JPS6128767A - Expanded blade type windmill - Google Patents

Expanded blade type windmill

Info

Publication number
JPS6128767A
JPS6128767A JP14962684A JP14962684A JPS6128767A JP S6128767 A JPS6128767 A JP S6128767A JP 14962684 A JP14962684 A JP 14962684A JP 14962684 A JP14962684 A JP 14962684A JP S6128767 A JPS6128767 A JP S6128767A
Authority
JP
Japan
Prior art keywords
wind
force
arm
blade
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14962684A
Other languages
Japanese (ja)
Inventor
Makoto Yagishita
誠 柳下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP14962684A priority Critical patent/JPS6128767A/en
Publication of JPS6128767A publication Critical patent/JPS6128767A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • F03D3/062Rotors characterised by their construction elements
    • F03D3/066Rotors characterised by their construction elements the wind engaging parts being movable relative to the rotor
    • F03D3/067Cyclic movements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/21Rotors for wind turbines
    • F05B2240/211Rotors for wind turbines with vertical axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/70Adjusting of angle of incidence or attack of rotating blades
    • F05B2260/72Adjusting of angle of incidence or attack of rotating blades by turning around an axis parallel to the rotor centre line
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

PURPOSE:To reduce air resistance and rotate a windmill at high efficiency by fitting expanded blades rotatable by about 90 deg. centering around an axis parallel to a rotary shaft to the tips of arms radially provided at a right angle from the rotary shaft. CONSTITUTION:Multiple arms 13 radially protruded at a right angle are provided on a rotary shaft 12 provided on a vertical fixed shaft 11. Expanded blades 15 rotatably by about 90 deg. are fitted to the tips of these arms 13 respectively centering around an axis parallel to the rotary shaft 12. The cross section of the expanded blade is formed in a blade shape and is rotated so as to take an appropriate attitude in response to the angle between the wind direction and the arm based on the resultant force of the wind force, rotating force of a windmill, centrifugal force applied by the rotation, lift generated by the blade shape, etc. while the windmill is rotated, thus assisting the rotating force of the windmill.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は、風車の回転中心に対して羽根の角度が約9
0度変化する展開翼形風車に関する。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" This invention is characterized in that the angle of the blades with respect to the rotation center of the wind turbine is approximately 9.
This relates to a deployable blade wind turbine that changes by 0 degrees.

「従来の技術」 従来、羽根に展開翼を用いた風車としては、例えば、特
開昭58−15766号公報による第7図に示したセイ
ルウィングを用いた垂直軸形風車がある。
``Prior Art'' Conventionally, as a wind turbine using deployable blades for the blades, there is, for example, a vertical shaft type wind turbine using sail wings shown in FIG. 7 of Japanese Patent Application Laid-Open No. 58-15766.

その概要を説明すると、垂直軸1の上下部に固着したポ
ス2からそれぞれ放射方向に複数個のL形アーム3を突
設し、このL形アーム3の折曲部3aに翼桁軸4をL形
アーム3と直交して設け、この上下に対向するL形アー
ム3の翼弦方向部材3bの外側端に、前記翼桁軸4にほ
ぼ平行な張線7を、その両端部にそれぞれスプリング8
を設けて張設し、この張線7と翼桁軸4との間に可撓膜
5を張シ渡して翼の主要部分を形成し、かつ、翼桁軸4
の周りと可撓膜5の一部を囲むように可撓材を用いて翼
形状の翼形桁6を形成し、この翼形桁6をL形アーム3
の折曲部3a間に回動自在にかけ渡し、全体として自動
調整形ウィングとしたものである。
To explain the outline, a plurality of L-shaped arms 3 are provided radially protruding from posts 2 fixed to the upper and lower parts of the vertical shaft 1, and a wing spar shaft 4 is attached to the bent part 3a of the L-shaped arm 3. A tension wire 7 substantially parallel to the spar axis 4 is attached to the outer end of the chord direction member 3b of the L-shaped arm 3, which is provided orthogonally to the L-shaped arm 3 and faces up and down, and a spring is attached to each end of the tension wire 7. 8
The flexible membrane 5 is stretched between the tension wire 7 and the wing spar shaft 4 to form the main part of the wing, and the wing spar shaft 4 is
A wing-shaped airfoil spar 6 is formed using a flexible material so as to surround a portion of the flexible membrane 5 and a part of the flexible membrane 5, and this airfoil spar 6 is attached to the L-shaped arm 3.
The wing is rotatably extended between the bent portions 3a of the wing, and the wing is a self-adjusting wing as a whole.

「発明が解決しようとする問題点」 しかしながら、このような従来のセイルウィングを用い
た垂直軸形風車にあっては、翼形桁がL形アームに対し
て回動自在にしであるとし、かつ。
``Problems to be Solved by the Invention'' However, in such conventional vertical axis wind turbines using sail wings, the airfoil spars are rotatable relative to the L-shaped arms, and .

