JPS61291271A - Power steering system - Google Patents

Power steering system

Info

Publication number
JPS61291271A
JPS61291271A JP13369885A JP13369885A JPS61291271A JP S61291271 A JPS61291271 A JP S61291271A JP 13369885 A JP13369885 A JP 13369885A JP 13369885 A JP13369885 A JP 13369885A JP S61291271 A JPS61291271 A JP S61291271A
Authority
JP
Japan
Prior art keywords
hydraulic
steering
oil
reaction force
bypass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13369885A
Other languages
Japanese (ja)
Inventor
Koichi Komatsu
浩一 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Atsugi Motor Parts Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atsugi Motor Parts Co Ltd filed Critical Atsugi Motor Parts Co Ltd
Priority to JP13369885A priority Critical patent/JPS61291271A/en
Publication of JPS61291271A publication Critical patent/JPS61291271A/en
Pending legal-status Critical Current

Links

Landscapes

  • Power Steering Mechanism (AREA)

Abstract

PURPOSE:To reduce a pump load by controlling oil pressure which is applied to a reaction chamber of an oil pressure reaction mechanism in a device equiped with both an oil pressure controlling mechanism controlling the feeding and discharging of working oil to a power cylinder and the oil pressure reaction mechanism. CONSTITUTION:A worm shaft 8 is rotatably fitted in a housing 5 which is connected to a power cylinder, and a stubshaft 29 as an input member is connected to the other end of the shaft 8 through a torsion bar 42. And both an oil pressure controlling mechanism 10 which controls the feeding and discharging of working oil to two working chambers 3 and 4 of the power cylinder. And an oil pressure reaction mechanism 20 facing the said mechanism 10 is provided on the other end side of the worm shaft 8. And a bypass hydraulic line 49 is branched from a hydraulic pressure line 47 of a pump P so as to be connected with a hydraulic return line 48. And both a variable throttling mechanism 50, the opening area of which varies depending on a car speed, and a fixed restrictor 51 are connected to the halfway of the said bypass line. And the said bypass line 49 between both of the mechanism 50 and 51 is communicated to reaction chamber 31 and 32 through a hydraulic line 52.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、動力操向装置に関する。[Detailed description of the invention] Industrial applications The present invention relates to a power steering device.

従来の技術 一般に、ピストンによって隔成したシリンダ内の二つの
作動室に、油圧制御機構にて作動油を選択的に給排制御
し、前記ピストンに連結された操錠部材の操舵動作を助
勢する動力操向装置にあっては、車両の低速走行時ある
いは撫切時にげ、十分な操舵助勢力を必要とするが、そ
の反面、車両の低速走行時よりも接地抵抗の小さい高速
走行時には、操舵安定性の向上を図る見地から、畑はど
操舵助勢力を必要としない。つまり、車両の低速走行時
あるいは撫切時には、ハンドル荷重を軽くし、車両の高
速走行時にはハンドル荷重な重くすることが好ましい。
BACKGROUND ART In general, a hydraulic control mechanism selectively controls the supply and discharge of hydraulic oil to two working chambers in a cylinder separated by a piston to assist the steering operation of a locking member connected to the piston. A power steering system requires sufficient steering assist force when the vehicle is running at low speeds or when the vehicle is turning off. From the standpoint of improving stability, Hado does not require an auxiliary steering force. In other words, it is preferable that the handlebar load is light when the vehicle is running at low speeds or when the vehicle is running at a low speed, and that the handlebar load is heavy when the vehicle is running at high speeds.

そこで、本件出願人げ、このような要請に応えるべく、
例えば特願昭59−231973号に記載の動力操向装
ff’に提案している。この動力操向装置は、ポンプか
ら吐出される作動油を、ピストンによって隔成された二
つの作動室に送給するための供給路70λら分岐して作
動油の排出路に接続されたバイパス路の途中に、前記供
給路から前記バイパス路に向う作動油の制限的流動な許
容する固定絞り機構と、この固定絞り機構の下流側で車
速に応じて前記バイパス路の開口面積な変化きせる可変
絞り機構とを設けるとともに、前記油圧制御機構を構成
するスプール弁の移動を、前記固定絞り機構に生ずる油
圧と前記可変絞り機構に生ずる油圧との間の差圧に応じ
て制動する油圧反力機構を設けた構成としである。
Therefore, in order to respond to such requests, the applicant of this case,
For example, it has been proposed in the power steering system ff' described in Japanese Patent Application No. 59-231973. This power steering device includes a bypass path that branches from a supply path 70λ for feeding hydraulic oil discharged from a pump to two working chambers separated by a piston and is connected to a hydraulic oil discharge path. A fixed throttle mechanism that allows a limited flow of hydraulic oil from the supply path toward the bypass path, and a variable throttle that changes the opening area of the bypass path downstream of the fixed throttle mechanism in accordance with vehicle speed. and a hydraulic reaction force mechanism that brakes the movement of the spool valve constituting the hydraulic control mechanism in accordance with the differential pressure between the hydraulic pressure generated in the fixed throttle mechanism and the hydraulic pressure generated in the variable throttle mechanism. This is the configuration provided.

