possible to use an amplifier with low input impedance, so it is more stable. The measuring device of the present invention is extremely useful in practice as a device of this type.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明側・定器の基本的構成図、第2図は本発
明測定器におけるミルヘッドを一部縦断して示す側面図
、第3図は同じく正面図、第4図は前記ミルヘッドの等
価回路図、第5図はその出力波形の模式図、第6図は本
発明測定器における増幅器出力波形図、第7図は本発明
測定器における極性判別器の一例を示す構成図、第8図
は本発明測定器にける極性判別器の他の実例を示す構成
図、゛第9図は第8図不実例における動作説明図である
。 工・・ミルヘッド、2・・増幅器、3・・整流器、4・
・指示器、5・・極性判別器、7・・回転セクタ、 7
a・・開口部、7b・・閉鎖部、8−φ検知電極、9−
・直流モータ。 第1図 第2図 に 第3図
Fig. 1 is a basic configuration diagram of the measuring device of the present invention, Fig. 2 is a side view partially showing the mill head in the measuring device of the present invention, Fig. 3 is a front view, and Fig. 4 is the mill head. 5 is a schematic diagram of its output waveform, FIG. 6 is an amplifier output waveform diagram in the measuring device of the present invention, and FIG. 7 is a configuration diagram showing an example of a polarity discriminator in the measuring device of the present invention. FIG. 8 is a block diagram showing another example of the polarity discriminator in the measuring device of the present invention, and FIG. 9 is an explanatory diagram of the operation in the example not shown in FIG. Engineering...mill head, 2...amplifier, 3...rectifier, 4...
-Indicator, 5...Polarity discriminator, 7...Rotating sector, 7
a...Opening part, 7b...Closing part, 8-φ detection electrode, 9-
・DC motor. Figure 1 Figure 2 Figure 3

Claims (3)

【特許請求の範囲】[Claims] (1)回転セクタ及び検出電極とからなるミルヘッドと
、該ミルヘッドの出力を増幅する増幅器及び整流器等か
らなる回路構成部と、測定値表示用の指示器とからなり
、前記回転セクタを閉鎖域の大きい金属円盤で構成する
と共に直流モータで定速駆動する一方、前記回路構成部
に前記出力のデューティ比の異なる波形信号に基ずく極
性判別器を附加して、前記整流器における極性切替を計
るように構成したことを特徴とする静電気測定器。
(1) It consists of a mill head consisting of a rotating sector and a detection electrode, a circuit component consisting of an amplifier and a rectifier etc. that amplify the output of the mill head, and an indicator for displaying measured values, and the rotating sector is connected to a closed area. It is constructed of a large metal disk and is driven at a constant speed by a DC motor, and a polarity discriminator based on waveform signals with different duty ratios of the output is added to the circuit component to measure polarity switching in the rectifier. A static electricity measuring instrument characterized by the following configuration.
(2)前記極性判別器を、ピーク検出器からの信号を比
較器によって判別するピーク比較形回路で構成してなる
特許請求の範囲第1項記載の静電気測定器。
(2) The static electricity measuring instrument according to claim 1, wherein the polarity discriminator is constituted by a peak comparison type circuit that discriminates the signal from the peak detector using a comparator.
(3)前記極性判別器を、波形整形器を介して作動する
フリップフロップ回路からの信号を比較器によって判別
するフリップフロップ形回路で構成してなる特許請求の
範囲第1項記載の静電気測定器。
(3) The static electricity measuring device according to claim 1, wherein the polarity discriminator is constituted by a flip-flop circuit that uses a comparator to discriminate a signal from a flip-flop circuit that operates via a waveform shaper. .
JP13482185A 1985-06-20 1985-06-20 Static electricity measuring apparatus Granted JPS61292572A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13482185A JPS61292572A (en) 1985-06-20 1985-06-20 Static electricity measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13482185A JPS61292572A (en) 1985-06-20 1985-06-20 Static electricity measuring apparatus

Publications (2)

Publication Number Publication Date
JPS61292572A true JPS61292572A (en) 1986-12-23
JPH0460551B2 JPH0460551B2 (en) 1992-09-28

Family

ID=15137262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13482185A Granted JPS61292572A (en) 1985-06-20 1985-06-20 Static electricity measuring apparatus

Country Status (1)

Country Link
JP (1) JPS61292572A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020037562A (en) * 2000-11-14 2002-05-22 김영호 Measurement apparatus for static electricity
KR20020078673A (en) * 2001-04-07 2002-10-19 김영호 Electrostatic Measurement Apparatus
JP2020046213A (en) * 2018-09-14 2020-03-26 音羽電機工業株式会社 Electric field intensity measuring device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020037562A (en) * 2000-11-14 2002-05-22 김영호 Measurement apparatus for static electricity
KR20020078673A (en) * 2001-04-07 2002-10-19 김영호 Electrostatic Measurement Apparatus
JP2020046213A (en) * 2018-09-14 2020-03-26 音羽電機工業株式会社 Electric field intensity measuring device

Also Published As

Publication number Publication date
JPH0460551B2 (en) 1992-09-28

Similar Documents

Publication Publication Date Title
JP2568620B2 (en) Electromagnetic flow meter
JP2746698B2 (en) Circuit device for processing signals generated by a variable reluctance electromagnetic rotation sensor
JPS61292572A (en) Static electricity measuring apparatus
JPS60262061A (en) Zero-point passage detection circuit for signal
JPH084389B2 (en) DC motor rotation speed measuring device
JPS641838B2 (en)
JP3204066B2 (en) Capacitive electromagnetic flowmeter
JP2740582B2 (en) Flow pulse transmitter
JPH0355105Y2 (en)
JPH11337658A (en) Device for detecting metal object
SU807188A1 (en) Device for pulse inductive electric survey
RU2018151C1 (en) Magnetic field intensity meter
RU2058658C1 (en) Device for measuring and recording load angle of synchronous machines
RU2068567C1 (en) Device for contactless measurement of momentary values of pulses of break current in switching sections of commutator machine
JPH0626986Y2 (en) Rotation detector
JPH0450510Y2 (en)
JPS6032141B2 (en) Phase discrimination device
SU1350585A1 (en) Device for non-contact measurement of liquid electric conduction
SU812471A1 (en) Apparatus for measuring voltage amplitude on the electrodes
SU444141A1 (en) Device for determining dynamic magnetization reversal curves for samples from ferromagnetic materials
SU1268992A1 (en) Device for vibration diagnostic checking of cyclic mechanisms
RU2045006C1 (en) Device for determining unbalance amplitude and phase
SU864202A1 (en) Device for measuring szimuth non-uniformity of magnetic field
JPH0425499B2 (en)
SU580523A1 (en) Device for measuring transit resistance of contacts of high-speed systems