JPS61288530A - Fail safe drive circuit for optical data transmitter - Google Patents

Fail safe drive circuit for optical data transmitter

Info

Publication number
JPS61288530A
JPS61288530A JP60130444A JP13044485A JPS61288530A JP S61288530 A JPS61288530 A JP S61288530A JP 60130444 A JP60130444 A JP 60130444A JP 13044485 A JP13044485 A JP 13044485A JP S61288530 A JPS61288530 A JP S61288530A
Authority
JP
Japan
Prior art keywords
circuit
output
signal
push
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60130444A
Other languages
Japanese (ja)
Other versions
JPH0310260B2 (en
Inventor
Akio Suzuki
昭夫 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyosan Electric Manufacturing Co Ltd
Original Assignee
Kyosan Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyosan Electric Manufacturing Co Ltd filed Critical Kyosan Electric Manufacturing Co Ltd
Priority to JP60130444A priority Critical patent/JPS61288530A/en
Publication of JPS61288530A publication Critical patent/JPS61288530A/en
Publication of JPH0310260B2 publication Critical patent/JPH0310260B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To improve the utilizing efficiency of a transmission system and to reduce remarkably time delay between an input signal and an output optical signal by providing a gate circuit, a Schmitt circuit, an inverter circuit and a push-pull drive circuit so as to improve the utilizing efficiency of the transmission system and so as to attain the use of other transmitter even when a transmission sector of a transmitter is faulty. CONSTITUTION:A pulse signal Pi and a clock pulse signal CP are inputted respectively to two input terminals 1a,1b of a gate circuit 1, an output terminal is connected to the input terminal of a Schmitt circuit 2, and the output terminal of the Schmitt circuit 2 is connected to a base of a transistor (TR)Q1 of an inverter circuit 3. A diode D conducted at push output (conduction of a TRQ2) of a push-pull output circuit and a light emitting element LED conducted at pull output (conduction of a TRQ3) are connected in parallel, and the diode D and the light emitting element LED are cut off from the output terminal of the push-pull output circuit by a capacitor C.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光ファイバを利用した光データ伝送装置におけ
るフェールセーフ駆動回路に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a fail-safe drive circuit in an optical data transmission device using optical fibers.

(従来の技術) 光ファイバを利用した伝送システムはメタリックケーブ
ルに比して、高速且つ長距離無中継のデータ伝送装置が
可能であること、電気絶縁性が高く電磁誘導がないこと
、更に光ファイバが軽量で可撓性に債れている等の長所
があり、多くの伝送システムが実用化されている。この
ような伝送システムにおいては、送信部と受信部とを備
えた光データ伝送装置を伝送線に複数台並設して、送信
状態の光データ伝送装置から受信状態の複数の光データ
伝送装置にデータを伝送線を介して送出している。
(Prior technology) Compared to metallic cables, transmission systems using optical fibers are capable of high-speed, long-distance, non-repeater data transmission equipment, have high electrical insulation properties, and are free from electromagnetic induction. It has advantages such as being lightweight and flexible, and many transmission systems have been put into practical use. In such a transmission system, a plurality of optical data transmission devices each having a transmitting section and a receiving section are installed in parallel on a transmission line, and a plurality of optical data transmission devices in a transmitting state are connected to a plurality of optical data transmitting devices in a receiving state. Data is sent via transmission lines.