L形アームの翼弦方向部材の外側端に、可撓膜の外縁と
一体化に結合した張線をスプリングを介して取り付けで
あるといっても、前記翼弦方向部材にウィングの回動を
規制されているため、その回動角は小さく、また、扁平
な肉厚のないものであり、風力に左右されて一定の形状
を保つことができないので、翼型本来の特性を発揮し得
ないばかりでなく、風向に順行する回転区間に3いても
風向に対する羽根の角度が浅いので十分な風力を吸収す
ることができず、さらに羽根の尾端がスプリング取付け
のため剛性度に乏しく1強風に対して難点があるなどの
問題点が推察される。
Even though the tension wire integrally connected to the outer edge of the flexible membrane is attached to the outer end of the chordwise member of the L-shaped arm via a spring, the rotation of the wing is not controlled by the chordwise member. Because of the regulations, the rotation angle is small, and since it is flat and thin, it cannot maintain a constant shape due to the wind force, so it cannot demonstrate the original characteristics of the airfoil. Not only that, even if the blade is in a rotating section that goes in the direction of the wind, the angle of the blade relative to the wind direction is shallow, so it cannot absorb enough wind power, and the tail end of the blade is attached to a spring, so it lacks rigidity, so it can cause strong winds. It can be inferred that there are some problems, such as difficulties with

「問題点を解決するための手段」 この発明は、斜上の問題点に着目してなされたもので1
回転軸から等角度をもって放射状に突設した複数組の一
対のアームそれぞれに、前記回転軸に平行に、かつ、ア
ームに対してほぼ直交からほぼ平行までの約90度の角
度変更を可能とした断面翼型の展開翼を装備する展開翼
形風車を提供することにより、これらの問題点を解決し
たもの「作用」 したがって、展開翼は、風車の回転中1回転円周上にお
いて、風力、風車の回転力1回転により展開翼に働く遠
心力、翼型により発生する揚力。
"Means for solving the problem" This invention was made by focusing on the problem of diagonal top.
Each of a plurality of pairs of arms protruding radially at equal angles from the rotation axis is parallel to the rotation axis and can change the angle by approximately 90 degrees from approximately perpendicular to approximately parallel to the arm. These problems have been solved by providing a deployable blade type wind turbine equipped with deployable blades having a cross-sectional airfoil shape. The centrifugal force that acts on the deployable wing due to one rotation of rotational force, and the lift force generated by the airfoil.

板ばねの弾力、あるいは自重などの合力に基づき風向と
アームとのなす角に対応した適切な姿勢をとるように自
動的に回動して風車の回転力を助長し、また、空気抵抗
を減少して効率高く風車を回転させる。
Based on the elasticity of the leaf springs or the resultant force of its own weight, it automatically rotates to adopt an appropriate posture that corresponds to the angle between the wind direction and the arm, increasing the wind turbine's rotational force and reducing air resistance. to rotate the windmill with high efficiency.

「実施例」 以下、この発明の第一実施例として水平方向に回転する
垂直軸形風車を第1図ないし第4図に基づいて説明する
Embodiment A vertical axis wind turbine rotating in the horizontal direction will be described below as a first embodiment of the present invention with reference to FIGS. 1 to 4.

まず、構成を述べる。First, I will explain the configuration.

第1図において、11は、架台(図示省略)に立設され
た垂直固定軸、12は、該固定軸11にベアリングを介
して嵌挿された回転軸、13は。
In FIG. 1, 11 is a vertical fixed shaft erected on a frame (not shown), 12 is a rotating shaft fitted into the fixed shaft 11 via a bearing, and 13 is a rotating shaft.

該回転軸12に90度の等角度をもって、かつ、   
   ゛回転軸12に対し直角方向、すなわち、水平方
向へ放射状に突設された上下一対四組のアーム、14は
、各組の該アーム13.13の先端部を通り。
at an equal angle of 90 degrees to the rotating shaft 12, and
``Four pairs of upper and lower arms 14 projecting radially in a direction perpendicular to the rotating shaft 12, that is, in the horizontal direction, pass through the tips of the arms 13 and 13 of each set.

