JPS61287612A - Transport device of piezo drive type - Google Patents

Transport device of piezo drive type

Info

Publication number
JPS61287612A
JPS61287612A JP13057585A JP13057585A JPS61287612A JP S61287612 A JPS61287612 A JP S61287612A JP 13057585 A JP13057585 A JP 13057585A JP 13057585 A JP13057585 A JP 13057585A JP S61287612 A JPS61287612 A JP S61287612A
Authority
JP
Japan
Prior art keywords
weight
voltage
frequency
piezoelectric element
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13057585A
Other languages
Japanese (ja)
Other versions
JPH0251813B2 (en
Inventor
Seikichi Tsuboi
坪井 成吉
Sadaaki Mori
森 貞明
Hiroshi Doke
道家 博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP13057585A priority Critical patent/JPS61287612A/en
Publication of JPS61287612A publication Critical patent/JPS61287612A/en
Publication of JPH0251813B2 publication Critical patent/JPH0251813B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Jigging Conveyors (AREA)

Abstract

PURPOSE:To increase the transport speed by changing the voltage to the impressed on a piezo element and its frequency in compliance with the weight change of object transported according to weight detection signal for the object, and thereby driving the piezo element as all times with a voltage having the same frequency as the resonance frequency of the device. CONSTITUTION:The weight detection signal V1 for an object transported 14 is added to the reference value V2, and the weight signal V3 obtained is converted into a frequency signal Sf equivalent to the resonance frequency f0 of an exciting mechanism 19 determined according to the weight sensed by a circuit 24. At the same time, the signal V3 is converted at a circuit 25 into a voltage signal Sv containing the voltage V0 determined according to the sensed weight, while the power supply 21 receives signals Sf, Sv and the output frequency and voltage are controlled into f0 and V0, and then the values are impressed on a sensing element 20. Accordingly the piezo element 16 is driven by an AC voltage having a frequency f0 determined by the spring constant K of a lief spring 12 and the weight applied thereto w and also a voltage V0 determined by the characteristics of said piezo element 16 and maintained in compliance with weight change of the object transported 14 to ensure that the element 16 is always vibrated in max. amplitude.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は電気或いは機械部品等比較的小さい物品を振動
により搬送する搬送体の振動源としてばね部材及び圧電
素子を用いた圧電駆動形振送装置に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a piezoelectric drive type vibration device that uses a spring member and a piezoelectric element as a vibration source of a conveying body that conveys relatively small articles such as electrical or mechanical parts by vibration. Regarding.

[発明の技術的背景] 圧電素子を振動源とした従来の圧電駆動パーツフィーダ
を第6図に示す。この第6図において、1はベース、2
は下枠、3はこの下枠2に互いに平行で傾斜して立上が
る2本の板ばね4を介して水平に支持された加振体、5
は物品である搬送物6を載せる搬送体例えばトラフ、7
は前記各板ばね4に貼着された圧電素子で、これには端
子8.9間に与えられた交流電圧がリード線8a、9a
を介して印加されるようになっている。
[Technical Background of the Invention] FIG. 6 shows a conventional piezoelectric driven parts feeder using a piezoelectric element as a vibration source. In this figure 6, 1 is the base, 2
3 is a lower frame, 3 is a vibrating body supported horizontally by two leaf springs 4 that stand up parallel to each other and inclined; 5;
7 is a conveyor, for example, a trough, on which a conveyed article 6 is placed.
is a piezoelectric element attached to each of the leaf springs 4, to which the AC voltage applied between the terminals 8 and 9 is applied to the lead wires 8a and 9a.
It is designed to be applied via the

この装置において、各板ばね4に貼着した圧電素子7に
交流電圧を印加して励振すると、その各圧電素子7.7
は正の半サイクルで伸び、負の半サイクルで縮む運動を
行うから、その片持型バイモルフ構造によって前記伸縮
運動が撓み運動に変換されて、これが板ばね4に伝達さ
れて、これら板ばね4を下枠2との連結部を支点として
撮動して加振体3を励振し、これによりトラフ5を振動
させる。
In this device, when an AC voltage is applied to the piezoelectric element 7 attached to each leaf spring 4 to excite it, each piezoelectric element 7.
Since it extends in the positive half cycle and contracts in the negative half cycle, its cantilevered bimorph structure converts the stretching motion into a bending motion, which is transmitted to the leaf springs 4, and these leaf springs 4 is photographed using the connecting portion with the lower frame 2 as a fulcrum to excite the vibrator 3, thereby causing the trough 5 to vibrate.