光データ伝送装置に使用される送信部は、従来、第6図
に示すように構成され、送信部に入力された電気信号は
バッファ回路Bを介して駆動回路のトランジスタQのペ
ースに印加され、このトランジスタQをオン、オフ制御
して発光ダイオードLEDを点滅させて前記入力電気信
号を光信号に変換し、該光信号を光フアイバケーブルに
送出するようになっている。即ち、トランジスタQ(7
)ペースにハイレベルの信号(論理積「l」)が入力さ
れると当該トランジスタQが導通(オン)して発光素子
LEDが点灯し、光ケーブルに光信号を送出し、ローレ
ベルの信号(論理積「0」)が入力されるとトランジス
タQが不導通(オフ)となり、発光素子LEDが消灯し
て光信号は送出されない。このようにして送信部は入力
する電気信号を対応する光信号に変換し、該光信号を光
フアイバケーブルに送出する。
Conventionally, a transmitter used in an optical data transmission device is configured as shown in FIG. The transistor Q is controlled on and off to blink the light emitting diode LED, converting the input electrical signal into an optical signal, and transmitting the optical signal to the optical fiber cable. That is, transistor Q (7
) When a high level signal (logical product "l") is input to the pace, the transistor Q becomes conductive (on), the light emitting element LED lights up, an optical signal is sent to the optical cable, and a low level signal (logical product "l") is input to the pace. When the product "0") is input, the transistor Q becomes non-conductive (off), the light emitting element LED is turned off, and no optical signal is sent out. In this way, the transmitter converts the input electrical signal into a corresponding optical signal and sends the optical signal to the optical fiber cable.

(発明が解決しようとする問題点) しかしながら、このような従来の光送信部は、駆動回路
のトランジスタQが故障して例えばコレクタ、エミッタ
間が短絡した場合に発光素子LEDが入力信号とは無関
係に連続点灯となり、この結果、他の光データ伝送装置
のデータを伝送し得なくなる。即ち、一台の光データ伝
送装置の送信部が故障して発光素子が点灯状態となると
他の全ての光データ伝送装置の使用が不可能となる等の
問題があった。
(Problem to be Solved by the Invention) However, in such a conventional optical transmitter, if the transistor Q of the drive circuit fails and, for example, the collector and emitter are short-circuited, the light emitting element LED becomes unrelated to the input signal. As a result, data from other optical data transmission devices cannot be transmitted. That is, if the transmitter of one optical data transmission device fails and the light emitting element is turned on, there is a problem that all other optical data transmission devices become unusable.

本発明は、このような従来の問題点に着目してなされた
もので、1つの送信部の駆動用トランジスタが短絡モー
ドで故障した場合でもその影響が光フアイバ伝送路に結
合された他の総ての光データ伝送装置に及ぼすことをな
くして、上記問題点を解決した光データ伝送装置のフェ
ールセーフ駆動回路を提供することを目的としている。
The present invention was made by focusing on such conventional problems, and even if the driving transistor of one transmitter fails in short-circuit mode, the effect is not affected by the failure of the driving transistor in the optical fiber transmission line. It is an object of the present invention to provide a fail-safe drive circuit for an optical data transmission device that solves the above-mentioned problems without affecting all optical data transmission devices.

(問題を解決するための手段) かかる目的を達成するための本発明の要旨とするところ
は、光データ伝送装置の送信部に、入力パルス信号とク
ロックパルス信号とを入力しこれら両信号の論理積の信
号を出力するゲート回路と、前記論理積の信号を波形整
形及び増幅するシュミット回路と、該シュミット回路の
出力信号を反転させるインバータ回路と、該インバータ
回路の出力信号を入力し前記論理積が1のときにのみ発
光素子を点灯させるプッシュプル駆動回路とを備えたこ
とを特徴とする光データ伝送装置のフェールセーフ駆動
回路に存する。
(Means for Solving the Problem) The gist of the present invention for achieving the above object is to input an input pulse signal and a clock pulse signal to the transmitting section of an optical data transmission device, and to calculate the logic of these two signals. a gate circuit that outputs the product signal; a Schmitt circuit that shapes and amplifies the AND signal; an inverter circuit that inverts the output signal of the Schmitt circuit; A fail-safe drive circuit for an optical data transmission device is characterized in that it includes a push-pull drive circuit that lights up a light emitting element only when 1.

(作用) しかして、光データ伝送装置の送信用発光素子の駆動素
子が短絡モードで故障してもその影響が光フアイバ伝送
路に結合された他の全ての光データ伝送装置に及ぼすこ
となく、且つ入力電気信号と出力光信号との時間遅れが
極めて小さくなるようにしたものである。
(Function) Therefore, even if the driving element of the transmitting light emitting element of the optical data transmission device fails in short-circuit mode, the effect will not be exerted on all other optical data transmission devices connected to the optical fiber transmission line. Moreover, the time delay between the input electrical signal and the output optical signal is extremely small.