前記回転軸12に平行な直線を中心線14Cとして両ア
ーム13.13を結合し、コの字型の枠組に形成する連
結棒、15は、断面翼型16をした平面はぼ長方形の展
開翼(以下「翼」という)で、翼型16の揚力作動点、
すなわち、重心qcかられずか前方に寄った翼型裏面1
6rの所要箇所に突設された一対のブラケット17によ
り、前記連結棒14にベアリング(図示省略)を介して
前記中心線14Cを回動中心として回動可能に取り付け
られている(第3図参照)。そして、前記アーム13に
回転後方へほぼ直角に突設されたストッパ18に対し翼
型裏面16rが当接し翼弦16crがアーム13に直交
する基準位置Sから、矢印Aで示す風車の回転方向、す
なわち、矢印Bで示す展開方向に回動して前記アーム1
3とほぼ平行となる展開位置Tまでの約90度の回動範
囲内で回動可能となっている(第4図参照)。そして、
翼型裏面16rの前部がアーム13に当接する部位にけ
板ばね1日が固着されていて、展開終了に際して翼15
の前部の衝撃を緩衝する。
A connecting rod 15 connects both arms 13 and 13 with a center line 14C parallel to the rotation axis 12 to form a U-shaped framework, and 15 is a deployable wing having an airfoil shape 16 in cross section and a rectangular plane. (hereinafter referred to as "wing"), the lift operating point of the airfoil 16,
In other words, the back surface 1 of the airfoil is located slightly forward of the center of gravity qc.
It is rotatably attached to the connecting rod 14 via a bearing (not shown) with a pair of brackets 17 protruding from required locations of the rod 6r around the center line 14C (see FIG. 3). ). Then, from a reference position S where the airfoil back surface 16r abuts against a stopper 18 protruding from the arm 13 at a substantially right angle to the rotational rearward direction and the blade chord 16cr is perpendicular to the arm 13, the rotational direction of the wind turbine as indicated by the arrow A; That is, the arm 1 rotates in the direction of deployment shown by arrow B.
It is possible to rotate within a rotation range of about 90 degrees up to the deployment position T, which is approximately parallel to 3 (see Fig. 4). and,
A blade spring is fixed to the part where the front part of the rear surface 16r of the airfoil comes into contact with the arm 13, and when the deployment is completed, the blade 15
cushions the front impact.

また、連結棒14の所要箇所に一端を固定して巻回し、
他端を翼15の裏面先端部に圧接した弾力の極めて弱い
スプリング20により、他力のかからない通常の状態に
おいて翼15は、基準位置Sにある姿勢を維持している
Also, one end is fixed to a required location of the connecting rod 14 and wound,
Due to the extremely weak spring 20 whose other end is pressed against the tip of the back surface of the wing 15, the wing 15 maintains its posture at the reference position S in a normal state where no external force is applied.

なお、翼15のアーム13への取付けは、該翼15の翼
型16を形成した側面15sの翼型の重心qCかられず
か前方に寄った所要箇所において、前記アーム13の先
端部にベアリングを介して直接1回動可能に取り付ける
ようにしてもよい。ただし、この場合は、前記ストッパ
18.板ばね19及びスプリング20を設置する部材(
図示省略)を別にアーム13の適当な箇所に付設する必
要がある。
The blade 15 is attached to the arm 13 by attaching a bearing to the tip of the arm 13 at a predetermined location near the center of gravity qC of the airfoil on the side surface 15s forming the airfoil 16 of the blade 15. It is also possible to attach it so that it can be rotated directly through it. However, in this case, the stopper 18. A member for installing the leaf spring 19 and the spring 20 (
(not shown) must be separately attached to an appropriate location on the arm 13.

次に、作用を述べる。Next, the effect will be described.

第4図は、一枚の翼15が風車の回転中に回転中心C1
すなわちアーム13に対してとる姿勢を45度ずつ進ん
だ位置におけるものを例にとシ示した模式説明平面図で
ある。
FIG. 4 shows that one blade 15 is rotating at the center of rotation C1 while the wind turbine is rotating.
That is, it is a schematic explanatory plan view showing, as an example, the posture taken with respect to the arm 13 at a position advanced by 45 degrees.

円周Eは、垂直固定軸11の中心、すなわち、風車の回
転中心Cに対し翼15の回動中心14Gが回転する軌跡
である。また、矢印Wは風向を示したものである。
The circumference E is a locus of rotation of the rotation center 14G of the blade 15 with respect to the center of the vertical fixed shaft 11, that is, the rotation center C of the wind turbine. Further, arrow W indicates the wind direction.