このような構成を有する従来の動力操向装置は、作動油
の供給路から分岐するバイパス路の途中に設けた固定絞
り機構と車速に応じてバイパス路の圧制御機構を構成す
るスプール弁の移動を徐々に制動できるようにし、これ
により操舵輪のノ・ンドル荷重を車速に応じて滑らかに
増減できるようにしている。
A conventional power steering system having such a configuration has a fixed throttling mechanism installed in the middle of a bypass path that branches from a hydraulic oil supply path, and a spool valve that configures a pressure control mechanism for the bypass path that moves according to vehicle speed. This allows the brakes to be applied gradually, allowing the steering wheel load to be smoothly increased or decreased in accordance with vehicle speed.

発明が解決しようとする問題点 しかしながら、このような従来の動力操向装置:二あっ
ては、車両が低速状態にある場合、油圧反力機構が作用
しないように可変絞り機構l緩める。
Problems to be Solved by the Invention However, in the conventional power steering system, when the vehicle is in a low speed state, the variable throttle mechanism is loosened so that the hydraulic reaction force mechanism does not operate.

すると、バイパス路の流量が増大して、供給路の流量が
減少する。このためにシリンダ内の作動室の圧力が十分
に上がらず、操舵助勢力な十分に発揮するに至らない。
Then, the flow rate in the bypass path increases and the flow rate in the supply path decreases. For this reason, the pressure in the working chamber within the cylinder does not rise sufficiently, and the steering assist force cannot be fully exerted.

然らば可変絞り機構を絞ると、油圧反力機構の圧力が上
昇してしまい、これも操舵の妨げとなる。一方、車両が
高速状態にある場合には、操舵の安定の見地から、操舵
反力が大なることが望ましいので、可変絞り機構な絞る
こととなるが、上流にある固定絞りで、一端バイパス路
内は圧力が゛降下しているので、下流にある可変絞りで
はより強く絞って油圧反力機構へ導入する圧力な高める
。このため、バイパス路の流iは大巾に減少し、その分
供給路の流量が増大する。これに伴なって油圧制御機構
での流通抵抗が大きくなって供給路の圧力が増し、ポン
プ吐出圧が大きくなり、ポンプに余分の仕事をすること
となり、エネルギのロスな生じる等の問題点があった。
However, when the variable throttle mechanism is throttled down, the pressure in the hydraulic reaction force mechanism increases, which also hinders steering. On the other hand, when the vehicle is in a high-speed state, it is desirable to have a large steering reaction force from the standpoint of steering stability, so a variable throttle mechanism is used to throttle the vehicle. Since the pressure inside is dropping, the downstream variable throttle restricts it more strongly to increase the pressure introduced into the hydraulic reaction force mechanism. For this reason, the flow i in the bypass path decreases significantly, and the flow rate in the supply path increases accordingly. Along with this, the flow resistance in the hydraulic control mechanism increases, the pressure in the supply path increases, the pump discharge pressure increases, and the pump has to do extra work, causing problems such as energy loss. there were.

問題点な解決するための手段 このような従来の問題点を解決するために、本発明は、
操舵輪の操作力により駆動される入力部材と、車輪に操
舵力を与える操舵部材を駆動する出力部材と、これら入
力部材と出力部材との間に相対回動変位が生じたとき、
ピストンによって隔成すれたシリンダ内の二つの作動室
に作動油を選択的に給排制御して前記ピストンに連結し
た操舵部材の操舵動作を助勢する油圧制御機構とな備え
るとともに、車速に応じて前記油圧制御機構の移動に際
して反力を与える油圧反力機構な備えた動力操向装置に
おいて、ポンプから吐出される作動油す前記二つの作動
室に送給するための供給路から分岐して作動油の排出路
に接続されたバイパス路を設け、このバイパス路の途中
に2つの絞り機構を設けて、そのうち、少なくとも上流
側の絞り機構l車速に応じて前記バイパス路の開口面積
l変化させる可変絞り機構とするとともに、これら2つ
の絞り機構の間のバイパス路から分岐する油路を設け、
これl油圧反力機構と連通させた構成にしている。
Means for Solving Problems In order to solve these conventional problems, the present invention
When a relative rotational displacement occurs between an input member driven by the operating force of the steering wheel, an output member that drives the steering member that applies steering force to the wheels, and these input members and the output member,
The hydraulic control mechanism selectively controls the supply and discharge of hydraulic oil to two working chambers in a cylinder separated by a piston to assist the steering operation of a steering member connected to the piston, and also controls the hydraulic fluid according to the vehicle speed. In a power steering device equipped with a hydraulic reaction force mechanism that provides a reaction force when the hydraulic control mechanism moves, the hydraulic oil discharged from the pump is operated by branching from a supply path for feeding the two working chambers. A bypass path connected to an oil discharge path is provided, two throttle mechanisms are provided in the middle of this bypass path, and at least the throttle mechanism on the upstream side changes the opening area of the bypass path in accordance with the vehicle speed. In addition to the throttle mechanism, an oil path branching from the bypass path between these two throttle mechanisms is provided,
This is configured to communicate with the hydraulic reaction force mechanism.