(実施例) 以下、図面に基づき本発明の一実施例を説明する。(Example) Hereinafter, one embodiment of the present invention will be described based on the drawings.

第1図は本発明を適用した光データ伝送装置の送信部の
フェールセーフ駆動回路を示し、フェールセーフゲート
回路(以下単にゲート回路という)1の2つの入力端子
1a、■bには夫々パルス信号Pi、クロックパルス信
号CPが入力され、出力端子はシュミット回路2の入力
端子に接続され、該シュミット回路2の出力端子はイン
バータ回路3のトランジスタQ1のペースに接続される
。ゲート回路lはアンドゲート回路で、入力パルス信号
Piとクロックパルス信号CPとが共にハイレベルのと
きにハイレベルの信号(以下論理積「1」という)を出
力し、シュミット回路2は入力する該論理積信号を波形
整形及び増幅して出力する。
FIG. 1 shows a fail-safe drive circuit of a transmitting section of an optical data transmission device to which the present invention is applied. Two input terminals 1a and 1b of a fail-safe gate circuit (hereinafter simply referred to as a gate circuit) 1 receive pulse signals. Pi and a clock pulse signal CP are input, the output terminal is connected to the input terminal of a Schmitt circuit 2, and the output terminal of the Schmitt circuit 2 is connected to the pace of the transistor Q1 of the inverter circuit 3. The gate circuit 1 is an AND gate circuit that outputs a high-level signal (hereinafter referred to as AND "1") when both the input pulse signal Pi and the clock pulse signal CP are at high level, and the Schmitt circuit 2 outputs a high-level signal (hereinafter referred to as AND "1"). The AND signal is waveform-shaped and amplified and output.

トランジスタQlのコレクタは抵抗R1を介して正電源
(+V)に接続されると共に、出力回路4のプッシュプ
ルトランジスタ出力回路(以下単にプッシュプル出力回
路という)のトランジスタQ2、R3の各ペースに抵抗
R2、R3を介して接続され、エミッタは負電源(−■
)に接続される。トランジスタQ2のコレクタは正電源
(+V)に、エミッタはトランジスタQ3のエミッタに
接続され、トランジスタQ3のコレクタは負電源に接続
される。トランジスタQ2のエミッタとトランジスタQ
3のエミッタとの接続点a即ち、プッシュプル出力回路
の出力端aにはコンデンサCの一端が接続され、該コン
デンサCの他端にはダイオードDのアノードが接続され
、該ダイオードDのカソードは負電源に接続される。
The collector of the transistor Ql is connected to the positive power supply (+V) via a resistor R1, and a resistor R2 is connected to each of the transistors Q2 and R3 of the push-pull transistor output circuit (hereinafter simply referred to as push-pull output circuit) of the output circuit 4. , R3, and the emitter is connected to the negative power supply (-■
). The collector of transistor Q2 is connected to a positive power supply (+V), the emitter is connected to the emitter of transistor Q3, and the collector of transistor Q3 is connected to a negative power supply. Emitter of transistor Q2 and transistor Q
One end of a capacitor C is connected to the connection point a with the emitter of No. 3, that is, the output terminal a of the push-pull output circuit, the other end of the capacitor C is connected to the anode of a diode D, and the cathode of the diode D is Connected to negative power supply.

発光ダイオードLEDのカソードはコンデンサCの他端
とダイオードDのアノードとの接続点に、アノードは負
電源に接続される。即ち、プッシュプル出力回路のプッ
シュ出力時(トランジスタQ2の導通時)に導通するダ
イオードDと、プル出力時(トランジスタQ3の導通時
)に導通する発光素子LEDとが並列に接続され、且つ
これらのダイオードD及び発光素子LEDはコンデンサ
Cによりプッシュプル出力回路の出力端に直流的に遮断
される。このコンデンサCは後述するようにプッシュプ
ル出力回路のプッシュ出力時に充電され、プル出力時に
放電される。
The cathode of the light emitting diode LED is connected to the connection point between the other end of the capacitor C and the anode of the diode D, and the anode is connected to a negative power supply. That is, the diode D, which is conductive during push output of the push-pull output circuit (when transistor Q2 is conductive), and the light emitting element LED, which is conductive during pull output (when transistor Q3 is conductive), are connected in parallel. The diode D and the light emitting element LED are DC-blocked by the capacitor C to the output end of the push-pull output circuit. As will be described later, this capacitor C is charged when the push-pull output circuit outputs a push signal, and discharged during a pull output signal from the push-pull output circuit.

