JPS6128694B2 - - Google Patents

Info

Publication number
JPS6128694B2
JPS6128694B2 JP52005792A JP579277A JPS6128694B2 JP S6128694 B2 JPS6128694 B2 JP S6128694B2 JP 52005792 A JP52005792 A JP 52005792A JP 579277 A JP579277 A JP 579277A JP S6128694 B2 JPS6128694 B2 JP S6128694B2
Authority
JP
Japan
Prior art keywords
polypropylene
molecular weight
mfi
ultra
high molecular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52005792A
Other languages
Japanese (ja)
Other versions
JPS5391954A (en
Inventor
Mitsuyoshi Fujama
Yutaka Awaya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP579277A priority Critical patent/JPS5391954A/en
Publication of JPS5391954A publication Critical patent/JPS5391954A/en
Publication of JPS6128694B2 publication Critical patent/JPS6128694B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/922Viscosity; Melt flow index [MFI]; Molecular weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92323Location or phase of measurement
    • B29C2948/92485Start-up, shut-down or parameter setting phase; Emergency shut-down; Material change; Test or laboratory equipment or studies

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はポリプロピレンの押出成形方法の改良
に関するものである。更に詳しく言えば230℃の
温度、2160gの荷重により測定した溶融流動性指
数(MFI)が0.2g/10min乃至4g/10minのポ
リプロピレン100重量部に、MFIが0.01g/10min
以下の超高分子量ポリプロピレンを2乃至30重量
部添加し、融点以上210℃以下の温度範囲で押出
すことにより溶融破断点を上昇させ、高速押出成
形性を改良したポリプロピレンの押出成形方法で
ある。 一般に高分子物質の溶融物をノズルから押出す
場合、あるせん断速度以上で押出物が波うつた
り、らせん状になつたり、あるいは不規則な形状
にゆがんだりする現象が生じる。この現象は溶融
破断(melt fracture)と呼ばれており、押出成
形においては好ましくない現象で、製品の表面に
種々の悪い影響を及ぼすことが知られている。 一方、押出成形を能率的に行なうには高速成形
性が要求されるが、溶融破断現象により高速成形
性の上限はおのずから定められる。 押出成形において溶融破断の生じるせん段速度
(臨界せん断速度)は、一般に成形温度および樹
脂の平均分子量に依存し、成形温度が高いほど、
また平均分子量が小さい(MFIが大きい)ほど高
い。従つて、押出成形を高速で行なうためには平
均分子量の小さい樹脂を高温で成形すればよいこ
とになる。しかし、平均分子量の小さい樹脂の高
温押出成形においては、溶融樹脂の粘度が低く、
樹脂がダイから出た後固化するまでの間の成形物
の形状保持能力が小さいという弊害がある。例え
ば、中空押出成形においてパリソンは自重により
垂れ下り、不均一な厚みのものとなる。このよう
な弊害の程度は平均分子量の小さい樹脂を高温で
成形する場合程著しい。それに高温での成形は経
済的にも不利である。即ち加熱のための熱エネル
ギーを多く要し、また冷却時間が長くなる。冷却
過程が高速成形の律速段階である場合は高速成形
性の低下をもたらす。更に成形品の強度その他の
面から平均分子量の大きい樹脂を用いなければな
らない要請もある。 従つて、平均分子量の大きい(MFIの小さい)
樹脂を低温で高速押出成形する方法は切望されて
いた。 本発明はこの点を改良した押出成形方法を提供
するものである。本発明者等はポリプロピレンの
溶融レオロジーについて研究を重ねた結果、超高
分子量ポリプロピレンを添加することにより、押
出成形時の溶融破断点を上昇させ、臨界せん断速
度を大幅に上昇させ得ることを見出し、本発明を
完成させるに至つた。 本発明は230℃の温度、2160gの荷重により測
定した溶融流動性指数(MFI)が0.2g/10min乃
至4g/10minのポリプロピレン100重量部に、
MFIが0.01g/10min以下の超高分子量ポリプロ
ピレンを2乃至30重量部添加し、融点以上210℃
以下の温度範囲で押出すポリプロピレンの押出成
形方法である。 本発明で使用される超高分子量ポリプロピレン
は、ASTM D1238によりL条件下即ち、230℃の
温度、2160gの荷重により測定した溶融流動性指
数(MFI)が0.01g/10min以下のものである。
MFIが0.01g/10min以上のものでは、その添加
により臨界せん断速度を向上させる効果が認めら
れないので高速押出成形性が改良されない。超高
分子量ポリプロピレンの基体ポリプロピレン100
重量部に対する添加量は2乃至30重量部、好まし
くは3乃至10重量部である。2重量部以下の添加
量では臨界せん断速度を向上させる効果が実質的
に認められず、また30重量部以上では臨界せん断
速度が逆に低下するので好ましくない。 本発明で使用される超高分子量ポリプロピレン
は、MFIが0.01g/10min以下のものであれば如
何なる方法で製造されたものでもよく、何等制限
なく使用される。また、エチレン等のオレフイン
を少量共重合させたポリプロピレンもMFIが0.01
g/10min以下であれば本発明に於いて何等支障
なく使用できる。従つて、本発明でいう超高分子
量ポリプロピレンはこれらの共重合物をも含む総
称である。 超高分子量ポリプロピレンは一般には後述する
基体ポリプロピレンの製造方法とほぼ同じ方法で
製造することができる。例えば、基体ポリプロピ
レンの重合法において、分子量調節剤である水素
の量を非常に少なくするかあるいは全く用いずに
重合すれば本発明の超高分子量ポリプロピレンが
得られる。また、他のオレフインをランダム共重
合させた超高分子量ポリプロピレンを得る場合は
重合時に共重合させるオレフインモノマーを共存
させて重合する。この場合重合気相濃度とほぼ同
一組成の共重合物が得られる。更にブロツク共重
合させた超高分子量ポリプロピレンを得る場合は
先ずプロピレンの重合を行ない、次に共重合させ
るオレフインモノマーあるいはプロピレンとオレ
フインモノマーとの混合モノマーの重合を行なえ
ばよい。尚、超高分子量ポリプロピレンが共重合
体である場合は、共重合物中の他のオレフインの
含有量はランダム共重合体の場合は5重量%、ブ