そこで、翼15の回動中心14Gが最も風上にある円周
E上の位置を点aとし、以下、矢印Aの回転方向へ45
度ずつ進んだ位置を点す、c・・・・・・hとする。点
aにおいては、風向Wは翼型16の翼弦16cyに対し
直角となっているが、風圧中心WCが回動中心14Cよ
りも後方にあるので、典型裏面16rの回動中心14G
からの後方部分がストッパ1Bに押し付けられた翼15
は基準位置SKある。しかし、翼型表面16hの頂点が
前方にあり、後方への傾斜面積が大きいので、大半の・
風が後方へ流れ、その反力によって翼15は前方へ押さ
れるため矢印へ方向へ前進回転する。
Therefore, the position on the circumference E where the rotation center 14G of the blade 15 is furthest upwind is defined as a point a, and hereinafter, 45
Point at the position advanced by degrees, let it be c...h. At point a, the wind direction W is perpendicular to the chord 16cy of the airfoil 16, but since the wind pressure center WC is behind the rotation center 14C, the rotation center 14G of the typical back surface 16r
The wing 15 whose rear part is pressed against the stopper 1B
is at the reference position SK. However, since the apex of the airfoil surface 16h is located at the front and the area of inclination toward the rear is large, most
The wind flows backward, and the wing 15 is pushed forward by the reaction force, so that it rotates forward in the direction of the arrow.

翼15が進みアーム13と風向Wとのなす角αが増大す
るに伴ない、風力は漸次回転力を増加させるが、点bs
たりからは、ストッパ17への押付は力が減少するとと
もに、該押付は力と遠心力との兼ね合いにより基準位置
Sから展開回動を始める傾向が生ずる。
As the blade 15 advances and the angle α between the arm 13 and the wind direction W increases, the wind force gradually increases the rotational force, but the point bs
From this point on, the force of pressing against the stopper 17 decreases, and the pressing force tends to start unfolding and rotating from the reference position S due to a balance between the force and the centrifugal force.

点cK近付くと翼15は、真後から風を受けることとな
シ、風力に基づく回転力も押付は力も零に近づき、そこ
で遠心力がスプリング20と押付は力とに打ち克ち翼1
5を外方へ回動させるが。
As the blade 15 approaches point cK, the wind is directly behind it, and the rotational force and pressing force based on the wind force approach zero, and the centrifugal force overcomes the spring 20 and the pressing force, and the blade 1
Rotate 5 outward.

典型裏面16rに風力が作用するとととなる途端に翼1
5は、−挙に展開回動して点Cにおいては。
As soon as the wind force acts on the typical back surface 16r, the blade 1
5 suddenly unfolds and rotates at point C.

典型裏面1 ’6 rの前端部は板ばね19に衝撃を緩
和され、該板ばね19を介してアーム13の回転前面1
3fに圧接し、展開位置TKある姿勢となるため、翼弦
16qは風向Wと直角となり、典型裏面16rけ風向W
に直面するので、翼15は最大の回転力を発揮する。点
dに至るに従い風向Wとアーム13とのなす角αは減少
し始め、これに伴なって回転力は漸次減少するが、展開
位置Tにある姿勢は崩さず点eまで維持される。
The front end of the typical back surface 1'6r is cushioned by a leaf spring 19, and the front end of the arm 13 is rotated through the leaf spring 19.
3f and assumes a certain attitude at the deployed position TK, the chord 16q is perpendicular to the wind direction W, and the typical back side 16r wind direction W.
, the blade 15 exerts maximum rotational force. As the arm 13 reaches the point d, the angle α between the wind direction W and the arm 13 begins to decrease, and the rotational force gradually decreases accordingly, but the posture at the deployed position T is maintained until the point e.

点eにおいては、典型裏面16rによる回転力は零とな
るが、翼型16が風向Wに正対するので翼型の特性であ
る揚力が矢印り方向に発生し、翼15を回転方向Aへ押
し進める。
At point e, the rotational force due to the typical back surface 16r becomes zero, but since the airfoil 16 directly faces the wind direction W, lift, which is a characteristic of the airfoil, is generated in the direction of the arrow, pushing the airfoil 15 in the rotational direction A. .

点fにおいては、R15は、遠心力と風力との釣合いに
より風向Wに正対した姿勢ではあるが、アーム13は風
向Wに対する角αが鋭角となっているので、翼15は展
開位置Tから若干逆展開回動した姿勢をとっており°1
発生する矢印り方向の揚力は、その円周Eの接線方向の
分力として回転力に寄与している。なお1回転力を阻害
する空気抵抗は、翼型16が風向Wに正対しているので
極めて小さい。
At point f, R15 is in a posture directly facing the wind direction W due to the balance between the centrifugal force and the wind force, but since the angle α of the arm 13 with respect to the wind direction W is an acute angle, the blade 15 moves away from the deployed position T. It is in a slightly reverse deployed and rotated position °1
The generated lift force in the direction of the arrow contributes to the rotational force as a component force in the tangential direction of the circumference E. Note that the air resistance that obstructs one rotational force is extremely small because the airfoil 16 directly faces the wind direction W.

点qにおいて、アーム13は風向Wに対し直角となり、
翼15は基準位置Sにほぼ復帰するが。
At point q, the arm 13 is perpendicular to the wind direction W,
The wing 15 almost returns to the reference position S.