次に第2図に示すタイミングチャートを参照しつつ作動
を説明する。
Next, the operation will be explained with reference to the timing chart shown in FIG.

ゲート回路1は入力パルス信号Pi(第2図(a))が
ハイレベルの間クロックパルス信号CP(同図(b))
と同期して論理積信号rlJを出力する。シュミット回
路2は入力する論理積信号を波形整形及び増幅して出力
する(同図(C))、インバータ回路3のトランジスタ
Qlはシュミット回路2から出力される信号が論理積「
1」のときに導通し、論理積「0」のときに不導通とな
り、コレクタ電位は導通時には略負電圧−■、不導通時
には略正電圧+Vとなる。即ち、インバータ回路3はシ
ュミット回路2から出力される論理積信号を反転して出
力する〔同図(d))・プッシュプル出力回路のトラン
ジスタQ2はトランジスタQ1の不導通時即ち、シュミ
ット回路2の出力信号が論理積「0」のときに導通し、
トランジスタQ1が導通時即ち、シュミット回路2の出
力信号が論理積rlJのときに不導通となる。
The gate circuit 1 receives the clock pulse signal CP (FIG. 2(b)) while the input pulse signal Pi (FIG. 2(a)) is at a high level.
The AND signal rlJ is output in synchronization with the . The Schmitt circuit 2 shapes and amplifies the input AND signal and outputs it ((C) in the same figure).
It is conductive when the logical product is "1", and it is non-conductive when the logical product is "0", and the collector potential becomes approximately negative voltage -■ when conductive and approximately positive voltage +V when non-conductive. That is, the inverter circuit 3 inverts the AND signal outputted from the Schmitt circuit 2 and outputs it [FIG. Conducts when the output signal is logical product “0”,
When the transistor Q1 is conductive, that is, when the output signal of the Schmitt circuit 2 is the logical product rlJ, it becomes non-conductive.

一方、トランジスタQ3はトランジスタQ2と反対に作
動し、トランジスタQ1が不導通時に不導通、導通時に
導通する。トランジスタQ2が導通時即ち、プッシュ出
力時には1点鎖線で示すように正電源(+V)からトラ
ンジスタQ2→コンデンサC→ダイオードD→負電源(
−V)の経路で電流が流れ、コンデンサCが充電される
。このプッシュ出力時には発光素子LEDは点灯されな
い。
On the other hand, the transistor Q3 operates in the opposite way to the transistor Q2, being non-conductive when the transistor Q1 is non-conductive and conductive when the transistor Q1 is conductive. When transistor Q2 is conductive, that is, when it outputs a push output, it is connected from the positive power supply (+V) to transistor Q2 → capacitor C → diode D → negative power supply (
-V), current flows and capacitor C is charged. During this push output, the light emitting element LED is not lit.

トランジスタQ3が導通時即ち、プル出力時にはコンデ
ンサCに充電されている電荷が破線で示すようにコンデ
ンサC→トランジスタQ3→発光素子LED→コンデン
サCの経路で電源極性と逆極性の電流が流れ、当該発光
素子LEDが点灯される。インバータ回路3から入力さ
れるパルス信号を相補動作するトランジスタQ2 、Q
3に入力してコンデンサCの充放電を行なうようにする
ことにより、トランジスタQ2 、Q3に短絡事故が発
生しても発光素子LEDに電流が流れることがなくなる
。そして、コンデンサCが短絡する等の故障で導通状態
になったときでも、電源極性と同極性電流で発光する発
光素子LEDには逆方向電圧が電荷して逆方向には電流
が流れず、発光素子LEDが発光することはなく、フェ
ールセーフ動作が行なわれる。
When the transistor Q3 is conductive, that is, when it outputs a pull output, the electric charge charged in the capacitor C causes a current with the polarity opposite to the power supply polarity to flow through the path of capacitor C → transistor Q3 → light emitting element LED → capacitor C, as shown by the broken line. The light emitting element LED is turned on. Transistors Q2, Q that operate complementary to the pulse signal input from the inverter circuit 3
3 to charge and discharge the capacitor C, no current will flow to the light emitting element LED even if a short-circuit accident occurs in the transistors Q2 and Q3. Even when the capacitor C becomes conductive due to a fault such as a short circuit, the light emitting element LED, which emits light with the same polarity current as the power supply polarity, is charged with a reverse voltage and no current flows in the opposite direction, causing it to emit light. The element LED does not emit light and a fail-safe operation is performed.