作用 このような構成になる本発明の動力操向装置は、バイパ
ス路の上流側に設けた可変絞り機構な可変操作すること
により、車両の低速時は絞りを強くして油圧制御機構へ
供給する流量を増加でせてシリンダ内の作動室の圧力を
高めて助勢力を太きくすると共に、この可変絞り機構よ
り下流の圧力l低下させて、油圧反力機構の圧力l小と
して反力を小さくする。また、車両の高速時には前記可
変絞り機構の絞りな弱くして、バイパス流量l増加させ
ることにより供給路の流t”を減゛少させ、これによっ
て供給路内の上昇を仰えて吐出圧の低下を計り、ポンプ
の負荷を軽減して、エネルギのロスをなくする。また、
バイパス流量の増加に伴なって下流の絞り機構の作用で
油圧反力機構に汀、より高い圧力が導入されて、操舵反
力を増し、操舵が安定する。
Operation: The power steering system of the present invention having such a configuration operates the variable throttle mechanism provided on the upstream side of the bypass passage to strengthen the throttle and supply the power to the hydraulic control mechanism when the vehicle is running at low speeds. By increasing the flow rate and increasing the pressure in the working chamber in the cylinder, the auxiliary force is increased, and at the same time, the pressure downstream of this variable throttle mechanism is lowered to reduce the pressure of the hydraulic reaction force mechanism, thereby reducing the reaction force. do. Also, when the vehicle is at high speed, the throttle of the variable throttle mechanism is weakened to increase the bypass flow rate l, thereby reducing the flow t'' in the supply passage, which causes an increase in the supply passage and a decrease in the discharge pressure. This reduces the load on the pump and eliminates energy loss.Also,
As the bypass flow rate increases, higher pressure is introduced into the hydraulic reaction force mechanism by the action of the downstream throttling mechanism, increasing the steering reaction force and stabilizing the steering.

以下、この発明の実施例を図面に基づいて説明する。Embodiments of the present invention will be described below based on the drawings.

第1A図はこの発明に係る動力操向装置の第1実施例を
示す断面図、第2図は第1図における■−■線断面図で
ある。
FIG. 1A is a cross-sectional view showing a first embodiment of the power steering device according to the present invention, and FIG. 2 is a cross-sectional view taken along the line ■--■ in FIG.