[背景技術の問題点1 この種の圧電駆動パーツフィーダは、実開昭52−61
087号公報、実開昭5..7−46517号公報など
に述べられているように、N11駆動フイーダや電動振
動フィーダに比して構造が小形且つ単純であるため、取
扱い、補修が容易であり、しかも消費電力量が少ないた
め、経済面でも優れるほか、騒音問題の懸念も全くない
などの多くの特長を有するが、搬送効率の点でまだ問題
があった。即ち、上記構成による圧電駆動パーツフィー
ダにおいて、交流電圧を圧電素子7に印加すると、圧電
素子7は板ばね4と一体になってたわみ振動を起こし板
ばね4の可動端に結合したトラフ5を斜め上下方向に振
動させ、搬送物6をトラフ5に沿って矢印方向に移動せ
しめる。この場合搬送物6の搬送速度はトラフ5の振動
振幅に比例する。
[Background technology problem 1] This type of piezoelectric drive parts feeder is
Publication No. 087, Utility Model No. 5. .. As stated in Publication No. 7-46517, etc., the structure is smaller and simpler than the N11 drive feeder and the electric vibration feeder, so it is easy to handle and repair, and it consumes less power. Although it has many advantages such as being economical and having no concerns about noise, it still has problems in terms of transport efficiency. That is, in the piezoelectric drive parts feeder having the above configuration, when an alternating current voltage is applied to the piezoelectric element 7, the piezoelectric element 7 is integrated with the leaf spring 4 and causes a flexural vibration, causing the trough 5 connected to the movable end of the leaf spring 4 to tilt diagonally. It vibrates in the vertical direction to move the conveyed object 6 along the trough 5 in the direction of the arrow. In this case, the conveyance speed of the conveyed object 6 is proportional to the vibration amplitude of the trough 5.

一方、トラフ5の振動振幅はパーツフィーダの構造によ
り定まる共振点と非共振点とでは、同一の力で励振して
も大きく異なる。この励振周波数と振動振幅の関係を第
4図に示す。
On the other hand, the vibration amplitude of the trough 5 differs greatly between a resonance point and a non-resonance point determined by the structure of the parts feeder even when excited with the same force. The relationship between this excitation frequency and vibration amplitude is shown in FIG.

この第4図に示すように、共振点(fL、f2、fa、
fa >と非共振点とでは同一の励振力でも振動振幅が
100倍以上も異なり、圧電素子7に印加する電圧の周
波数を共振周波数に一致させると効率が高くなることが
わかる。しかし、この共振点即ち共振周波数は常に一定
ではなく、共振周波数をfo()12)、パーツフィー
ダの板ばね4のばね定数をk (Kgf/am) 、パ
ーツフィーダの板ばね4より上の重量をW (KQf>
 、1力加速度をQ (1111/S” )とすると、
で示される。
As shown in FIG. 4, the resonance points (fL, f2, fa,
It can be seen that the vibration amplitude differs by more than 100 times even with the same excitation force between fa > and the non-resonant point, and that efficiency increases when the frequency of the voltage applied to the piezoelectric element 7 matches the resonant frequency. However, this resonance point, that is, the resonance frequency, is not always constant, and the resonance frequency is fo()12), the spring constant of the leaf spring 4 of the parts feeder is k (Kgf/am), and the weight above the leaf spring 4 of the parts feeder is W (KQf>
, 1 force acceleration is Q (1111/S”),
It is indicated by.