翼型16が風向Wに正対していて揚力を発生しても回転
力には無関係である。ただし、回転力を阻゛害する空気
抵抗は、点fにおける場合と同様に極めて小さい。
Even if the airfoil 16 faces the wind direction W and generates lift, it has no relation to rotational force. However, the air resistance that impedes the rotational force is extremely small as in the case at point f.

点りにおいては、風力が遠心力に打ち克って翼15は完
全に基準位置Sにある姿勢となるが、風圧を受ける面が
大きいため、回転力を阻害する空気奨抗は一回転中q点
付近が最大となるが、値そのものは小さい。
At the point of rotation, the wind force overcomes the centrifugal force and the blade 15 is completely at the reference position S, but since the surface receiving the wind pressure is large, the air force that inhibits the rotational force is q during one rotation. The value is highest near the point, but the value itself is small.

上記の動作を各組の翼15が45度の位相差をもって順
次繰返すことによって風車に順調な回転を続けさせる。
Each set of blades 15 sequentially repeats the above operation with a phase difference of 45 degrees, thereby allowing the wind turbine to continue rotating smoothly.

次に、第二実施例として、垂直方向に回転する水平軸形
風車を第5図に基づいて説明する。
Next, as a second embodiment, a horizontal shaft type wind turbine that rotates in the vertical direction will be explained based on FIG. 5.

この第二実施例は、第一実施例の垂直固定軸を水平固定
軸21としたのみで、その他の構成は。
In this second embodiment, the vertical fixed shaft of the first embodiment is replaced with the horizontal fixed shaft 21, and the other configurations are the same.

はぼ同様であるため、説明は省略するが、風車の回転方
向は、風上において、下方へ、すなわち。
Although the description is omitted because it is similar to the above, the direction of rotation of the windmill is from upwind to downward.

矢印Mの方向へ回転するように構成したものである。It is configured to rotate in the direction of arrow M.

また、作用もほぼ同様であるが、翼の自重が風車の回転
力に影響してくるので、第4図に示す第一実施例とほぼ
同様の、−展開翼の作用を説明する模式側面図により第
一実施例と同一の符号を用いて説明し、特に、前記のよ
うに風車の回転方向を矢印Mに設定した理由もあわせて
述べる。
In addition, the action is almost the same, but since the weight of the blade affects the rotational force of the wind turbine, it is almost the same as the first embodiment shown in Fig. 4. - A schematic side view explaining the action of the deployable blade. The explanation will be given using the same reference numerals as in the first embodiment, and in particular, the reason why the direction of rotation of the wind turbine is set to arrow M as described above will also be explained.

点aにおいては、翼15の自重により回転力が増加し、
点すにおいては、自重により展開回動が早くなり1点す
と点Cとの中間辺りにおいて翼15は展開位置Tの姿勢
となる。点dにおいては。
At point a, the rotational force increases due to the weight of the blade 15,
At the time of firing, the unfolding rotation becomes faster due to its own weight, and the wing 15 assumes the attitude of the deployed position T around the middle between one point and point C. At point d.

風力と遠心力とにより、そのままの姿勢を維持している
が1点eにおいては、翼型16の後尾が自重によりわず
かに下り気味となる。しかし、揚力から自重を差し引い
たものが上昇回転に寄与する。
The airfoil 16 maintains the same attitude due to the wind force and centrifugal force, but at point e, the tail of the airfoil 16 slightly descends due to its own weight. However, the lift force minus its own weight contributes to upward rotation.

点fにおいても風向Wにほぼ正対し揚力の分力は回転力
となり空気抵抗の減少に役立つ。点qにおいては、到達
前に自重により基準位置Sに翼15は復帰するが、発生
した揚力は回転力には関係しない。なお、空気抵抗は最
小となる。点り前後から点aの手前までの区間は、回転
力を阻害する空気抵抗が次第に増大の一途を辿り、点a
を通過するとこの空気抵抗は回転力に変換する。
At point f, it also faces almost directly in the wind direction W, and the component of lift becomes a rotational force, which helps reduce air resistance. At point q, the wing 15 returns to the reference position S due to its own weight before reaching point q, but the generated lift is not related to rotational force. Note that air resistance is minimized. In the section from before and after the point to just before point a, air resistance that inhibits rotational force continues to increase, and until point a
When passing through, this air resistance is converted into rotational force.

以上の動作を各組の翼15が45度の位相差をもって繰
り返し風車を回転させる。
The above operation is repeated by each set of blades 15 with a phase difference of 45 degrees to rotate the wind turbine.