第1A図及び耳2図に示すように、ピストンlによって
シリンダ2内げ、二つの作動室3.4に隔成され、前記
ピストン1は、操縦リンクを駆動する操舵部材たるセク
タシャフト40に連結されている。前記シリンダ2の一
端を対重するハウジング5には、ポンプPから吐出式れ
る作動油l前記二つの作動室3,4に給排する供給孔6
及び排出孔7が形成されており、このハウジング5内に
は、車輪に操舵力を与えるセクタシャフト40す駆動す
る出力部材たるウオームシャフト8が軸受9を介して回
動可能に収容配置されている。このウオームシャフト8
の一端は前記ピストン1にボールねじ41を介して螺合
されている。また、このウオームシャフト8の他端側に
は、可換性l有するトーションバ42す介して、操舵輪
43に連結した入力部材たるスタブシャフト29が連結
されている。さらに、このウオームシャフト8の他端側
には、前記二つの作動室3,4に作動油を選択的に給排
制御して前記セクタシャフト40の操舵動作な助勢する
油圧制御機構10が設けられている。この油圧制御機構
10ハ、第1A図に示すように、内周面に所定の環状溝
を有する筒状の弁収容部11と、この弁収容部11内に
摺動可能に嵌挿されたスプール弁球とから構成されてお
り、前記弁状容部ll内には、このスプール弁12の外
周に軸方向所定間隔を置いて形成窟れた4個のランド部
によって3個の弁室13゜14 、15が形成されてい
る。これらのうち、両側に位置Tる弁室13.14u、
ハウジング5とウオームシャフト8との間に形成した環
状溝5aζ:、供給口16.17’&介して連通してい
る。このうち、前記弁室13ハ、一方の作動室3に油路
18を介して連通するとともに、前記弁室14ニ、他方
の作動室4に油路19’&介して連通している。また、
前記弁室13゜14 、15のうち、中央部に位置する
弁室15ハ、前記排出孔7に油路材を介して連通して訃
り、前記スタブシャフト四に設けた一方のスタブシャフ
トビン30 aにより前記スプール弁12が駆動されて
弁状容部11内を軸方向に摺動したとき、前記弁室15
に対する弁室13または弁室14からの流体通路面積は
増大または減少すると同時に、これらに対応する前記弁
室13 、14に対する前記供給口16 、17からの
流体通路面積は減少または増大するようになっている。
As shown in FIG. 1A and FIG. 2, a piston 1 is installed in a cylinder 2 and separated into two working chambers 3.4, and the piston 1 is connected to a sector shaft 40, which is a steering member that drives a steering link. has been done. A housing 5 that opposes one end of the cylinder 2 has a supply hole 6 for supplying and discharging hydraulic oil from the pump P to the two working chambers 3 and 4.
A worm shaft 8 serving as an output member for driving a sector shaft 40 that provides steering force to the wheels is rotatably housed in the housing 5 via a bearing 9. . This worm shaft 8
One end of the piston 1 is screwed into the piston 1 via a ball screw 41. A stub shaft 29, which is an input member connected to a steering wheel 43, is connected to the other end of the worm shaft 8 via a replaceable torsion bar 42. Further, on the other end side of the worm shaft 8, a hydraulic control mechanism 10 is provided which selectively controls the supply and discharge of hydraulic oil to the two working chambers 3 and 4 to assist the steering operation of the sector shaft 40. ing. As shown in FIG. 1A, this hydraulic control mechanism 10c includes a cylindrical valve accommodating portion 11 having a predetermined annular groove on its inner peripheral surface, and a spool slidably inserted into the valve accommodating portion 11. Three valve chambers 13° are formed in the valve-shaped chamber 11 by four land portions formed at predetermined intervals in the axial direction on the outer circumference of the spool valve 12. 14 and 15 are formed. Among these, valve chambers 13.14u located on both sides,
An annular groove 5aζ formed between the housing 5 and the worm shaft 8 communicates with each other via a supply port 16, 17'. Of these, the valve chamber 13c communicates with one working chamber 3 via an oil passage 18, and the valve chamber 14d communicates with the other working chamber 4 via an oil passage 19'. Also,
Among the valve chambers 13, 14 and 15, a valve chamber 15 located in the center communicates with the discharge hole 7 via an oil passage material, and is connected to one stub shaft bin provided on the stub shaft 4. When the spool valve 12 is driven by 30a and slides in the axial direction within the valve-shaped chamber 11, the valve chamber 15
At the same time, the fluid passage area from the valve chambers 13 and 14 to the valve chambers 13 and 14 increases or decreases, and the corresponding fluid passage area from the supply ports 16 and 17 to the valve chambers 13 and 14 decreases or increases. ing.

一方、ウオームシャフト8の他i側にH1第1A図に示
すように、前記油圧制御機構10と対向して油圧制御機
構加が設けられている。この油圧反力機構20け、ウオ
ームシャフト8に固着された制御シリンダ21と、この
シリンダ21の両端開口部を閉塞する封止板22,22
と、前記制御シリンダ21内に摺動可能に嵌挿された2
つのピストン23 、24 、!:、これら両ピストン
23 、24と前記各封止板22 、22との間に隔成
された反力室31 、32と、前記スタブシャフト29
1:l−植設されて、前記油圧反力機構10’&駆動す
るスタブシャフトビン30&の直径方向対向位置に、同
様に植設されて、前記ピストン23 、24の間に臨む
スタブシャフトピン30 bと、このスタブシャフトピ
ン30bl:前記ピストン23.24’に常時吋勢する
セットスプリング25 、26と、前記シリンダ21の
内周に装着されて、前記各ピストン23 、24が互い
に接近する方向に移動するのを規制するストツバIJン
グγ、28とから構成されている。
On the other hand, as shown in FIG. 1A of H1 on the other i side of the worm shaft 8, a hydraulic control mechanism is provided facing the hydraulic control mechanism 10. This hydraulic reaction force mechanism 20 includes a control cylinder 21 fixed to the worm shaft 8, and sealing plates 22, 22 that close the openings at both ends of the cylinder 21.
and 2 slidably inserted into the control cylinder 21.
Two pistons 23, 24,! , reaction force chambers 31 and 32 separated between the pistons 23 and 24 and the sealing plates 22 and 22, and the stub shaft 29.
1:l- A stub shaft pin 30 is implanted and is similarly implanted at a diametrically opposing position of the hydraulic reaction force mechanism 10'& the driving stub shaft pin 30 & facing between the pistons 23 and 24. b, this stub shaft pin 30bl: a set spring 25, 26 that constantly urges the piston 23, 24', and a set spring 25, 26 that is attached to the inner periphery of the cylinder 21 so that the pistons 23, 24 move toward each other. It is composed of a stopper IJ ring γ, 28 that restricts movement.