ここで、ばね定数にと重力加速度Qは一定であるが、重
JiWはトラフ5等の重量と搬送物(物品6)の重」の
和である。そしてトラフ5等の重量は一定であるが、搬
送物6の重量は常に変化する。
Here, although the spring constant and the gravitational acceleration Q are constant, the weight JiW is the sum of the weight of the trough 5 etc. and the weight of the conveyed object (article 6). Although the weight of the trough 5 and the like is constant, the weight of the transported object 6 always changes.

従って重量Wは常に変化し、それにつれて共振周波数f
oも変化する。このため、圧電素子7の印加電圧の周波
数を一定にすると、搬送物6の重量変化によって共振周
波数と異なった周波数で励振する状態が発生し、搬送速
度が低下し従って搬送効率が低下する。
Therefore, the weight W constantly changes, and the resonant frequency f
o also changes. For this reason, if the frequency of the voltage applied to the piezoelectric element 7 is kept constant, a state in which the object 6 vibrates at a frequency different from the resonance frequency occurs due to a change in the weight of the conveyed object 6, resulting in a decrease in the conveyance speed and therefore a decrease in conveyance efficiency.

一方、圧電素子7に同一の電圧が印加された場合に生ず
る変位と力の関係を第5図に示す。第5図に示されるよ
うに、圧電素子7に同一の電圧が印加された場合に生じ
る変位δと力Fは、力Fが増加すると変位δが減少する
関係にある。従って、圧電素子7に内部応力が発生して
いる場合、これを打消すための力が必要となり、同一の
電圧を印加する場合に生ずる変位は打消しに要する分だ
け小さくなる。この内部応力は、板ばね4に加わる重量
に比例するので、搬送物6の重aが増加するに従って圧
電素子7に発生する変位は小さくなる。
On the other hand, FIG. 5 shows the relationship between displacement and force that occurs when the same voltage is applied to the piezoelectric element 7. As shown in FIG. 5, the displacement δ generated when the same voltage is applied to the piezoelectric element 7 and the force F are in a relationship such that as the force F increases, the displacement δ decreases. Therefore, if internal stress is generated in the piezoelectric element 7, a force is required to cancel it, and the displacement that occurs when the same voltage is applied becomes smaller by the amount required to cancel it. Since this internal stress is proportional to the weight applied to the leaf spring 4, the displacement generated in the piezoelectric element 7 becomes smaller as the weight a of the conveyed object 6 increases.

また、搬送物の搬送速度はトラフ5の変位に比例するの
で、圧電素子7の変位が小さくなると、トラフ5の変位
も小さくなり、搬送速度が低下する。従って、搬送物の
重量が大きいほど、共振周波数で励振しても搬送速度が
減少する現象が発生するという問題がある。
Moreover, since the conveyance speed of the conveyed object is proportional to the displacement of the trough 5, when the displacement of the piezoelectric element 7 becomes small, the displacement of the trough 5 also becomes small, and the conveyance speed decreases. Therefore, there is a problem in that the larger the weight of the conveyed object, the more the conveyance speed decreases even if the object is excited at the resonant frequency.

ところで、搬送速度を安定させる方法として実開昭55
−167913号公報に開示された方法がある。これは
トラフと板ばねとの間にフ字形補助ばねを挿入して結合
したものである。この方法によると、トラフの型苗をフ
字形補助ばねの変形によって吸収するものであり、トラ
フの重量吸収に効果がある。しかし、トラフ上で搬送物
を移動させている場合の重ff1Wの変化による共振周
波数の変化という本質的な問題は解決できない。
By the way, as a method for stabilizing the conveyance speed,
There is a method disclosed in Japanese Patent No.-167913. This is a combination of a trough and a leaf spring by inserting a square-shaped auxiliary spring between them. According to this method, the seedling of the trough is absorbed by the deformation of the F-shaped auxiliary spring, which is effective in absorbing the weight of the trough. However, it cannot solve the essential problem of a change in resonance frequency due to a change in the weight ff1W when an object is being moved on a trough.

