JPS61292106A - Method for fixing tensile body of optical fiber to connector for optical fiber - Google Patents

Method for fixing tensile body of optical fiber to connector for optical fiber

Info

Publication number
JPS61292106A
JPS61292106A JP60133518A JP13351885A JPS61292106A JP S61292106 A JPS61292106 A JP S61292106A JP 60133518 A JP60133518 A JP 60133518A JP 13351885 A JP13351885 A JP 13351885A JP S61292106 A JPS61292106 A JP S61292106A
Authority
JP
Japan
Prior art keywords
alloy
optical fiber
tensile strength
tightening
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60133518A
Other languages
Japanese (ja)
Inventor
Eitaro Sakamoto
坂本 栄太郎
Susumu Hattori
服部 将
Ichiro Sugiyama
一朗 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Seiki Manufacturing Co Ltd
Original Assignee
Asahi Seiki Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Seiki Manufacturing Co Ltd filed Critical Asahi Seiki Manufacturing Co Ltd
Priority to JP60133518A priority Critical patent/JPS61292106A/en
Publication of JPS61292106A publication Critical patent/JPS61292106A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3887Anchoring optical cables to connector housings, e.g. strain relief features
    • G02B6/3888Protection from over-extension or over-compression

Abstract

PURPOSE:To make operation easier and reliability higher by moving a fastener consisting of an N-T alloy in a concentrical state onto a coupler and tightening the coupler by the directional effect of the N-T alloy which restores the shape of the memorized base phase thereby fixing the coupler and inside frame. CONSTITUTION:The Ni-Ti alloy (expressed as N-T alloy hereunder) which is set at <=30 deg.C martensite transformation temp. is used for either case of a shape memory alloy or superelastic alloy. The fastener 11 formed of such N-T alloy to an annular shape is so formed that the inside diameter of the ring thereof is smaller by, for example, about 4% than the outside diameter of the coupler to be connected and fixed at the martensite transformation temp. or above. The inside diameter thereof is preliminarily expanded by about 7-8% and is held by a holding part. The coupler 62 is forced into an inside frame 12 by the force at which the N-T alloy restores the memorized shape by which an optical fiber cord 61 is held to the connector.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は光ファイバーコードを光ファイバー用コネク
ターに接続する場合の光ファイバー心線を保護する抗張
力体であるケプラを光ファイバー用コネクターに固定す
る方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention This invention relates to a method for fixing Kepra, which is a tensile strength member for protecting an optical fiber core when connecting an optical fiber cord to an optical fiber connector, to an optical fiber connector.

従来の技術 情報伝送路等に利用される光ファイバーコードは光ファ
イバー心線、その心線上に同心円状態で密接して抗張力
体(芳香族ポリアミド系繊維)。
Conventional optical fiber cords used for information transmission lines, etc. are optical fiber cores, and tensile strength members (aromatic polyamide fibers) are placed closely concentrically on the core fibers.

更にその上に同心円状にシース(ビニル)を被覆して成
っている。従来よりこの光ファイバー心線同士を接続す
る場合に光ファイバー用コネクターが用いられるが、そ
の際上記の光ファイバーコードをコネクターに取り付け
るのに光ファイバー心線はフェルールに接続固定される
が、その接続状態を強固にするため抗張力体であるケプ
ラをコネクターに固定することが必要であった。この固
定する方法として従来から取られてきた方法を第6図に
示す。第6図に示すものは光ファイバー用コネクターの
縦断面図で、61は光ファイバーコードを示し、この光
ファイバーコード61の先端のシースを除いた部分から
先はケプラ62および光ファイバー心線63が分離され
、さらに光ファイバー心線63の先端に光ファイバー用
フェルール64が取着される。ここにおいて、内フレー
ム65の外周部65Aに上記ケプラ62を接着剤で固定
し、さらにケプラ62の外周に保持カラー66を設け、
保持カラー66と上記外周部65Aとの間でケプラ62
を保持させ、さらにこの保持カラー66と内フレーム6
5との間を強固に固定するよう内フレーム65に設けた
ねじ部とホルダー67に設けたねじ部との間のねし結合
で保持カラー66を介して強くケブラ62を押え込む方
法が取られている。なお68は外フレームでねし結合す
る内フレーム65との間で光ファイバー用フェルール6
4のつば部および圧縮ばね69を保持し、圧縮ばね69
の力で光ファイバー用フェルール64を常に前方(第6
図右方)へ付勢させるものであり、70は接続すべき相
手方の光ファイバー用コネクターと接続する際に用いる
アダプタ(図示せず)に取着するための接続リング、7
1は光ファイバーコードと内フレームとの接続部を保護
するためのフードである。
Furthermore, a sheath (vinyl) is covered concentrically thereon. Conventionally, optical fiber connectors have been used to connect optical fibers together.In order to attach the above-mentioned optical fiber cord to the connector, the optical fibers are connected and fixed to a ferrule, but it is necessary to firmly maintain the connection. Therefore, it was necessary to fix Keppra, a tensile strength member, to the connector. FIG. 6 shows a conventional fixing method. What is shown in FIG. 6 is a longitudinal cross-sectional view of an optical fiber connector, where 61 indicates an optical fiber cord, and from the tip of this optical fiber cord 61 excluding the sheath, Keppler 62 and optical fiber core wire 63 are separated, and An optical fiber ferrule 64 is attached to the tip of the optical fiber core 63. Here, the Keppler 62 is fixed to the outer periphery 65A of the inner frame 65 with adhesive, and a retaining collar 66 is further provided on the outer periphery of the Keppler 62.
Kepra 62 is inserted between the retaining collar 66 and the outer peripheral portion 65A.
This retaining collar 66 and the inner frame 6
In order to firmly fix the connection between the inner frame 65 and the holder 67, a method is adopted in which the Kevlar 62 is strongly held down through the retaining collar 66 through a threaded connection between the threaded part provided on the inner frame 65 and the threaded part provided on the holder 67. ing. In addition, 68 is an optical fiber ferrule 6 between the inner frame 65 which is screw-coupled with the outer frame.
4 and the compression spring 69.
The optical fiber ferrule 64 is always moved forward (6th
70 is a connection ring for attaching to an adapter (not shown) used when connecting with the other party's optical fiber connector to be connected;
1 is a hood for protecting the connection between the optical fiber cord and the inner frame.