今もし、第6図に比較図として示すように風車の回転方
向を矢印Mと逆の矢印Nの方向にするように構成すると
すれば、翼15の重心に矢印Gで示す重力方向へ自重が
働くため1点aにおいては典型表面16hの後部傾斜を
流れる気流の反力による回転力を弱められるが、翼15
の回転前進に伴なって漸次回転力は増し、点すでは典型
表面16hで受ける風力に基づく回転力は極大となる。
If the wind turbine is constructed so that the rotating direction of the wind turbine is in the direction of arrow N, which is opposite to arrow M, as shown in the comparison diagram in FIG. At point a, the rotational force due to the reaction force of the airflow flowing on the rear slope of the typical surface 16h can be weakened, but the blade 15
As the rotation advances, the rotational force gradually increases, and at the point, the rotational force based on the wind force received on the typical surface 16h reaches a maximum.

しかし、その後は次第に翼15の姿勢は風向Wの方向に
平行になろうとするので回転力は低下し、点Cにおいて
ほとんど零となる。点Cを過ぎて翼壁裏面16rに風を
受ける姿勢となって始めて翼15は一挙に展開する。な
お、翼15が風向Wに逆行する点0〜点aの区間の作用
は、第二実施例と大同小異であるが、肝心の風圧を翼型
裏面16r全体で受ける展開の時機が遅れて点Cを過ぎ
てからになるため、風車の回転力は低いものとなる。
However, after that, the attitude of the blade 15 gradually becomes parallel to the wind direction W, so the rotational force decreases and becomes almost zero at point C. The blades 15 do not unfold all at once until they pass point C and are in a position to receive the wind on the back surface 16r of the blade wall. Note that the action in the section from point 0 to point a, where the blade 15 moves against the wind direction W, is largely the same as the second embodiment, but the timing of deployment is delayed and the critical wind pressure is received by the entire back surface 16r of the airfoil, resulting in a point C. The rotational force of the wind turbine will be low since it will occur after this time.

以上が風車の回転方向を矢印Mのように選定する理由で
ある。
This is the reason why the direction of rotation of the wind turbine is selected as indicated by arrow M.

なお、その他の実施例として翼15の重量をなるべく小
さくするように材料を選んで作成したり、′I あるいは、翼15の前線に適当なバランスウェイトを内
設して1重心qcを回動中心14Cにほぼ一致させて遠
心力や自重の影響を減少させる手段もあるが、展開の作
動力を風力のみに任すことにより展開の時機が遅れ、風
力吸収の区間が短縮するので、前記第一、@二実施例よ
りも回転力は劣る。
In addition, as other embodiments, the material may be selected to reduce the weight of the wing 15 as much as possible, or an appropriate balance weight may be installed in the front of the wing 15 so that the center of gravity qc is the center of rotation. 14C to reduce the effects of centrifugal force and self-weight, but leaving the operating force for deployment to wind alone delays the timing of deployment and shortens the wind absorption section. @The rotational force is inferior to the second embodiment.