しかも、発光素子LEDの駆動モードは、シュミット回
路2からの出力信号が論理積「l」のときに点灯、「0
」のときに消灯となり、シュミット回路2の出力信号の
論理積「1」と出力光信号波形の時間的ずれは殆どなく
なる。更に、シュミット回路2の出力信号の論理積「1
」のパルス幅即ち、コンデンサCの放電時間に対して当
該コンデンサCの容量を充分に大きくすることにより該
コンデンサCを定電圧源とみなすことができる。
Moreover, the drive mode of the light emitting element LED is such that it lights up when the output signal from the Schmitt circuit 2 is logical product "l", and "0".
'', the light goes out, and there is almost no time lag between the logical product "1" of the output signal of the Schmitt circuit 2 and the output optical signal waveform. Furthermore, the logical product of the output signals of the Schmitt circuit 2 is “1
By making the capacitance of the capacitor C sufficiently large with respect to the pulse width of ", that is, the discharge time of the capacitor C, the capacitor C can be regarded as a constant voltage source.

従って、コンデンサCの容量を適当な値に設定すること
により発光素子LEDの駆動電流波形は第2図(e)に
示すように方形波にすることが可能となり、これに伴な
い発光波形を方形波とすることが出来、この結果、受光
側における信号処理を容易にすることができる。
Therefore, by setting the capacitance of the capacitor C to an appropriate value, the driving current waveform of the light emitting element LED can be made into a square wave as shown in Fig. 2(e), and accordingly, the light emission waveform can be made into a square wave. As a result, signal processing on the light receiving side can be facilitated.

ところで、第1図に破線で示す閉回路は実際には回路抵
抗Rが存在し、また、コンデンサCのトランジスタQ3
側の電圧をVcとすると、発光素子LEDの駆動電流の
値はコンデンサCの前記電圧VCと負電源の電圧(−■
)との差(V c + V)が前記抵抗Rに印加された
ときに流れる電流Irと略等しくなり、発光素子LED
の駆動電流はコンデンサCの端子電圧Vcの値により決
定される。
By the way, in the closed circuit shown by the broken line in FIG. 1, there is actually a circuit resistance R, and the transistor Q3 of the capacitor C
If the voltage on the side is Vc, the value of the driving current of the light emitting element LED is the voltage VC of the capacitor C and the voltage of the negative power supply (-■
) is approximately equal to the current Ir flowing when applied to the resistor R, and the light emitting element LED
The drive current is determined by the value of the terminal voltage Vc of the capacitor C.

従って、シュミット回路2の出力信号の論理積「0」が
長い時間続いた場合、この間トランジスタQ2が導通と
なりコンデンサCが充電され、その端子電圧(充電電圧
)Vcが上昇し、ついには正電源の電圧(+V)から当
該トランジスタQ2のペース・エミッタ飽和電圧V B
E (5AT)を引いた電位(V −V BE (SA
T))となる。
Therefore, if the logical product "0" of the output signal of the Schmitt circuit 2 continues for a long time, the transistor Q2 becomes conductive during this time, the capacitor C is charged, its terminal voltage (charging voltage) Vc rises, and finally the positive power supply From the voltage (+V), the pace emitter saturation voltage V B of the relevant transistor Q2
The potential (V −V BE (SA
T)).