発明が解決しようとする問題点 しかしながら、このような従来の光ファイバーコードと
コネクターとを接続するときに、1次被覆である抗張力
体とコネクターとを接着剤を主体にして固定する場合は
その作業の如何により信転性が疑問とされ、周囲環境の
温度、湿度の変化等により接着が劣化する問題があり、
またねじ結合させる場合は内フレームおよびホルダーに
例えばM 6 X P 0.5のねじ切り加工という細
かな難しい加工をしなければならず、また温度変化、振
動等によりねし結合がゆるむことがあり、加工費も多く
必要とし、部品数も多くなるなど問題点があった。
Problems to be Solved by the Invention However, when connecting such conventional optical fiber cords and connectors, it is difficult to fix the tensile strength member, which is the primary coating, and the connector using adhesive as the main ingredient. For some reason, the reliability is questionable, and there is a problem that the adhesion deteriorates due to changes in the temperature and humidity of the surrounding environment.
In addition, when making a screw connection, the inner frame and holder must be subjected to detailed and difficult processing such as thread cutting of M 6 x P 0.5, and the screw connection may loosen due to temperature changes, vibrations, etc. There were problems such as high processing costs and a large number of parts.

問題点を解決するための手段 以下、この発明を図面に基づいて説明する。Means to solve problems The present invention will be explained below based on the drawings.

第1図(a)は本発明の実施例を示し、光ファイバーコ
ードとコネクターとを接続した状態を示す縦断面図であ
る。この図において、11は形状記憶合金または超弾性
合金(例えばいずれの場合もN i −T i合金を用
いる、以下N−T合金と称す)で、マルテンサイト変態
温度を一30’C以下に設定したものを使用し、このN
−T合金を環状リングに形成した締付は金具である。こ
の締付は金具11の環状リング内径はマルテンサイト変
態温度以上では接続固定するケプラ外径より例えば約4
%程度小さくなるよう作り(記憶する母相の形状をケプ
ラ外径より約4%程度小さくしておく)、予めその内径
を7〜8%程度拡張して保持部品(例えば接続する部品
)で保持させておく。
FIG. 1(a) shows an embodiment of the present invention, and is a longitudinal sectional view showing a state in which an optical fiber cord and a connector are connected. In this figure, 11 is a shape memory alloy or a superelastic alloy (for example, a Ni-Ti alloy is used in either case, hereinafter referred to as an N-T alloy), and the martensitic transformation temperature is set to -30'C or less. Use this N
The fastener is a metal fitting made of -T alloy formed into an annular ring. For this tightening, the inner diameter of the annular ring of the metal fitting 11 is, for example, approximately 4
% (make the shape of the matrix to be memorized about 4% smaller than the outer diameter of Keppler), expand its inner diameter by about 7 to 8% in advance, and hold it with a holding part (for example, a connecting part). I'll let it happen.

そしてこのN−T合金の記憶形状に戻る力によりケプラ
62を内フレーム12に押え込みコネクターに光ファイ
バーコード61を保持させるのである。その他の各部品
は第6図に示すものと同一のものを使用するので第6図
と同一番号で示し説明を略す。ここにおいて、上記の締
付は金具11の拡張および縮小する過程を説明する。こ
こにおいて、N−T合金は通常8%程度までの変形は拡
張しても熱弾性により元の形状に戻るもので、この作用
を第7図に示す母相(N−T合金の変態温度より高温側
の相)温度域およびマルテンサイト相(N−T合金の変
態温度より低温側の相)温度域における形状記憶合金コ
イルばねの変化を荷重−たわみ線図上で模式的に示した
もので説明する。
The force of the N-T alloy returning to its memorized shape presses the Keppler 62 against the inner frame 12 and holds the optical fiber cord 61 in the connector. Since the other parts are the same as those shown in FIG. 6, they are designated by the same numbers as in FIG. 6 and their explanations will be omitted. Here, the above-mentioned tightening describes the process of expansion and contraction of the metal fitting 11. Here, even if the N-T alloy is deformed by about 8%, it returns to its original shape due to thermoelasticity. This is a load-deflection diagram schematically showing the changes in a shape memory alloy coil spring in the temperature range of the high-temperature phase (phase on the high temperature side) and the martensitic phase (phase on the lower temperature side than the transformation temperature of the N-T alloy) temperature range. explain.