「発明の効果」 以上説明してきたように、この発明は、回転軸から直角
方向に等角度で放射状に突設した複数組の一対のアーム
の先端部を通り、前記回転軸に平行な直線を回動中心線
として、断面翼型の展開翼の前部所要箇所で前記アーム
に取り付け、翼型の翼弦後部がアームの回転後方のほぼ
直角位置から該アームの延長線までの約90度の角度範
囲において回動可能な構成とする風車としたため、展開
翼が風向に順行して風車が回転する区間において、典型
表面及び主として翼壁裏面に風力を受けて回転力を発生
する一方、風向に逆行する区間においては、回転翼がで
きる限り空気抵抗の少い姿勢を自動的にとるばかりか、
揚力を発生して回転力に有効な援助を与えるので、風車
は、低風速時に対して、も自刃による始動が容易であり
、風力に対応した最も効率のよい回転を実施することが
でき、同大の地形式の風車に比してより大きな回転力を
獲得することができるという効果がおる。
"Effects of the Invention" As explained above, the present invention provides straight lines parallel to the rotation axis that pass through the tips of a plurality of pairs of arms protruding radially at equal angles in a direction perpendicular to the rotation axis. The center line of rotation is about 90 degrees, which is attached to the arm at a predetermined point in front of the deployable wing of the cross-sectional airfoil shape, and the rear chord of the airfoil is approximately 90 degrees from the almost perpendicular position at the rear of the rotation of the arm to the extension line of the arm. Because the wind turbine is configured to be able to rotate within a range of angles, in the section where the wind turbine rotates as the deployable blades move forward in the wind direction, the typical surface and mainly the back surface of the blade wall receive wind and generate rotational force, while the wind direction In the section where the rotor moves against the direction of
Since it generates lift and provides effective assistance to rotational force, wind turbines can easily start with their own blades even at low wind speeds, and can perform the most efficient rotation in response to wind power. It has the effect of being able to obtain a larger rotational force than a large-scale wind turbine.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の第一実施例の各展開翼が基準位置
にある場合の要部を示す斜視図、第2図は、同じく展開
翼の一方の取付は部分を示す拡大斜視図、第3図は、同
じく展開翼の拡大側面図、第4図は、同じく一枚の展開
翼の回転中の動作を示す模式説明平面図、第5図は、第
二実施例の第4図に相当する模式説明側面図、第6図は
、第二実施例と作用を比較するための$5図に相当する
比較図、第7図は、従来のセイルウィングを用いた垂直
軸形風車の図で1図1は斜視図1図■は、図■の1−I
線断面図である。 11・・・・・・・・・垂直固定軸 12・・・・・・・・・回転軸 13・・・・・・・・・アーム 14C・・・・・・回動中心線 15・・・・・・・・・展開翼 16・・・・・・・・・翼壁 169・・・・・・翼弦 21・・・・・・・・水平固定軸 S・・・・・・・・・・・・基準位置 T・・・・・・・・・・・・展開位置 第3図 第4図 1辰−皿県 第5図 第6図
FIG. 1 is a perspective view showing the main parts of the first embodiment of the present invention when each deployable wing is in the reference position; FIG. 2 is an enlarged perspective view showing a portion where one of the deployable wings is attached; FIG. 3 is an enlarged side view of the deployable wing, FIG. 4 is a schematic plan view showing the operation of one deployable wing during rotation, and FIG. 5 is similar to FIG. 4 of the second embodiment. A corresponding schematic explanatory side view, FIG. 6 is a comparison diagram corresponding to the $5 figure for comparing the operation with the second embodiment, and FIG. 7 is a diagram of a vertical axis wind turbine using a conventional sail wing. 1 Figure 1 is a perspective view 1 Figure ■ is Figure ■ 1-I
FIG. 11... Vertical fixed axis 12... Rotation axis 13... Arm 14C... Rotation center line 15... ..... Deployment wing 16 ..... Wing wall 169 ..... Wing chord 21 ..... Horizontal fixed axis S ..... ...Reference position T...... Deployment position Fig. 3 Fig. 4 Fig. 1 Dragon-Sara Prefecture Fig. 5 Fig. 6

Claims (1)

【特許請求の範囲】[Claims] 固定軸に嵌挿した回転軸と、該回転軸から直角方向に等
角度をもつて放射状に突設した複数組の一対のアームと
、該アームの先端部を通り、前記回転軸に平行な直線を
回動中心線として前部の所要箇所で前記アームに取り付
けられ、かつ、翼型の翼弦が、該アームにほぼ直交する
位置からほぼ平行となる位置までの約90度の角度範囲
において回動可能な断面翼型の展開翼とから構成したこ
とを特徴とする展開翼形風車。
A rotating shaft inserted into a fixed shaft, a plurality of pairs of arms projecting radially at equal angles in a right angle direction from the rotating shaft, and a straight line passing through the tip of the arm and parallel to the rotating shaft. is attached to the arm at a predetermined point in the front part with the center line of rotation as the rotation center line, and the chord of the airfoil is rotated in an angular range of about 90 degrees from a position substantially perpendicular to the arm to a position where it is substantially parallel to the arm. 1. A deployable blade type wind turbine comprising deployable blades having a movable cross-sectional airfoil shape.
JP14962684A 1984-07-20 1984-07-20 Expanded blade type windmill Pending JPS6128767A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14962684A JPS6128767A (en) 1984-07-20 1984-07-20 Expanded blade type windmill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14962684A JPS6128767A (en) 1984-07-20 1984-07-20 Expanded blade type windmill

Publications (1)

Publication Number Publication Date
JPS6128767A true JPS6128767A (en) 1986-02-08

Family

ID=15479331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14962684A Pending JPS6128767A (en) 1984-07-20 1984-07-20 Expanded blade type windmill

Country Status (1)

Country Link
JP (1) JPS6128767A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002371946A (en) * 2001-06-15 2002-12-26 Lwj Kk Fluid energy collecting device
KR100490683B1 (en) * 2002-09-30 2005-05-19 재단법인서울대학교산학협력재단 Vertical axis wind turbine device
WO2005095794A1 (en) * 2004-03-31 2005-10-13 Intellectual Property Bank Corp. Cantilevered vertical shaft type windmill
JP2007085182A (en) * 2005-09-20 2007-04-05 Univ Of Tokushima Vertical shaft type straight wing windmill having aerodynamic governor mechanism
ITPI20090115A1 (en) * 2009-09-19 2011-03-20 Metalgelli Di Gelli Giacomo Maurizi O D I VERTICAL AXIS WIND TURBINE WITH ADJUSTABLE WIND GRIPPING ELEMENTS
ITGE20100095A1 (en) * 2010-08-31 2012-03-01 Euro Impianti Di Rizza Cinzia SELF-ADJUSTING TURBINE WITH LARGE ANGULAR HIKING.
JP2012519802A (en) * 2009-03-09 2012-08-30 ウィンドジュール リミテッド Vertical axis wind turbine
CN103061969A (en) * 2013-02-04 2013-04-24 重庆理工大学 Triangular soft wing type vertical axis offset distance wind turbine with headwind force
CN108105026A (en) * 2016-11-24 2018-06-01 伍开明 Vertical axis windmill capable of automatically adjusting windward angle of wind wing by using centrifugal force
TWI710707B (en) * 2019-01-31 2020-11-21 翁振國 Impeller for power drive
US20220163011A1 (en) * 2019-02-01 2022-05-26 Zhen-Guo Weng Rotor for Power Driving