[発明の目的] そこで本発明の目的は搬送物により重量変化を受けなが
らも圧電素子を常に装置の共振周波数と略同−の周波数
の電圧によって駆動でき、搬送速度が高くなる圧電駆動
形振送装置を提供することにある。
[Objective of the Invention] Therefore, the object of the present invention is to provide a piezoelectric drive type vibration transfer device that can constantly drive the piezoelectric element with a voltage of approximately the same frequency as the resonant frequency of the device even when the weight changes due to the conveyed object, and that increases the conveyance speed. The goal is to provide equipment.

[発明の概要] 本発明による圧電駆動形振送装置は搬送体を励振する加
振体をばね部材と圧電素子との組合せ装置により振動さ
せるものにおいて、搬送物の重量を重量検出手段により
検出し、その検出信号により圧電素子に印加する電圧と
その周波数を搬送物の重量変化に応じて制御し、この圧
電素子を常に略共振周波数点で駆動できるようにしたも
のである。
[Summary of the Invention] A piezoelectric drive type vibration device according to the present invention vibrates a vibrating body that excites a conveyed object by a combination device of a spring member and a piezoelectric element, and detects the weight of the conveyed object by a weight detection means. The voltage applied to the piezoelectric element and its frequency are controlled according to changes in the weight of the conveyed object based on the detection signal, so that the piezoelectric element can always be driven at approximately the resonant frequency point.

[発明の実施例] 以下本発明の第1実施例について第1図により説明する
。10は固定部即ち固定台で、これには下枠11が固着
され、その両端には2本のばね部材即ち板ばね12が傾
斜立上がり状態になるようにその下端にて連結されてい
る。これら板ばね12の上端間には水平状態に加振体1
3が連結され、そしてこの加振体13は搬送物14を載
せこれを搬送する搬送体即ちトラフ15に取付けられる
[Embodiments of the Invention] A first embodiment of the present invention will be described below with reference to FIG. Reference numeral 10 denotes a fixed part, that is, a fixed base, to which a lower frame 11 is fixed, and two spring members, that is, leaf springs 12, are connected at the lower ends of the fixed base so as to be in an inclined upright state. Between the upper ends of these leaf springs 12, a vibrating body 1 is placed in a horizontal state.
3 are connected to each other, and this vibrating body 13 is attached to a carrier or trough 15 on which a conveyed object 14 is placed and conveyed.

一方、前記板ばね12には圧電素子16が導電性接着剤
により貼着されている。そしてこれら圧電素子16に電
圧を印加するための一方のリード線17は前記板ばね1
2に接続され他方のリード線18は圧電素子16の板ば
ね12とは反対極部分に接続されている。ここで、前記
下枠11、板ばね12、加振体13及び圧電素子16と
で加振機構19をなすが、この加振機構19中、前記ト
ラフ15上の搬送物14の重量により変位または歪む部
分例えば一方の板ばね12の自由端側近傍に重量検出手
段をなす例えばストレインゲージからなる検出素子20
が取付られている。
On the other hand, a piezoelectric element 16 is attached to the leaf spring 12 using a conductive adhesive. One lead wire 17 for applying voltage to these piezoelectric elements 16 is connected to the leaf spring 1.
2 and the other lead wire 18 is connected to a portion of the piezoelectric element 16 opposite to the leaf spring 12. Here, the lower frame 11, the leaf spring 12, the vibrating body 13, and the piezoelectric element 16 form a vibrating mechanism 19, and in this vibrating mechanism 19, the weight of the conveyed object 14 on the trough 15 causes displacement or A detection element 20 consisting of a strain gauge, for example, serving as a weight detection means is placed near the free end side of one of the leaf springs 12 to be distorted.
is installed.

次に回路構成をその全体的作用と共に説明する。Next, the circuit configuration will be explained along with its overall operation.

即ち可変駆動電源21は成る周波数をもつ電圧をリード
線17.18間に出力しこれを圧電素子16に印加して
いる。このため圧電素子16が振動するので加振体13
が斜め上下方向に振動をし、トラフ15を同方向に振動
させるので搬送物14が矢印方向に搬送される。
That is, the variable drive power source 21 outputs a voltage having a frequency between the lead wires 17 and 18, and applies this to the piezoelectric element 16. For this reason, the piezoelectric element 16 vibrates, so the vibrator 13
vibrates diagonally in the vertical direction, and vibrates the trough 15 in the same direction, so that the conveyed object 14 is conveyed in the direction of the arrow.