この図において、まずマルテンサイト相温度域での変化
について見る。形状記憶合金コイルばねは負荷されると
■−■で弾性変形を生じる。さらに負荷されるとその負
荷にともない■→■で見かけ上降伏しながら変形し■に
いたる。このとき荷重とたわみの関係は非線形となる。
In this figure, we first look at changes in the martensitic phase temperature range. When a shape-memory alloy coil spring is loaded, it undergoes elastic deformation at ■-■. When it is further loaded, it deforms from ■ to ■ while apparently yielding, resulting in ■. At this time, the relationship between load and deflection becomes nonlinear.

■の状態から負荷を除くと■にいたるがひずみが残留す
る状態となる。この形状記憶合金コイルばねをフリーの
状態で加熱すると変形する前の■に回復する。また■の
状態で加熱すると温度上昇にともない出力荷重は増加し
なから■にいたる。そのあと除荷することで■に回復す
る。次に母相温度域での変化について見る。形状記憶合
金コイルばねは負荷されると■−■での弾性変形をへて
応力誘起M変態と呼ばれる相変態により見かけ上降伏し
ながら変形し■にいたる。このとき荷重とたわみの関係
は非線形となる。さらに■から負荷を除くと逆変態によ
ってヒステリシスループを描いて変形前の形状■に回復
する。ここにおいて、締付は金具11を第7図における
■の状態すなわち母相温度域で記憶する形状を接続固定
するケプラ外径より約4%程度小さな径に作り、この締
付は金具11をマルテンサイト相温度域で■の状態まで
拡張、すなわちその内径において7〜8%程度拡張させ
た状態にして保持部品で保持させる。この保持は通常の
常温使用状態であれば母相温度域であるので■から■の
状態まで戻ろうとする作用が働き締付は金具11は保持
部品を強い力でしめつけるため保持部品にしっかりと保
持される状態となる。(マルテンサイト変態温度を一3
06C以下と設定したため、通常の光ファイバーコード
の使用する温度は母相温度域となる)そして組付は加工
する段階で、締付は金具11を一30″C以下のマルテ
ンサイト相温度域に冷却することにより■の状態となし
、このため負荷荷重が■0■と小さな荷重となり、これ
により小さな力で取り出すことができるため締付は金具
11を保持部品からはずすのが容易となり、ケプラ外周
まで締付は金具11を移動させやすくなる。続いて締付
は金具11を移動させることにより■の状態となって負
荷荷重は0となり、この後締付は金具11をケプラ外周
において保持していれば外周温度により締付は金具ll
は母相温度域に戻るため上述の■の状態と同様な状態と
なり負荷荷重は■0■となる。このフリーの状態より■
の状態(ケプラ外径より約4%程度小さな径)に移行し
ようとするために締付は金具11はケプラを押え込み、
この結果光ファイバーコードを保持するものである。
When the load is removed from state (2), state (2) is reached, but the strain remains. When this shape memory alloy coil spring is heated in a free state, it recovers to the state before deformation. In addition, when heating in state (■), the output load does not increase as the temperature rises, leading to (2). After that, by unloading, it recovers to ■. Next, we will look at changes in the matrix temperature range. When a shape-memory alloy coil spring is loaded, it undergoes elastic deformation at (1) - (2) and then deforms while apparently yielding due to a phase transformation called stress-induced M transformation, resulting in (2). At this time, the relationship between load and deflection becomes nonlinear. Furthermore, when the load is removed from ■, a hysteresis loop is drawn through reverse transformation and the shape returns to the shape ■ before deformation. Here, the tightening is performed by making the metal fitting 11 in the condition (■) in Fig. 7, that is, the shape to be memorized in the matrix temperature range, to a diameter that is about 4% smaller than the outer diameter of the Keppler connecting and fixing the metal fitting 11. In the site phase temperature range, it is expanded to the state shown in (1), that is, the inner diameter is expanded by about 7 to 8%, and held by a holding part. Since this retention is in the matrix temperature range under normal room temperature usage conditions, the action of returning from ■ to ■ is activated, and the tightening is done by tightening the metal fitting 11 by tightening the holding part with strong force, so it is firmly held in the holding part. It will be in a state where it is (The martensitic transformation temperature is -3
(Since the temperature is set to 0.6C or lower, the temperature used for normal optical fiber cords is in the matrix temperature range.)Then, during assembly and processing, the fitting 11 is cooled to the martensitic phase temperature range of -30"C or lower for tightening. By doing this, the state of ■ is reached, and the applied load becomes a small load of ■0■.This makes it possible to remove the metal fitting 11 with a small force. Tightening makes it easier to move the metal fitting 11.Next, by moving the metal fitting 11, the tightening becomes the state shown in ■, and the applied load becomes 0.After this, the tightening is performed by holding the metal fitting 11 on the outer periphery of Kepura. Depending on the outer temperature, tighten the metal fittings.
returns to the matrix temperature range, so the state is similar to the above-mentioned state (2), and the applied load becomes (2) 0. From this free state■
(diameter approximately 4% smaller than the outer diameter of Kepplar), the fitting 11 presses down Kepplar when tightening.
As a result, the optical fiber cord is retained.