そして、次にシュミット回路2の出力信号が第3図(C
)に示すように論理積「1」となると、このときの発光
素子LEDの最初の駆動電流は同図(e)に示すように
大きな電流となり、順次減少して成る値に近づく。この
ように発光素子の駆動電流が変化すると、これに応じて
光信号の強度が変化し、受光側における入力光信号は送
信部と受信部との間の距離が一定であってもその強度が
変化することとなり、この結果受信部の入力感度に幅を
持たせる必要がある。また、送信部と受信部との距離変
化に対しても受信部の入力感度の幅を持たせる必要があ
り、より広い受信感度幅が必要となりコストアップの要
因となる。
Then, the output signal of the Schmitt circuit 2 is shown in Fig. 3 (C
), when the logical product becomes "1", the initial driving current of the light emitting element LED at this time becomes a large current as shown in FIG. When the driving current of the light emitting element changes in this way, the intensity of the optical signal changes accordingly, and the intensity of the input optical signal on the light receiving side remains constant even if the distance between the transmitting part and the receiving part is constant. As a result, it is necessary to provide a range of input sensitivity to the receiving section. Further, it is necessary to provide a range of input sensitivity of the receiving unit even when the distance between the transmitting unit and the receiving unit changes, and a wider receiving sensitivity range is required, which causes an increase in cost.

かかる問題は、第1図のトランジスタQ2が導通して1
点鎖線で示す回路が形成されているときに、コンデンサ
Cの端子電圧(充電電圧)Vcが在る値以上とならない
ように制御することで対処し得る。第4図はコンデンサ
Cの端子電圧Vcの上限値を規定するための出力回路を
示し、トランジスタQ2のペースと負電源との間に、カ
ソードがトランジスタQ2のペース側、アノードが負電
源側となるように定電圧素子Dzを接続したものである
This problem occurs when the transistor Q2 in FIG.
This problem can be solved by controlling the terminal voltage (charging voltage) Vc of the capacitor C so that it does not exceed a certain value when the circuit shown by the dashed dotted line is formed. Figure 4 shows an output circuit for defining the upper limit of the terminal voltage Vc of capacitor C, and the cathode is connected to the pace side of transistor Q2 and the anode is connected to the negative power source side between the pace of transistor Q2 and the negative power source. Constant voltage elements Dz are connected as shown in FIG.

トランジスタQ2のペース側の電圧は定電圧素子Dzに
よりその定電圧Vzで規定される電圧よりは高くならず
、該トランジスタQ2はペース・エミッタ間電圧VBE
が当該トランジスタQ2のペース・エミッタ飽和電圧V
 BE (5AT)よりも低くなると、トランジスタQ
2は不導通となる。この結果、トランジスタQ2のエミ
ッタ電圧即ち、接続点aの電圧はペース電圧の上限値V
zに規定される値より高くはならない、コンデンサCの
端子電圧Vcは前述したようにトランジスタQ2(7)
エミッタ電圧まで上昇し得るものであり、端子電圧Vc
の最大値は前記エミッタ電圧上限値と等しくなり、定電
圧素子DzによりコンデンサCの端子電圧Vcの最大値
を規制することが出来る。従って、定電圧素子Dzの定
電圧値Vzを適宜の値に選定することにより、第5図(
e)に示すように発光素子LEDの駆動電流のバラ付き
を小さくすることが可能となり、この結果、受信部の入
力感度幅を狭くすることが可能となり、これに伴ないコ
ストダウンが図られる。
The voltage on the pace side of the transistor Q2 does not become higher than the voltage defined by the constant voltage Vz by the constant voltage element Dz, and the transistor Q2 maintains the pace-emitter voltage VBE.
is the pace emitter saturation voltage V of the transistor Q2
When BE is lower than (5AT), transistor Q
2 becomes non-conducting. As a result, the emitter voltage of the transistor Q2, that is, the voltage at the connection point a, is the upper limit value of the pace voltage V
As mentioned above, the terminal voltage Vc of capacitor C, which does not become higher than the value specified by z, is
It can rise to the emitter voltage, and the terminal voltage Vc
The maximum value of is equal to the emitter voltage upper limit value, and the maximum value of the terminal voltage Vc of the capacitor C can be regulated by the constant voltage element Dz. Therefore, by selecting the constant voltage value Vz of the constant voltage element Dz to an appropriate value, the voltage shown in FIG.
As shown in e), it is possible to reduce the variation in the driving current of the light emitting element LED, and as a result, it is possible to narrow the input sensitivity range of the receiving section, and accordingly cost reduction is achieved.