この搬送動作中において、加振機構19に加わる重量は
搬送物14の量によって常に変化しており、これが前記
検出素子20を有する重量検出手段22により検出され
、ここから重量検出信号■1が出力される。この重量検
出信号v1は加算部23により基準値■2と加算され、
そしてその和である重量信号■3は変換率ε!なる周波
数変換回路24により検出した重量に応じて予め定めら
れている加振機構19の共振周波数foに等しい値の周
波数信号Sfに変換される。同時に重量信号■3は増幅
率ε2なる電圧変換回路25により検出重量に応じて予
め定められである電圧■0を内容とする電圧信号Svに
変換される。そして可変駆動電源21はこれら周波数信
号Sr及び電圧信号S■を受けてその出力周波数がfO
に及び電圧が■0に夫々制御され、この値をもって検出
素子20に印加するものである。この結果、板ばね12
のばね定数にと板ばね12に加わる重ff1Wにより定
まる共振周波数foと圧電素子16の特性によって定ま
る印加電圧■0とをもつ交流電圧により圧電素子16が
駆動され、しかもこの関係が搬送物14の重量変化があ
ってもこの変化に追従して維持されるので圧電素子16
は常に最大振幅をもって振動される。この結果搬送物1
4の搬送速度が増大し、及び搬送効率が向上し、且つこ
れらが搬送物14の重量変化に左右されない安定したも
のとなる。
During this conveyance operation, the weight applied to the vibration mechanism 19 is constantly changing depending on the amount of the conveyed object 14, and this is detected by the weight detection means 22 having the detection element 20, from which a weight detection signal 1 is output. be done. This weight detection signal v1 is added to the reference value ■2 by the adding section 23,
And the weight signal ■3 which is the sum is the conversion rate ε! The frequency conversion circuit 24 converts the detected weight into a frequency signal Sf having a value equal to the resonant frequency fo of the vibration mechanism 19, which is predetermined according to the detected weight. At the same time, the weight signal 3 is converted by a voltage conversion circuit 25 with an amplification factor ε2 into a voltage signal Sv having a predetermined voltage 20 according to the detected weight. The variable drive power supply 21 receives these frequency signals Sr and voltage signals S and its output frequency becomes fO.
and the voltage are respectively controlled to 0, and these values are applied to the detection element 20. As a result, leaf spring 12
The piezoelectric element 16 is driven by an AC voltage having a resonant frequency fo determined by the spring constant and the force ff1W applied to the leaf spring 12, and an applied voltage 0 determined by the characteristics of the piezoelectric element 16, and this relationship is Even if there is a change in weight, the piezoelectric element 16 is maintained by following this change.
is always vibrated with maximum amplitude. As a result, transported object 1
The conveying speed of the conveyed object 14 is increased, the conveying efficiency is improved, and these are stable and are not affected by changes in the weight of the conveyed object 14.