前記反力室31,32fl、これら開口する通孔33゜
真、ウオームシャフト8とハウジング5との間に形成し
た環状油路ごを介して油路38に連通している。なお、
前記両ピストン23 、24間に形成きれたスタブシャ
フト挿入室45は油路46を介して作動油の排出孔7に
連通している。
The reaction force chambers 31, 32fl, the openings 33° of these through holes, and an annular oil passage formed between the worm shaft 8 and the housing 5 communicate with an oil passage 38. In addition,
A stub shaft insertion chamber 45 formed between the pistons 23 and 24 communicates with the hydraulic oil discharge hole 7 via an oil passage 46.

また、ポンプPと二つの作動室3,4とは供給路47に
よって接続されており、この供給路47の途中に前記油
圧制御機構10が設けられポンプPから吐出される作動
油を各作動室3.4に切換送給するようになっている。
Further, the pump P and the two working chambers 3 and 4 are connected by a supply path 47, and the hydraulic control mechanism 10 is provided in the middle of this supply path 47, and the hydraulic fluid discharged from the pump P is transferred to each working chamber. The feed is switched to 3.4.

この供給路47からは作動油の排出路刑に接続されたバ
イパス路49が分岐しており、このバイパス路49の途
中にば、上流側に、車速に応じて前記バイパス路49の
開口面積を変化させる可変絞り機構間と、下流側に、開
口面積が一定の固定絞り機構51とがそれぞれ設けられ
ていI;o        、9す る。これら可変絞り機構器と固定絞り機n1品との間の
バイパスk1849からは、ハウジング5に設けた油路
羽に連通する分岐路52が設けられている。かくして、
前記油圧反力機構20の反力室31 、32にけ、る油
圧が導入され、この油圧に応じて前記スタプシャフトビ
ン30 bが反力を受けるようになっている。前記可変
絞り機構505に構成するソレノイド5Qaは、車速セ
ンサ聞及びハンドル荷重セレクトスイッチ54からの車
速信号に基づいて制御される電子コントローラ55の制
御出力で作動されるようになっている。
A bypass path 49 connected to a hydraulic fluid discharge path branches off from this supply path 47, and in the middle of this bypass path 49, an opening area of the bypass path 49 is set on the upstream side depending on the vehicle speed. A fixed diaphragm mechanism 51 with a constant opening area is provided between the variable diaphragm mechanisms that change the diaphragm mechanism and on the downstream side, respectively. A branch path 52 is provided from the bypass k1849 between the variable throttle mechanism and the fixed throttle device n1, which communicates with the oil passage blade provided in the housing 5. Thus,
Hydraulic pressure is introduced into the reaction force chambers 31 and 32 of the hydraulic reaction force mechanism 20, and the stump shaft bin 30b receives a reaction force in accordance with this oil pressure. The solenoid 5Qa included in the variable throttle mechanism 505 is operated by the control output of an electronic controller 55 that is controlled based on a vehicle speed signal from a vehicle speed sensor and a steering wheel load select switch 54.

次に、このような構成を有するこの実施例に係る動力操
向装置の作用について説明する。
Next, the operation of the power steering device according to this embodiment having such a configuration will be explained.

まず、車両の低速走行状態の場合について説明する。First, a case where the vehicle is running at a low speed will be described.