実施例 第1図(b)(C)はこの発明の実施例の一例の締付は
過程を示す図で、第1図(b)は締付は前のN−T合金
の締付は金具11の保持位置を示す図、第1図(C)は
締付は後の状態を示す図で第1図(a)に示す状態の部
分図である。この図において、第1図(b)は締付は金
具11を内フレーム12の外周に保持した例であり、締
付は金具11の内径は締付けるケプラ外径より例えば約
4%程度小さく記憶させ、締付けるケプラ62の外径よ
り拡張された状B(例えば7〜8%程度拡張した状態)
で内フレーム12に保持されている。
Embodiment FIGS. 1(b) and 1(C) are diagrams showing the tightening process of an example of the embodiment of this invention, and FIG. 1(b) shows the tightening of the previous N-T alloy using the metal fittings FIG. 1(C) is a partial view of the state shown in FIG. 1(a), showing the state after tightening. In this figure, Fig. 1(b) is an example in which the metal fitting 11 is held on the outer periphery of the inner frame 12, and the inner diameter of the metal fitting 11 is memorized to be about 4% smaller than the outer diameter of the Keppler to be tightened. , a state B expanded from the outer diameter of the Keppler 62 to be tightened (for example, a state expanded by about 7 to 8%)
and is held in the inner frame 12.

この状態の内フレーム12を使用してケプラ62を保持
固定させる。まず光ファイバーコード61のシースを除
去し、ケブラ62を内フレーム12の外周部12Aの周
囲に同心円状態で密接させ、続いて締付は金具11に冷
気(例えばフレオンガスボンベを用いてフレオンガスの
冷気)を噴射させ、マルテンサイト変態温度(この場合
は一30″C)以下に冷却して締付は金具1.1の移動
を容易にさせ、その後締付は金具11をケプラ62の上
に同心円状態にするよう移動させる。このままで保持す
れば締付は金具11は外部温度によりマルテンサイト変
態温度以上に上昇し、上昇するに伴いN−T合金の一方
向性効果により締付は金具11の内径がケプラ外径より
約4%程度小さく記憶した母相の形状に縮小し、その力
によりケプラ62は内フレーム12に確実に固定される
ものである。第1図(C)にその状態が示される。
Using the inner frame 12 in this state, the Keppler 62 is held and fixed. First, the sheath of the optical fiber cord 61 is removed, and the Kevlar 62 is placed in a concentric circle around the outer circumference 12A of the inner frame 12. Then, the tightening is performed by blowing cold air (for example, cold air of Freon gas using a Freon gas cylinder) into the metal fitting 11. The metal fitting 1.1 is injected, cooled to below the martensitic transformation temperature (-30"C in this case), and tightened to facilitate the movement of the metal fitting 1.1, and then tightened to place the metal fitting 11 on the Kepra 62 in a concentric state. If held as it is, the metal fitting 11 will be tightened due to the external temperature, which will rise above the martensitic transformation temperature, and as the temperature rises, the inner diameter of the metal fitting 11 will be The Keppler 62 is reduced to the memorized shape of the matrix, which is about 4% smaller than the outer diameter, and the Keppler 62 is securely fixed to the inner frame 12 by this force.The state is shown in Fig. 1(C). .