次に本発明の第2実施例について第2図及び第3図によ
って説明する。この実施例では、検出素子26として渦
電流変位センサを用いており、これを前記検出素子20
に代え第1図に二点鎖線で示すように搬送物14の重量
により上下する部分例えば加振体13の下面と空隙を介
して対向する位置に配設している。検出素子26による
検出出力eは増幅器27により増幅され、続いてアクテ
ィブフィルタ28に与えられることによりその直流分信
号Eのみが抽出され、そしてこれが前置増幅器29によ
り直流増幅されて高周波発振器30に与えられその発振
周波数を制御するようになっており、この高周波発振器
30の発振出力電圧が第1図に示す圧電素子16に印加
されるようになっている。ここで、アクティブフィルタ
28は抵抗31.32、コンデンサ33.34及びオペ
アンプ35からなる。また前置増幅器29はオペアンプ
36及び抵抗37.38からなる。
Next, a second embodiment of the present invention will be described with reference to FIGS. 2 and 3. In this embodiment, an eddy current displacement sensor is used as the detection element 26, and this is used as the detection element 26.
Instead, as shown by the two-dot chain line in FIG. 1, a portion that moves up and down depending on the weight of the conveyed object 14 is disposed at a position facing, for example, the lower surface of the vibrating body 13 with a gap in between. The detection output e from the detection element 26 is amplified by the amplifier 27 and then fed to the active filter 28 to extract only its DC component signal E. This is then DC amplified by the preamplifier 29 and fed to the high frequency oscillator 30. The oscillation frequency of the high-frequency oscillator 30 is applied to the piezoelectric element 16 shown in FIG. Here, the active filter 28 includes resistors 31 and 32, capacitors 33 and 34, and an operational amplifier 35. The preamplifier 29 also includes an operational amplifier 36 and resistors 37 and 38.

さて、検出素子26の出力eは標準負荷即ち搬送物14
の重さが標準である場合はelで、重負荷時はelであ
る。そしてこれらは第3図に示すように e 1  =E1  +At  Sin  ω’te 
2  =E2  +A25in ωtで表わされる。こ
こでEl及びE2は搬送物14の重さによってトラフ1
5が沈む分に相当する値(トラフ15が静止している状
態での直流分)、A1及びA2は夫々の重量における振
動の最大振幅値(トラフ15が振動しているときの交流
会)である。従ってアクティブフィルタ28から出力さ
れた直流分信号E1.Ex  (第3図に図示)が搬送
物14の重量信号になり、これによって高周波発振器3
0の発振出力が制御されるので第1実施例の場合と同様
に圧電素子16の重量に応じて変化した共振周波数と略
同−の周波数をもつ電圧によって駆動されるようになる
Now, the output e of the detection element 26 is the standard load, that is, the transported object 14.
When the weight is standard, it is el, and when the weight is heavy, it is el. And these are as shown in Fig. 3, e 1 = E1 + At Sin ω'te
It is expressed as 2 = E2 + A25in ωt. Here, El and E2 are determined by the weight of the transported object 14 in the trough 1.
A1 and A2 are the maximum amplitude values of vibration for each weight (exchange meeting when trough 15 is vibrating). be. Therefore, the DC component signal E1. output from the active filter 28. Ex (shown in FIG. 3) becomes the weight signal of the conveyed object 14, which causes the high frequency oscillator 3
Since the oscillation output of 0 is controlled, the piezoelectric element 16 is driven by a voltage having approximately the same frequency as the resonant frequency that changes depending on the weight of the piezoelectric element 16, as in the case of the first embodiment.

ここでアクティブフィルタ28を用いた理由につき説明
する。検出素子26の出力e1、e2は搬送物14の重
量による検出素子26と加振体13との間の空隙長変位
分E1、E2と、振動動作による空隙長の変動分As 
、A2  (sinωで)とを含み、この振動による変
動分At 、 A2  (sinωt)をOR回路で除
去するとコンデンサCによる平滑作用の結果、第3図に
曲線39で示すようにex =El十o、5Al、e2
=E2 +0.5A2  (図示を省略)となって振動
による変動分(0,5As 、0.5A2 )が直流分
として残り、Er 、Exに対する誤差になる。即ちE
s 、E2を決定する要素は板ばね12のばね定数であ
るのに対して、At 、A2は搬送物14の重信以外の
要因により定めるものであるからである。従ってこの実
施例によれば、アクティブフィルタ28を用いたことに
よりEl、E2のみを抽出することができる。
Here, the reason for using the active filter 28 will be explained. The outputs e1 and e2 of the detection element 26 are the gap length displacements E1 and E2 between the detection element 26 and the vibrator 13 due to the weight of the conveyed object 14, and the gap length variation As due to the vibration operation.
, A2 (at sinω), and when the variation due to this vibration At, A2 (sinωt) is removed by an OR circuit, as a result of the smoothing action by the capacitor C, ex = El + o as shown by curve 39 in Figure 3. , 5Al, e2
=E2 +0.5A2 (not shown), and the fluctuation due to vibration (0.5As, 0.5A2) remains as a DC component, which becomes an error with respect to Er and Ex. That is, E
This is because the element that determines s and E2 is the spring constant of the leaf spring 12, whereas At and A2 are determined by factors other than the weight of the transported object 14. Therefore, according to this embodiment, only El and E2 can be extracted by using the active filter 28.