この場合け、車速センサ閏が低速走行状態を検出してそ
の車速信号によってコントローラ55がソレノイド50
 Bを作動させ、可変絞り機構50な構成する可変絞り
弁50 bの絞すt′5r:大きくシ(通過面積な小ざ
くする)、i−バイパス通路49を通ってタンクTへ向
う作動油の排出量を小とする。lすると、供給路47内
でに流量のロスが小ざく、高い圧力が油圧制御機構10
を介して前記シリンダ2内のいづれかの作動室3または
4に作用し、大きい操舵助勢力を得る。一方、可変絞り
機構間と固定絞り機構51との間に生ずる油圧は小とな
るので、分岐路52から油路側、環状油路n及び通孔3
3 、34を介して制御シリンダ21内の各反力室31
 、32に導入される作動油の圧力は小となり操舵反力
は小となる。かくして、低速時における操舵輪43は小
さい力で操作できる。
In this case, the vehicle speed sensor detects the low-speed running state, and the controller 55 uses the vehicle speed signal to control the solenoid 50.
B is activated, and the variable throttle valve 50b constituting the variable throttle mechanism 50 is throttled t'5r: the hydraulic oil flowing through the i-bypass passage 49 to the tank Reduce emissions. 1, the flow loss in the supply path 47 is small and the high pressure is applied to the hydraulic control mechanism 10.
It acts on either the working chamber 3 or 4 in the cylinder 2 through the cylinder 2 to obtain a large steering assisting force. On the other hand, since the hydraulic pressure generated between the variable throttle mechanism and the fixed throttle mechanism 51 is small, from the branch passage 52 to the oil passage side, the annular oil passage n and the through hole 3.
3, 34 to each reaction force chamber 31 in the control cylinder 21.
, 32 becomes smaller, and the steering reaction force becomes smaller. Thus, the steering wheels 43 can be operated with small force at low speeds.

次に、車両が低速走行状態から高速走行状態に移行した
場合について説明する。
Next, a case where the vehicle transitions from a low-speed running state to a high-speed running state will be described.

この場合は、車速センt53が低速走行状態から高速走
行状態に移行した旨を検出してそれに対応した車速信号
によってコントローラ55がソレノイド50 aを作動
させ、可変絞り弁5Qbの絞り量を小とし、バイパス路
49含通ってタンクTへ向う作動油の排出fを増大させ
、主として下流側の固定絞り機構51で、この流量を規
制するようにする。
In this case, the controller 55 operates the solenoid 50a by detecting that the vehicle speed center t53 has shifted from the low-speed running state to the high-speed running state and uses the corresponding vehicle speed signal to reduce the throttle amount of the variable throttle valve 5Qb. The discharge f of the hydraulic oil passing through the bypass passage 49 and heading toward the tank T is increased, and this flow rate is mainly regulated by the fixed throttle mechanism 51 on the downstream side.

すると、供給路47内では流量が減少し、油圧制御機構
10内での流通抵抗が小はくなって、供給路47内の圧
力の上昇が仰えられ、ポンプ吐出圧の大巾な上昇は防I
):、きれる。かくしてポンプPH余分な仕事をするこ
とがなくエネルギのロスが少ない。
Then, the flow rate in the supply path 47 decreases, the flow resistance in the hydraulic control mechanism 10 becomes small, the pressure in the supply path 47 increases, and the pump discharge pressure does not increase significantly. Defense I
):, kireru. In this way, the pump PH does not do any extra work and there is less energy loss.

一方固定絞り機構51の上流側に生ずる油圧はほぼ供給
路47の油圧に近くなるので、分岐路52から前記各反
力室31 、32に導入される作動油の圧力は比較的大
となり、操舵反力は大となる。かくして、高速時には操
舵輪43の操作が適度に重くなり、操舵が安定する。
On the other hand, since the oil pressure generated upstream of the fixed throttle mechanism 51 is almost close to the oil pressure of the supply path 47, the pressure of the hydraulic fluid introduced from the branch path 52 into each of the reaction force chambers 31 and 32 is relatively high, and the steering The reaction force becomes large. Thus, at high speeds, the operation of the steering wheels 43 becomes moderately heavy, and the steering becomes stable.

第1B図はこの発明に係る動力操向装置の第2実施例を
示す断面図である。
FIG. 1B is a sectional view showing a second embodiment of the power steering device according to the present invention.

この1rlB図に示す実施例が前記第1実施例と異なる
のは、バイパス路49に設けられた2つの絞り機構のう
ち下流側の絞り機構も可変絞り機構57としたことで、
これの制御も上流側の可変絞り機構団と同様に、車速セ
ンサ田やハンドル荷重セレクトスイッチヌからの入力に
よる電子コントローラ55の出力によって行なわれる。
The embodiment shown in FIG. 1rlB is different from the first embodiment in that the downstream throttle mechanism among the two throttle mechanisms provided in the bypass passage 49 is also a variable throttle mechanism 57.
Similarly to the variable throttle mechanism group on the upstream side, this is controlled by the output of the electronic controller 55 based on the input from the vehicle speed sensor and the steering wheel load selection switch.