第2図はその他の実施例を示す図で、第2図(a)は締
付は前、第2図(b)は締付は後の状態を示す。この実
施例はケプラ62の保持を折り返して行なうもので、同
じ<N−T合金の母相の形状を内フレーム21の先端周
囲に1個以上のスリット21Aを設けたスリット部21
Bの外径より例えば約4%程度小さく記憶させた締付は
金具11の内径を例えば7〜8%程度拡張した状態にし
て内フレーム21の外周部に保持したもので、光ファイ
バーコード61のシースを除去し、ケプラ62を保持す
る位置に略左側半分に1個以上のスリット22Aを設け
た基礎リング22を置き、その周囲にケプラ62を折り
返して同心円状態で密接させ、続いて内フレーム21の
周囲に複数のスリット21Aを設けたスリット部21B
をケプラ62の外周に移動させて後、締付は金具11に
例えばフレオンガスの冷気を噴射させてマルテンサイト
変態温度(この場合は一30°C)以下に冷却して締付
は金具11の移動を容易にさせ、その後締付は金具11
をスリット部21Bの上に移動させる。そしてこのまま
保持すれば、締付は金具11は外部温度によりマルテン
サイト変態温度以上に上昇し、上昇するに伴いN−T合
金の一方向性効果により締付は金具11の内径がスリッ
ト部21Bの外径より約4%程度小さく記憶した母相の
形状に縮小し、その力によりケプラ62は内フレーム2
1のスリット部21Bと基礎リング22の間に確実に固
定されかつ光ファイバーコード61にも固定されるもの
である。
FIG. 2 is a diagram showing another embodiment, in which FIG. 2(a) shows the state before tightening, and FIG. 2(b) shows the state after tightening. In this embodiment, the Keppler 62 is held by folding back, and the slit portion 21 has one or more slits 21A around the tip of the inner frame 21 with the same <N-T alloy matrix shape.
The memorized tightening is about 4% smaller than the outer diameter of B, and the inner diameter of the metal fitting 11 is expanded by about 7 to 8% and held on the outer periphery of the inner frame 21. , and place the base ring 22 with one or more slits 22A in approximately the left half at a position to hold the Keppler 62, fold the Keppler 62 around it and bring it close together in a concentric state, and then insert the inner frame 21. Slit portion 21B with multiple slits 21A around it
After moving it to the outer periphery of the Keppler 62, the fitting 11 is tightened by injecting cold air such as Freon gas to cool it below the martensitic transformation temperature (-30°C in this case), and then tightening by moving the fitting 11. After that, tighten the metal fitting 11.
is moved above the slit portion 21B. If this state is maintained, the tightening of the metal fitting 11 will rise above the martensitic transformation temperature due to the external temperature, and as the temperature rises, the inner diameter of the metal fitting 11 will tighten due to the unidirectional effect of the N-T alloy. The Keppler 62 shrinks to the memorized shape of the matrix, which is about 4% smaller than the outer diameter, and the force causes the Keppler 62 to shrink to the inner frame 2.
1 slit portion 21B and the base ring 22, and is also fixed to the optical fiber cord 61.

第3図はこの発明のさらに他の実施例を示す図で、第3
図(a)は締付は前、第3図(b)は締付は後の状態を
示す。この実施例は前記と同様にN−T合金の母相の形
状をケプラ外径より例えば約4%程度小さく記憶させた
締付は金具11の内径を例えば7〜8%程度拡張した状
態にして基礎リング22の外周に保持したもので、光フ
ァイバーコード61のシースを除去し、ケプラ62を内
フレーム31の外周部31Aの周囲に同心円状態で密接
させ、続いて締付は金具11に例えばフレオンガスの冷
気を噴射させてマルテンサイト変態温度(この場合は−
30”C)以下に冷却して締付は金具11の移動を容易
にさせ、その後締付は金具11をケプラ62の上に同心
円状態にするよう移動させる。このままで保持すれば、
締付は金具11は外部温度によりマルテンサイト変態温
度以上に上昇し、上昇するに伴いN−T合金の一方向性
効果により締付は金具11の内径がケプラ62外径より
約4%程度小さく記憶した母相の形状に縮小し、この締
付は金具11の力によりケプラは内フレーム31の外周
部31Aに確実に固定されるものである。
FIG. 3 is a diagram showing still another embodiment of the present invention.
Figure 3(a) shows the state before tightening, and Figure 3(b) shows the state after tightening. In this embodiment, the shape of the matrix of the N-T alloy is memorized to be smaller, for example, by about 4% than the outer diameter of Kepplar, as in the above, and the tightening is performed with the inner diameter of the metal fitting 11 expanded by, for example, about 7 to 8%. The sheath of the optical fiber cord 61 is removed, and the Kepra 62 is brought into close contact with the outer periphery 31A of the inner frame 31 in a concentric manner. By injecting cold air, the martensitic transformation temperature (in this case -
After cooling to below 30"C), tightening facilitates the movement of the metal fitting 11, and then tightening moves the metal fitting 11 so that it is concentric with the top of the Keppler 62. If it is held as it is,
When tightening, the metal fitting 11 rises above the martensitic transformation temperature due to the external temperature, and as the temperature increases, due to the unidirectional effect of the N-T alloy, the inner diameter of the metal fitting 11 is approximately 4% smaller than the outer diameter of Keppra 62. The Keppler is reduced to the memorized shape of the matrix, and this tightening is performed by the force of the metal fitting 11 to securely fix the Keppler to the outer peripheral portion 31A of the inner frame 31.