その他本発明は上記同突絶倒のみに限定されるものでは
なく、例えばボウルをよじり回動するように加振して搬
送物を螺旋状に移送する方式の圧電駆動パーツフィーダ
に適用しても差支えないことは勿論である。
In addition, the present invention is not limited to the above-mentioned sudden collapse, but may also be applied to, for example, a piezoelectric drive parts feeder in which the bowl is vibrated to twist and rotate to convey the conveyed object in a spiral manner. Of course, there is no problem.

[発明の効果] 本発明は以上述べたように搬送体を励振する加振体をば
ね部材と圧11*子との組合せ装置により撮動させて搬
送体上の搬送物を移動させるようにしたものにおいて、
搬送物の重量を重】検出手段により検出し、その検出信
号により圧電素子に印加する電圧とその周波数を搬送物
の重量変化に応じて制御する構成としたことにより、こ
の圧電素子を常に略共振周波数点で駆動できるようにな
り、搬送速度が高くなる圧電駆動形搬送装置を提供する
ことができる。
[Effects of the Invention] As described above, the present invention moves the conveyed object on the conveyed body by moving the vibrating body that excites the conveyed body using a combination device of a spring member and a pressure element. In things,
The weight of the conveyed object is detected by a detection means, and the voltage applied to the piezoelectric element and its frequency are controlled according to changes in the weight of the conveyed object using the detection signal, so that the piezoelectric element is always kept at approximately resonance. It is possible to provide a piezoelectric drive type conveyance device that can be driven at a frequency point and has a high conveyance speed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例をその機械的構成部分と共
に示すブロック図、第2図は第2実施例を示すブロック
図、第3図は第2実施例を説明するための図、第4図は
一般的な圧電素子の周波数−変位特性図、第5図は一般
的な圧電素子のカー変位特性図、第6図は従来例を説明
するための側面図である。 図中、10は固定台、11は下枠、12は板ばね、13
は加振体、14は搬送物、15はトラフ(搬送体)、1
6は圧電素子、19は加振機構、20は検出素子、21
は可変駆動電源、22は重量検出回路、24は周波数変
換回路、25は電圧変換回路、26は検出素子、27は
増幅器、28はアクティブフィルタ、29は前置増幅器
、30は高周波発振器である。 出願人  株式会社  東  芝 第 2 図 時間+1)→ 第 3 閉 励振周波数→ 第 4 図 カー   F(Kgf) 第 5 図
FIG. 1 is a block diagram showing a first embodiment of the present invention together with its mechanical components, FIG. 2 is a block diagram showing the second embodiment, and FIG. 3 is a diagram for explaining the second embodiment. FIG. 4 is a frequency-displacement characteristic diagram of a typical piezoelectric element, FIG. 5 is a Kerr displacement characteristic diagram of a typical piezoelectric element, and FIG. 6 is a side view for explaining a conventional example. In the figure, 10 is a fixed base, 11 is a lower frame, 12 is a leaf spring, 13
1 is a vibrating body, 14 is a conveyed object, 15 is a trough (transport body), 1
6 is a piezoelectric element, 19 is an excitation mechanism, 20 is a detection element, 21
22 is a weight detection circuit, 24 is a frequency conversion circuit, 25 is a voltage conversion circuit, 26 is a detection element, 27 is an amplifier, 28 is an active filter, 29 is a preamplifier, and 30 is a high frequency oscillator. Applicant: Toshiba Corporation Figure 2 Time + 1) → Figure 3 Closed excitation frequency → Figure 4 Car F (Kgf) Figure 5