(発明の効果) 本発明に係る光データ伝送装置のフェールセーフ駆動回
路によれば、複数個のデータ伝送装置を接続するシステ
ムにおいて1台の伝送装置の送信部が故障した場合でも
他の伝送装置の使用が可能であり、伝送システムの利用
効率を高めることができると共に、入力信号と出力光信
号との時間的遅れを極めて小さく実質的に無くすことが
でき、更に出力信号波形を方形波にすることが可能であ
るために受信側における信号処理を容易にすることが出
来る等の優れた効果がある。
(Effects of the Invention) According to the fail-safe drive circuit for an optical data transmission device according to the present invention, even if the transmitting section of one transmission device fails in a system that connects a plurality of data transmission devices, other transmission devices This makes it possible to increase the utilization efficiency of the transmission system, minimize the time delay between the input signal and the output optical signal, and virtually eliminate it, and furthermore, make the output signal waveform a square wave. Since it is possible to do this, it has excellent effects such as facilitating signal processing on the receiving side.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る光データ伝送装置のフェールセー
フ駆動回路の一実施例を示す回路図、第2図及び第3図
は第1図の駆動回路の各部信号波形図、第4図は本発明
に係る駆動回路の他の実施例を示す回路図、第5図は第
4図の駆動回路の各′部信号波形図、第6図は従来の光
データ伝送装置の送信部の構成図である。 l・・・ゲート回路     2・・・シュミット回路
3・・・インバータ回路   4・・・出力回路LED
・・・発光素子    Dz・・・定電圧素子第3図
FIG. 1 is a circuit diagram showing an embodiment of a fail-safe drive circuit of an optical data transmission device according to the present invention, FIGS. 2 and 3 are signal waveform diagrams of various parts of the drive circuit of FIG. 1, and FIG. A circuit diagram showing another embodiment of the drive circuit according to the present invention, FIG. 5 is a signal waveform diagram of each part of the drive circuit of FIG. 4, and FIG. 6 is a configuration diagram of a transmitting section of a conventional optical data transmission device. It is. l...Gate circuit 2...Schmitt circuit 3...Inverter circuit 4...Output circuit LED
...Light emitting element Dz... Constant voltage element Fig. 3

Claims (1)