第4図はこの発明のさらに他の実施例を示す図で、第4
図(a)は締付は前、第4図(b)は締付は後の状態を
示す。この実施例はケブラ62をホルダー41を介して
締付は金具11で内フレーム42に保持させるもので、
N−T合金の母相の形状をホルダー41の先端周囲に1
個以上のスリット41Aを設けたスリット部41Bの外
径より例えば約4%程度小さく記憶させた締付は金具1
1の内径を例えば7〜8%程度拡張した状態にして内フ
レーム42の外周に保持したもので、光ファイバーコー
ド61のシースを除去し、ケプラ62を内フレーム42
の外周部42Aの周囲に同心円状態で密接させ、続いて
ホルダー41の先端周囲に1個以上のスリット41Aを
設けたスリット部41Bをケプラ62の外周に移動させ
て後、続いて締付は金具11に例えばフレオンガスの冷
気を噴射させてマルテンサイト変態温度(この場合は一
30°C)以下に冷却して締付は金具11の移動を容易
にさせ、その後締付は金具11をスリット部41Bの上
に移動させる。このままで保持すれば、締付は金具11
は外部温度によりマルテンサイト変態温度以上に上昇し
、上昇するに伴いN−T合金の一方向性効果により締付
は金具11の内径がスリット部41Bの外径より約4%
程度小さく記憶した母相の形状に縮小し、その力によリ
ケプラ62は内フレーム42の外周部42Aとホルダー
41の間に確実に固定されるものである。
FIG. 4 is a diagram showing still another embodiment of the present invention.
Figure 4(a) shows the state before tightening, and Figure 4(b) shows the state after tightening. In this embodiment, the Kevlar 62 is held on the inner frame 42 through the holder 41 and tightened with the metal fittings 11.
The shape of the matrix of N-T alloy is 1 around the tip of the holder 41.
The tightening of the metal fitting 1 is memorized to be about 4% smaller than the outer diameter of the slit portion 41B in which more than 1 slits 41A are provided.
The inner diameter of the optical fiber cord 61 is expanded by, for example, 7 to 8% and held on the outer periphery of the inner frame 42.The sheath of the optical fiber cord 61 is removed, and the Kepra 62 is attached to the inner frame
The slit part 41B, which has one or more slits 41A provided around the tip of the holder 41, is moved to the outer periphery of the Keppler 62, and then tightened with the metal fittings. 11 is injected with cold air such as Freon gas to cool it below the martensitic transformation temperature (-30°C in this case), and then the fitting 11 is tightened to make it easier to move. move it above. If you hold it as it is, tighten the metal fitting 11.
increases above the martensitic transformation temperature due to the external temperature, and as the temperature rises, due to the unidirectional effect of the N-T alloy, the inner diameter of the metal fitting 11 is approximately 4% larger than the outer diameter of the slit portion 41B.
The rekepla 62 is reduced to a slightly memorized shape of the parent phase, and by the force thereof, the rekepla 62 is reliably fixed between the outer circumferential portion 42A of the inner frame 42 and the holder 41.

第5図はこの発明のさらに他の実施例を示す図で、第5
図(a)は締付は前、第5図(b)は締付は後の状態を
示す。この実施例はケプラ62をフード51を介して締
付は金具11で内フレーム52に保持させるもので、N
−T合金の母相の形状をフード外径より例えば約8%程
度小さく記憶させた締付は金具11の内径を例えば7〜
8%程度拡張した状態にして内フレーム52の外周に保
持させておく。そして、光ファイバーコード61のシー
スを除去し、ケプラ62を内フレーム52の外周部52
Aの周囲に同心円状態で密接させ、続いてケプラ62の
外周にフード51を覆わせた後、さらに締付は金具11
に例えばフレオンガスの冷気を噴射させてマルテンサイ
ト変態温度(この場合は一30°C)以下に冷却して締
付は金具11の移動を容易にさせ、その後締付は金具1
1をフード51の上にケプラ62と同心円状態に移動さ
せる。このままで保持すれば、締付は金具11は外部温
度によりマルテンサイト変態温度以上に上昇し、上昇す
るに伴いN−T合金の一方向性効果により締付は金具1
1の内径がケプラ62の外径より約8%程度小さく記憶
した母相の形状に縮小し、この締付は金具11の力によ
りケプラ62は内フレーム52の外周部52Aに確実に
固定されるものである。
FIG. 5 is a diagram showing still another embodiment of the present invention.
Figure 5(a) shows the state before tightening, and Figure 5(b) shows the state after tightening. In this embodiment, the Keppler 62 is held on the inner frame 52 by the metal fittings 11 through the hood 51, and the N
- Tightening with the shape of the matrix of the T alloy memorized to be about 8% smaller than the outer diameter of the hood, for example, the inner diameter of the metal fitting 11 is
It is held on the outer periphery of the inner frame 52 in a state in which it is expanded by about 8%. Then, the sheath of the optical fiber cord 61 is removed, and the Kepra 62 is attached to the outer peripheral portion 52 of the inner frame 52.
After fitting the hood 51 in a concentric circle around the A, and then covering the outer periphery of the Keppler 62 with the hood 51, further tighten the metal fitting 11.
For example, the cold air of Freon gas is injected to cool the metal fitting 11 to below the martensitic transformation temperature (-30°C in this case) to facilitate the movement of the metal fitting 11.
1 is moved onto the hood 51 so as to be concentric with the Keppler 62. If this state is maintained, the tightening of the metal fitting 11 will rise above the martensitic transformation temperature due to the external temperature, and as the temperature rises, the tightening of the metal fitting 11 will be reduced due to the unidirectional effect of the N-T alloy.
The inner diameter of Keppler 62 is reduced to the memorized shape of the matrix, which is about 8% smaller than the outer diameter of Kepplar 62, and this tightening is performed by the force of metal fitting 11, so that Kepplar 62 is securely fixed to outer peripheral portion 52A of inner frame 52. It is something.