Claims (1)

【特許請求の範囲】[Claims] 1、搬送物を載せてこれを振動により搬送する搬送体を
励振させる加振体と、この加振体と固定部材との間に設
けられてこの加振体を支持するばね部材と、このばね部
材に設けられこのばね部材と協同して前記加振体を振動
させるための圧電素子と、前記搬送体上を移動中の搬送
物の重量に応じた電気信号を得る重量検出手段と、前記
電気信号により前記圧電素子に印加する電圧及び周波数
を制御する制御手段とからなる圧電駆動形搬送装置。
1. A vibrating body that excites a conveying body that carries a conveyed object and conveys it by vibration, a spring member that is provided between this vibrating body and a fixed member and supports this vibrating body, and this spring. a piezoelectric element provided on the member for vibrating the vibrating body in cooperation with the spring member; a weight detection means for obtaining an electrical signal corresponding to the weight of the conveyed object moving on the conveying body; A piezoelectric drive type conveyance device comprising a control means for controlling the voltage and frequency applied to the piezoelectric element based on a signal.
JP13057585A 1985-06-14 1985-06-14 Transport device of piezo drive type Granted JPS61287612A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13057585A JPS61287612A (en) 1985-06-14 1985-06-14 Transport device of piezo drive type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13057585A JPS61287612A (en) 1985-06-14 1985-06-14 Transport device of piezo drive type

Publications (2)

Publication Number Publication Date
JPS61287612A true JPS61287612A (en) 1986-12-18
JPH0251813B2 JPH0251813B2 (en) 1990-11-08

Family

ID=15037506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13057585A Granted JPS61287612A (en) 1985-06-14 1985-06-14 Transport device of piezo drive type

Country Status (1)

Country Link
JP (1) JPS61287612A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100624640B1 (en) * 2004-05-06 2006-09-20 아이쓰리시스템 주식회사 Method for measuring piezoelectricity
CN105438739A (en) * 2015-11-28 2016-03-30 林晓生 Rotary disc feeding machine capable of weighing
CN112551067A (en) * 2020-12-22 2021-03-26 泉州市安太电子科技有限公司 Efficient and energy-saving feeding method for vibrating disc

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100624640B1 (en) * 2004-05-06 2006-09-20 아이쓰리시스템 주식회사 Method for measuring piezoelectricity
CN105438739A (en) * 2015-11-28 2016-03-30 林晓生 Rotary disc feeding machine capable of weighing
CN112551067A (en) * 2020-12-22 2021-03-26 泉州市安太电子科技有限公司 Efficient and energy-saving feeding method for vibrating disc

Also Published As

Publication number Publication date
JPH0251813B2 (en) 1990-11-08

Similar Documents

Publication Publication Date Title
TW378288B (en) Method and apparatus for controlling piezoelectric vibration
JP4678427B2 (en) Vibrating gyro
US4694696A (en) Vibration-type gyro apparatus
EP1314986A1 (en) Electrostatic drive for accelerometer
US6802220B2 (en) Apparatus for transporting levitated objects
JP2009542169A (en) Piezoelectric generator
JPS61287612A (en) Transport device of piezo drive type
JPH10221083A (en) Vibration-type gyro apparatus
JP3264580B2 (en) Angular velocity detector
JPH08304075A (en) Angular speed sensor
JPH0544328Y2 (en)
JPH0255330B2 (en)
JPS624118A (en) Piezoelectric driving type conveyer
JPH0520473Y2 (en)
JPH06345237A (en) Piezoelectric driven type transfer device
JP3028999B2 (en) Vibrating gyro
JP2000180490A (en) Potential sensor
JPS62111815A (en) Piezoelectric driving type transport apparatus
JPS6126310A (en) Oscillator with stable amplitude
JPH0613369B2 (en) Piezoelectric drive type transport device
JPH0251806B2 (en)
JPH0593628A (en) Angular velocity sensor
JPH04148711A (en) Drive control device for vibrator
JPH03125204A (en) Vibration controller
JP3885253B2 (en) Elliptical vibration device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term