なお、これら゛の実施例では、出力部材としてウオーム
シャフト8ケ用いた、リサーキュレイテイングタイプの
動力操向装置に、この発明を適用した場合について説明
したが、例えば、出力部材としてビニオンシャフトを用
いた、ラック、アンド。
In addition, in these embodiments, the case where the present invention is applied to a recirculating type power steering device using eight worm shafts as output members has been described. Used, rack, and.

ピニオンタイプの動力操向装置に、この発明を適用して
もよい。
The present invention may be applied to a pinion type power steering device.

発明の効果 以上の説明から明らかなように、この発明によれば、ポ
ンプから作動室への作動油の供給路とタンクへの排出路
とを設け、このバイパス路の途中に2つの絞り機構な設
けて、そのうち少なくとも上流側の絞り機構な車速に応
じて前記バイパス路の開口面積を変化させる可変絞り機
構とすると共に、これら2つの絞り機構の間のバイパス
路から分岐する油路を設け、これを油圧反力機構と連通
させているので、車両が低速のときなどには前記上流側
の可変絞り機g#を大きく絞ることにより、作動室への
圧力を高めると共に反力室への圧力をJ 低下せしめ効果的な操舵助勢を可能ならしめ、車両が高
速のときには、上流側の可変絞り機構の絞りな緩めてバ
イパス路の流量な増加させ、主として下流側の絞り機構
によってバイパス路の流itを絞ることにより、反力室
には比較的高い圧力を導入して操舵反力を高め、これに
よって操舵を安定はせると共に、可変絞り機構を緩めて
、バイパス路の流量が増加した分、供給路の流量が減少
し、これによって、供給路内の圧力の上昇を仰えてポン
プの負荷を軽減し、エネルギのロスtなくすることがで
きる。
Effects of the Invention As is clear from the above explanation, according to the present invention, a supply path for hydraulic oil from the pump to the working chamber and a discharge path to the tank are provided, and two throttle mechanisms are provided in the middle of this bypass path. At least one of the upstream throttle mechanisms is a variable throttle mechanism that changes the opening area of the bypass passage depending on the vehicle speed, and an oil passage is provided that branches from the bypass passage between these two throttle mechanisms. is communicated with the hydraulic reaction force mechanism, so when the vehicle is at low speed, by greatly restricting the upstream variable restrictor g#, the pressure to the working chamber is increased and the pressure to the reaction force chamber is reduced. When the vehicle is at high speed, the variable throttle mechanism on the upstream side is loosened to increase the flow rate in the bypass passage, and the flow rate in the bypass passage is increased mainly by the downstream throttle mechanism. By restricting the flow rate, a relatively high pressure is introduced into the reaction force chamber to increase the steering reaction force, thereby stabilizing the steering. At the same time, the variable throttle mechanism is loosened to compensate for the increased flow rate in the bypass passage. The flow rate in the supply channel is reduced, which allows the pressure in the supply channel to increase, reducing the load on the pump and eliminating energy loss.

【図面の簡単な説明】[Brief explanation of drawings]

第1A図はこの発明に係る動力操向装置の第1実施例を
示すブロック図な含む縦断面図、@IB図は第2実施例
な示す同様の縦断面図、藁2図は同じくこれらの動力操
向装置を示す横断面図である。 1・・・ピストン、2・・・シリンダ、3,4・・・作
動室、8・・・ウオームシャフト(出力部材)、1o・
・・油圧制御機構、12・・・スプール弁、2o・・・
油圧反力機構、29・・・スタブシャフト(入力部材)
、4o・・・セクタシャフト(操舵部材)、43・・・
操舵輪、47・・・供給路、招・・・排出路、49・・
・バイパス路、犯・・・(上流側の)可変絞り機構、5
1・・・(下流側の)固定絞り機構、57・・・(下流
側の)可変絞り機構、P・・・ポンプ。 外2名
Figure 1A is a vertical cross-sectional view including a block diagram showing the first embodiment of the power steering device according to the present invention, Figure @IB is a similar vertical cross-sectional view showing the second embodiment, and Figure 2 is a similar vertical cross-sectional view of the second embodiment. FIG. 2 is a cross-sectional view showing the power steering device. 1... Piston, 2... Cylinder, 3, 4... Working chamber, 8... Worm shaft (output member), 1o.
...Hydraulic control mechanism, 12...Spool valve, 2o...
Hydraulic reaction force mechanism, 29... stub shaft (input member)
, 4o... sector shaft (steering member), 43...
Steering wheel, 47... Supply path, Induction... Discharge path, 49...
・Bypass path, criminal... (upstream side) variable throttle mechanism, 5
1... (downstream side) fixed throttle mechanism, 57... (downstream side) variable throttle mechanism, P... pump. 2 people outside