発明の詳細 な説明したように、この発明は接着剤を使用せず、N−
T合金を用いた締付は金具をケブラの上に同心円状態に
移動させるもので、記憶した母相の形状に戻るというN
−T合金の一方向性効果により確実にケプラを締付けて
ケプラと内フレームを固定させるものである。この際締
付は金具に作用させる温度は例えば−30°C以下と低
温側の使用であり、光ファイバーコードおよびコネクタ
ーに対して高温作業と異なりなんら影響をおよぼすこと
はない。また締付は金具は予め接続部品またはそれに頻
する部品に保持されているので作業が容易である。さら
に本発明によれば接着剤およびねじ加工を廃することが
可能なため、作業の容易と信頼性を増加できるもので、
部品点数も少なくなり、加工費も安くなるものである。
DETAILED DESCRIPTION OF THE INVENTION As described, this invention does not use adhesives and
Tightening using T alloy moves the metal fittings concentrically on top of Kevlar, and returns to the memorized shape of the matrix.
The unidirectional effect of -T alloy reliably tightens Kepplar and fixes Kepplar and the inner frame. At this time, the temperature at which the metal fittings are tightened is low, for example, -30°C or lower, and unlike high-temperature work, it does not have any effect on the optical fiber cord and connector. Furthermore, tightening is easy because the metal fittings are held in advance on the connecting parts or similar parts. Furthermore, according to the present invention, it is possible to eliminate adhesives and screw processing, which increases the ease and reliability of work.
The number of parts is reduced, and processing costs are also reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例の一例を示すもので第1図(
a)は光ファイバー用コネクターの縦断面図で、第1図
(b)は締付は過程の締付は前を示し第1図(c)は締
付は後を示す第1図(a)の部分図、第2図はその他の
実施例を示す図で第2図(a)は締付は前を示し第2図
(b)は締付は後を示す図、第3図はさらにその他の実
施例を1.11 示す図で第3図(a)は締付は前を示し第3図(b)は
締付は後を示す図、第4図はさらにその他の実施例を示
す図で第4図(a)は締付は前を示し第4図(b)は締
付は後を示す図、第5図はさらにその他の実施例を示す
図で第5図(a)は締付は前を示し第5図(b)は締付
は後を示す図、第6図は従来の光ファイバー用コネクタ
ーの縦断面図、第7図は母相温度域およびマルテンサイ
ト相温度域における形状記憶合金コイルばねの変化を荷
重−たわみ線図上で模式的に示した図である。 11・・・締付は金具 12.21・・・内フレーム 22・・・基礎リング 31.42.52・・・内フレーム 61・・・光ファイバーコード 62・・・ケプラ 65・・・内フレーム
Figure 1 shows an example of an embodiment of the present invention.
Figure 1 (a) is a longitudinal sectional view of the optical fiber connector, Figure 1 (b) shows the front of the tightening process, and Figure 1 (c) shows the rear of the tightening process. Partial views, Figure 2 are diagrams showing other embodiments, Figure 2 (a) shows the front tightening, Figure 2 (b) shows the rear tightening, and Figure 3 shows other examples. 1.11 Embodiments Figure 3 (a) shows the front tightening, Figure 3 (b) shows the rear tightening, and Figure 4 shows other examples. Figure 4(a) shows the front side of tightening, Figure 4(b) shows the rear side of tightening, and Figure 5 shows another example. 5(b) shows the front, and FIG. 5(b) shows the rear after tightening. FIG. 6 is a vertical cross-sectional view of a conventional optical fiber connector. FIG. 7 shows shape memory in the matrix temperature range and martensitic phase temperature range. FIG. 3 is a diagram schematically showing changes in an alloy coil spring on a load-deflection diagram. 11...Tighten the metal fittings 12.21...Inner frame 22...Foundation ring 31.42.52...Inner frame 61...Optical fiber cord 62...Keplar 65...Inner frame

Claims (1)