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS511632B1 (en) * 1975-03-31 1976-01-19
JPS55128675A (en) * 1979-03-26 1980-10-04 Chuji Saito Automatic wind pressure control windmill for wind power generation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS511632B1 (en) * 1975-03-31 1976-01-19
JPS55128675A (en) * 1979-03-26 1980-10-04 Chuji Saito Automatic wind pressure control windmill for wind power generation

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002371946A (en) * 2001-06-15 2002-12-26 Lwj Kk Fluid energy collecting device
KR100490683B1 (en) * 2002-09-30 2005-05-19 재단법인서울대학교산학협력재단 Vertical axis wind turbine device
WO2005095794A1 (en) * 2004-03-31 2005-10-13 Intellectual Property Bank Corp. Cantilevered vertical shaft type windmill
JP2007085182A (en) * 2005-09-20 2007-04-05 Univ Of Tokushima Vertical shaft type straight wing windmill having aerodynamic governor mechanism
JP2012519802A (en) * 2009-03-09 2012-08-30 ウィンドジュール リミテッド Vertical axis wind turbine
ITPI20090115A1 (en) * 2009-09-19 2011-03-20 Metalgelli Di Gelli Giacomo Maurizi O D I VERTICAL AXIS WIND TURBINE WITH ADJUSTABLE WIND GRIPPING ELEMENTS
ITGE20100095A1 (en) * 2010-08-31 2012-03-01 Euro Impianti Di Rizza Cinzia SELF-ADJUSTING TURBINE WITH LARGE ANGULAR HIKING.
CN103061969A (en) * 2013-02-04 2013-04-24 重庆理工大学 Triangular soft wing type vertical axis offset distance wind turbine with headwind force
CN108105026A (en) * 2016-11-24 2018-06-01 伍开明 Vertical axis windmill capable of automatically adjusting windward angle of wind wing by using centrifugal force
CN108105026B (en) * 2016-11-24 2019-11-22 伍开明 Using centrifugal force reach can adjust automatically wind wing Windward angle vertical axis windmill
TWI710707B (en) * 2019-01-31 2020-11-21 翁振國 Impeller for power drive
US20220163011A1 (en) * 2019-02-01 2022-05-26 Zhen-Guo Weng Rotor for Power Driving
US12092071B2 (en) * 2019-02-01 2024-09-17 Zhen-Guo Weng Rotor for power driving

Similar Documents

Publication Publication Date Title
JP3451085B1 (en) Windmill for wind power generation
JP4690829B2 (en) Horizontal axis windmill
US7902688B2 (en) Vertical axis wind turbines
JP5334796B2 (en) Rotor blade of wind power generation equipment
US20180003151A1 (en) Morphing segmented wind turbine and related method
US4299537A (en) Interlinked variable-pitch blades for windmills and turbines
JPS6128767A (en) Expanded blade type windmill
JP2008202508A (en) Vertical axis windmill
JP2007146851A (en) Windmill for wind power generation and wind power generator
EP2764238B1 (en) Wind turbine having flow-aligned blades
JP2016120905A (en) Variable pitch mounting for aircraft gas turbine engine
CN102745327B (en) Active gurney flap
US11060505B2 (en) Vertical axis wind turbine generator
CN105121276B (en) Variable-pitch vane
US8461708B2 (en) Wind driven power generator
JP2006336505A (en) Horizontal shaft windmill
JP7140331B2 (en) Lift type vertical axis wind turbine
US20100028159A1 (en) Semi-Rigid Wind Blade
US20120328434A1 (en) Integrated wind turbine
US8038383B2 (en) Vertical axis turbine apparatus
JP5110550B1 (en) Propeller windmill for small generator
JP2001065446A (en) Cascade structure for vertical shaft type windmill and vertical shaft type windmill
WO2009108714A2 (en) Wind driven power generator
KR101700157B1 (en) Vertical shaft windmill
JPH06159223A (en) Windmill device and vertical shaft windmill used for windmill device