【特許請求の範囲】 1)光データ伝送装置の送信部に、入力パルス信号とク
ロックパルス信号とを入力しこれら両信号の論理積の信
号を出力するゲート回路と、前記論理積の信号を波形整
形及び増幅するシュミット回路と、該シュミット回路の
出力信号を反転させるインバータ回路と、該インバータ
回路の出力信号を入力し前記論理積が1のときにのみ発
光素子を点灯させるプッシュプル出力回路とを備えたこ
とを特徴とする光データ伝送装置のフェールセーフ駆動
回路。 2)前記プッシュプル出力回路は相補型プッシュプルト
ランジスタ出力回路と、該出力回路の出力端に一端が接
続されるコンデンサと、該コンデンサの他端と前記出力
回路の負電源との間に接続され前記出力回路のプッシュ
出力時に導通するダイオードとを備え、該ダイオードに
前記出力回路のプル出力時に導通するように前記発光素
子を並列接続することを特徴とする特許請求の範囲第1
項記載の光データ伝送装置のフェールセーフ駆動回路。 3)前記プッシュプルトランジスタ出力回路はプッシュ
出力時に導通するトランジスタのペースと前記負電源と
の間に接続され前記コンデンサの充電電圧を規制して前
記発光素子の駆動電流を制御する定電圧素子を備えるこ
とを特徴とする特許請求の範囲第2項記載の光データ伝
送装置のフェールセーフ駆動回路。
[Scope of Claims] 1) A gate circuit that inputs an input pulse signal and a clock pulse signal to a transmitter of an optical data transmission device and outputs a signal of the logical product of these two signals, and a gate circuit that outputs a signal of the logical product of these two signals; A Schmitt circuit that shapes and amplifies, an inverter circuit that inverts the output signal of the Schmitt circuit, and a push-pull output circuit that inputs the output signal of the inverter circuit and lights up the light emitting element only when the logical product is 1. A fail-safe drive circuit for an optical data transmission device. 2) The push-pull output circuit is connected between a complementary push-pull transistor output circuit, a capacitor having one end connected to the output terminal of the output circuit, and the other end of the capacitor and a negative power supply of the output circuit. Claim 1, further comprising a diode that is conductive when the output circuit outputs a push signal, and the light emitting element is connected in parallel to the diode so as to conduct when the output circuit outputs a pull signal.
A fail-safe drive circuit for the optical data transmission device described in 2. 3) The push-pull transistor output circuit includes a constant voltage element that is connected between the negative power source and the transistor conductor that conducts during push output, and regulates the charging voltage of the capacitor to control the drive current of the light emitting element. A fail-safe drive circuit for an optical data transmission device according to claim 2, characterized in that:
JP60130444A 1985-06-15 1985-06-15 Fail safe drive circuit for optical data transmitter Granted JPS61288530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60130444A JPS61288530A (en) 1985-06-15 1985-06-15 Fail safe drive circuit for optical data transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60130444A JPS61288530A (en) 1985-06-15 1985-06-15 Fail safe drive circuit for optical data transmitter

Publications (2)

Publication Number Publication Date
JPS61288530A true JPS61288530A (en) 1986-12-18
JPH0310260B2 JPH0310260B2 (en) 1991-02-13

Family

ID=15034388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60130444A Granted JPS61288530A (en) 1985-06-15 1985-06-15 Fail safe drive circuit for optical data transmitter

Country Status (1)

Country Link
JP (1) JPS61288530A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS587941A (en) * 1981-07-08 1983-01-17 Nec Corp High speed driving circuit for semiconductor light emitting element
JPS59135939A (en) * 1983-01-25 1984-08-04 Canon Inc Optical communication system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS587941A (en) * 1981-07-08 1983-01-17 Nec Corp High speed driving circuit for semiconductor light emitting element
JPS59135939A (en) * 1983-01-25 1984-08-04 Canon Inc Optical communication system

Also Published As

Publication number Publication date
JPH0310260B2 (en) 1991-02-13

Similar Documents

Publication Publication Date Title
US4051394A (en) Zero crossing ac relay control circuit
US10454246B2 (en) Optical pulse emitter
CN101848582B (en) Controller for LED driver and LED driver
EP0409328A2 (en) A switched bridge circuit
US4058735A (en) Opto-electronic contact mechanism
US4365164A (en) Vital contact isolation circuit
CN107193314B (en) A kind of constant-current circuit of amplifier output voltage clamper in driving tube threshold voltage
CN217825426U (en) Dimming circuit, dimming device and dimming power supply capable of being controlled according to photosensitive signal
EP0158924A1 (en) Neon sign control device
JPS61288530A (en) Fail safe drive circuit for optical data transmitter
CN117013802A (en) Thyristor trigger device
US11744000B2 (en) Mechanical switch dimming and speed regulation control system
CN202172518U (en) Pulse width modulation burst dimming device
US4716513A (en) Base drive circuit in a transistor inverter
CN208369551U (en) A kind of integration dim light triggering gas switch
CN209250608U (en) A kind of trigger circuit for photo thyristor of connecting
RU2153763C1 (en) Pulse multimode modulator
JPS6146619A (en) Circuit device for driving thyristor
CN218526094U (en) Circuit structure for realizing three-state control by using power line
SU898385A1 (en) Device for controlling technological operations
JPH025273B2 (en)
JPS62150785A (en) Light emitting diode driving circuit
JPH026640Y2 (en)
SU788368A1 (en) Pulse shaper
SU1370775A1 (en) Device for controlling leds