【特許請求の範囲】[Claims] (1)光ファイバーコードを光ファイバー用コネクター
に接続する場合の光ファイバーコードの抗張力体と光フ
ァイバー用コネクターの内フレームを固定する方法とし
て、内フレームに抗張力体を同心円状態に被せ、形状記
憶合金あるいは超弾性合金を用いて環状に作成したもの
をその記憶する母相の環状内径形状を抗張力体外径ある
いは抗張力体の外周にスリットを設けて抗張力体を保持
する部品の外径より縮小した状態にして記憶させ、かつ
環状の形状記憶合金あるいは超弾性合金の内径を予め抗
張力体外径あるいは抗張力体の外周にスリットを設けて
抗張力体を保持する部品の外径より拡張した状態で保持
部品に保持しておき、抗張力体を固定する場合に形状記
憶合金あるいは超弾性合金をマルテンサイト変態温度以
下に冷却してから抗張力体の外周位置に移動し、その後
形状記憶合金あるいは超弾性合金をマルテンサイト変態
温度以上に温度上昇させることにより形状記憶合金ある
いは超弾性合金の一方向性効果によりその環状内径形状
が記憶した母相の形状に復帰する力を利用して抗張力体
と内フレームを固定する光ファイバー用コネクターに光
ファイバーの抗張力体を固定する方法。
(1) When connecting an optical fiber cord to an optical fiber connector, a method of fixing the tensile strength body of the optical fiber cord and the inner frame of the optical fiber connector is to cover the inner frame with a tensile strength body concentrically, and use a shape memory alloy or superelastic alloy. A slit is provided on the outer circumference of the tensile strength body or the outer diameter of the tensile strength body to store the shape of the annular inner diameter of the parent phase which is created in an annular shape using the . In addition, the inner diameter of the annular shape memory alloy or superelastic alloy is expanded from the outer diameter of the tensile strength member by providing a slit in advance on the outer diameter of the tensile strength member or the outer circumference of the tensile strength member, and is held in a holding part in a state in which the inner diameter of the annular shape memory alloy or superelastic alloy is expanded from the outer diameter of the part that holds the tensile strength member. When fixing a body, the shape memory alloy or superelastic alloy is cooled to below the martensitic transformation temperature, then moved to the outer periphery of the tensile strength body, and then the temperature of the shape memory alloy or superelastic alloy is raised to above the martensitic transformation temperature. The tensile strength of the optical fiber is applied to the optical fiber connector, which fixes the tensile strength body and the inner frame by utilizing the force that causes the annular inner diameter shape to return to the memorized shape of the matrix due to the unidirectional effect of the shape memory alloy or superelastic alloy. How to fix your body.
JP60133518A 1985-06-19 1985-06-19 Method for fixing tensile body of optical fiber to connector for optical fiber Pending JPS61292106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60133518A JPS61292106A (en) 1985-06-19 1985-06-19 Method for fixing tensile body of optical fiber to connector for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60133518A JPS61292106A (en) 1985-06-19 1985-06-19 Method for fixing tensile body of optical fiber to connector for optical fiber

Publications (1)

Publication Number Publication Date
JPS61292106A true JPS61292106A (en) 1986-12-22

Family

ID=15106652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60133518A Pending JPS61292106A (en) 1985-06-19 1985-06-19 Method for fixing tensile body of optical fiber to connector for optical fiber

Country Status (1)

Country Link
JP (1) JPS61292106A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0462845A2 (en) * 1990-06-21 1991-12-27 The Furukawa Electric Co., Ltd. Optical connector and a method for assembling the same
EP0491046A1 (en) * 1990-06-19 1992-06-24 The Furukawa Electric Co., Ltd. Optical connector
WO1997046166A3 (en) * 1996-06-05 1998-03-05 Metagen Llc Stretchable clamp
EP1676162A1 (en) * 2003-10-24 2006-07-05 9134-9001 Quebec Inc. Flexible ferruble device for connection of optical fiber and use thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0491046A1 (en) * 1990-06-19 1992-06-24 The Furukawa Electric Co., Ltd. Optical connector
EP0491046B1 (en) * 1990-06-19 1996-11-27 The Furukawa Electric Co., Ltd. Optical connector
EP0462845A2 (en) * 1990-06-21 1991-12-27 The Furukawa Electric Co., Ltd. Optical connector and a method for assembling the same
WO1997046166A3 (en) * 1996-06-05 1998-03-05 Metagen Llc Stretchable clamp
EP1676162A1 (en) * 2003-10-24 2006-07-05 9134-9001 Quebec Inc. Flexible ferruble device for connection of optical fiber and use thereof
EP1676162A4 (en) * 2003-10-24 2012-03-07 9134 9001 Quebec Inc Flexible ferruble device for connection of optical fiber and use thereof

Similar Documents

Publication Publication Date Title
CN104662459B (en) There is the multi-fiber fiber optic connector of the reinforcing of sealing and dustproof cover
US4261644A (en) Method and article of manufacturing an optical fiber connector
US11287596B2 (en) Methods, kits, and systems incorporating a self-amalgamating tape for clamping fiber optic cable
US4296955A (en) Composite coupling device with high recovery driver
US5894866A (en) Garden hose assembly having holding means adapted to be coiled around an associated support and method of making same
US20010028148A1 (en) Stress induced connecting assembly
JPS5986170A (en) Connecting implement
JPS61292106A (en) Method for fixing tensile body of optical fiber to connector for optical fiber
JPS58218778A (en) Container for cable connecting portion
US20050041931A1 (en) Optical fiber connection utilizing fiber containing ferrules
JPH0727445Y2 (en) Optical connector tension member fixing structure
US20050021046A1 (en) Catheter tip retention device
JP2880765B2 (en) Method for fixing spherical lens of optical semiconductor element module
CN112922930A (en) Open type shape memory alloy fastening ring
JP6563822B2 (en) Wire end fixture and manufacturing method thereof
JPH0556491A (en) Headphone
US20030108707A1 (en) Shape-recovering material suitable for application of an attachment, and its use
JPS6067911A (en) Optical connector
JPH051793A (en) Hose fitting
JP2909245B2 (en) Superconducting wire connection method
JPH02253022A (en) Method of coupling coil spring using shape memory material
KR960013375B1 (en) Cable connector clipping method
JPS62284970A (en) Thermal-to-mechanical energy converter
JPS6217771Y2 (en)
JP2728420B2 (en) Manufacturing method of fluorescent lamp