Claims (1)

【特許請求の範囲】[Claims] (1)操舵輪の操作力により駆動される入力部材と、車
輪に操舵力を与える操舵部材を駆動する出力部材と、こ
れら入力部材と出力部材との間に相対回動変位が生じた
とき、ピストンによって隔成されたシリンダ内の二つの
作動室に作動油を選択的に給排制御して前記ピストンに
連結した操舵部材の操舵動作を助勢する油圧制御機構と
を備えるとともに、車速に応じて前記油圧制御機構の移
動に際して反力を与える油圧反力機構を備えた動力操向
装置において、ポンプから吐出される作動油を前記二つ
の作動室に送給するための供給路から分岐して作動油の
排出路に接続されたバイパス路を設け、このバイパス路
の途中に2つの絞り機構を設けてそのうち、少なくとも
上流側の絞り機構を車速に応じて前記バイパス路の開口
面積を変化させる可変絞り機構とするとともに、これら
2つの絞り機構の間のバイパス路から分岐する油路を設
け、これを前記油圧反力機構と連通させたことを特徴と
する動力操向装置。
(1) When a relative rotational displacement occurs between an input member driven by the operating force of the steering wheel, an output member that drives the steering member that applies steering force to the wheels, and these input members and the output member, a hydraulic control mechanism that selectively controls the supply and discharge of hydraulic oil to two working chambers in a cylinder separated by a piston to assist the steering operation of a steering member connected to the piston, and a hydraulic control mechanism that assists the steering operation of a steering member connected to the piston; In a power steering device equipped with a hydraulic reaction force mechanism that applies a reaction force when the hydraulic control mechanism moves, the hydraulic oil discharged from the pump is branched from a supply path for supplying the two working chambers. A bypass path connected to the oil discharge path is provided, two throttle mechanisms are provided in the middle of the bypass path, and at least the upstream throttle mechanism is a variable throttle mechanism that changes the opening area of the bypass path in accordance with the vehicle speed. What is claimed is: 1. A power steering device characterized in that an oil passage branching from a bypass passage between these two throttle mechanisms is provided, and the oil passage is communicated with the hydraulic reaction force mechanism.
JP13369885A 1985-06-19 1985-06-19 Power steering system Pending JPS61291271A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13369885A JPS61291271A (en) 1985-06-19 1985-06-19 Power steering system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13369885A JPS61291271A (en) 1985-06-19 1985-06-19 Power steering system

Publications (1)

Publication Number Publication Date
JPS61291271A true JPS61291271A (en) 1986-12-22

Family

ID=15110792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13369885A Pending JPS61291271A (en) 1985-06-19 1985-06-19 Power steering system

Country Status (1)

Country Link
JP (1) JPS61291271A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62131872A (en) * 1985-11-30 1987-06-15 Hino Motors Ltd Control valve used in speed sensitive type power steering and speed sensitive type power steering

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62131872A (en) * 1985-11-30 1987-06-15 Hino Motors Ltd Control valve used in speed sensitive type power steering and speed sensitive type power steering

Similar Documents

Publication Publication Date Title
US5253729A (en) Power steering system
US5718304A (en) Four-wheel steering system for vehicle
JPH09249136A (en) Flow control device
EP0658468B1 (en) Hydraulic power steering apparatus
JPS61247575A (en) Steering force control device in power steering device
US4830131A (en) Variable assist power steering system
JPS61155060A (en) Hydraulic reaction force unit for power steering device
JPH0224373Y2 (en)
EP0291992B1 (en) Flow control apparatus
JPS61291271A (en) Power steering system
JPS62198567A (en) Power steering device for vehicle
EP0689985B1 (en) Power steering apparatus
US5937728A (en) Power steering control valve with noise reduction
JPH0124664B2 (en)
KR0174296B1 (en) Vehicle speed sensitive type power steering device
US4846296A (en) Hydraulic fluid pressure control system for use with power assist steering
JPS6223870A (en) Power-operated steering device
JP2594904Y2 (en) Steering force control device for power steering device
JPH0214225B2 (en)
JPH023983Y2 (en)
JPH0645419Y2 (en) Hydraulic system flow control mechanism
JP2852991B2 (en) Control valve for hydraulic power steering device
JPH032469Y2 (en)
JPH023982Y2 (en)
JPH0619426Y2 (en) Steering force control device for power steering device