ロツク共重合体の場合は20重量%までとするのが
一般的である。 本発明で用いられる基体ポリプロピレンはその
MFIが0.2g/10min乃至4g/10min以下のもの
であれば何等制限なく使用できる。また、エチレ
ン等の他のオレフインを少量共重合させたポリプ
ロピレンもMFIが上記範囲を満足するものであれ
ば同様に使用できる。従つて、本発明においては
これらの共重合物をも含めて基体ポリプロピレン
と称する。 基体ポリプロピレンのMFIが0.2g/10min以下
の場合および4g/10min以上の場合では超高分
子量ポリプロピレン添加による臨界せん断速度の
向上が認められない。 本発明で用いられる基体ポリプロピレンは例え
ばチーグラー型重合触媒をはじめその改良触媒等
を用いる種々の方法で製造することができる。例
えば、触媒として三塩化チタンおよびジエチルア
ルミニウム化合物を用い、ヘプタン等の溶媒中で
60℃程度で撹拌を伴ないながら水素およびプロピ
レンをフイードして重合させ、所望の重合を終え
た後イソプロピルアルコール等で重合を停止して
得られる。この場合MFIの小さいポリプロピレン
を得たい場合は上記操作において水素のフイード
量を減らせばよい。また逆にMFIの大きいポリプ
ロピレンを得たい場合は水素のフイード量を増や
せばよい。 基体ポリプロピレンが共重合物のときは、前述
の超高分子量ポリプロピレン共重合物の時と同様
にして他のオレフインモノマーを共重合させれば
よい。共重合物はランダム共重合の場合は他のオ
レフインの含量が5重量%以下になるように、ま
たブロツク共重合の場合は20重量%以下となるよ
うにするのが望ましい。 超高分子量ポリプロピレンと基体ポリプロピレ
ンの混合は、粉末状態で混合したものを直接押出
成形機にかけてもよく、また一般に充填剤混練に
慣用の方法により混練してもよい。例えばミキシ
ングロール、ニーダー、バンバリーミキサー、混
練押出成形機等を用いて混合されるが、混練押出
成形機による混合が最も能率的である。この場合
は、押出機に予めドライブレンドした各成分を加
え棒状に押出し、カツターで切断してペレツトを
得ればよい。 本発明においては、超高分子量ポリプロピレン
を所定量含有したポリプロピレンを融点以上210
℃以下の温度範囲で押出成形する。融点以下の温
度では言うまでもなく押出成形が不可能であり、
210℃以上の温度では超高分子量ポリプロピレン
の添加による臨界せん断速度の向上が認められな
い。 本発明で言う押出成形とは、棒状押出し、繊維
状押出し、パイプ状押出し、板状押出し、シート
状押出し、フイルム状押出し、その他の異形押出
しおよび中空押出しなどあらゆる形態の押出成形
を含む総称である。 以下に実施例を挙げて本発明を説明するが本発
明はこれに限定されるものではない。 尚、以下の実施例において臨界せん断速度は、
円管式レオメーターにより長さL=5mm、直径D
=0.5mm、L/D=10のノズルを用い、溶融破断
の起こり始める容積流出速度Qcを測定し、次式
により計算したものである。 臨界せん断速度=32Q/πD また、以下の実施例においては、安定剤として
BHT(ジブチルヒドロキシトルエン)および
DLTP(ジラウリルチオプロピオネート)をそれ
ぞれ0.3重量部添加している。 実施例1、比較例1〜3 MFI=1.0g/10minのポリプロピレン(商品名
“徳山ポリプロFB111”)粉末100重量部に第1表
に示すMFIの超高分子量ポリプロピレン粉末を第
1表に示す添加量混合し、175℃において25分間
ミキシングロールにより混練した後、190℃にお
いて臨界せん断速度を測定した。結果を第1表に
示す。
The present invention relates to an improvement in the extrusion molding method for polypropylene. More specifically, 100 parts by weight of polypropylene with a melt fluidity index (MFI) of 0.2 g/10 min to 4 g/10 min, measured at a temperature of 230°C and a load of 2160 g, has an MFI of 0.01 g/10 min.
This is a polypropylene extrusion molding method in which 2 to 30 parts by weight of the following ultra-high molecular weight polypropylene is added and extruded at a temperature range from the melting point to 210°C to raise the melt break point and improve high-speed extrusion moldability. Generally, when extruding a molten polymer material through a nozzle, the extrudate may wave, become spiral, or distort into an irregular shape when the shear rate exceeds a certain level. This phenomenon is called melt fracture, and is an undesirable phenomenon in extrusion molding, and is known to have various negative effects on the surface of the product. On the other hand, high-speed moldability is required for efficient extrusion molding, but the upper limit of high-speed moldability is naturally determined by the melt fracture phenomenon. The shear stage speed (critical shear speed) at which melt fracture occurs in extrusion molding generally depends on the molding temperature and the average molecular weight of the resin, and the higher the molding temperature, the higher the
Also, the smaller the average molecular weight (the larger the MFI), the higher the value. Therefore, in order to perform extrusion molding at high speed, it is sufficient to mold a resin having a small average molecular weight at a high temperature. However, in high-temperature extrusion molding of resins with small average molecular weights, the viscosity of the molten resin is low;
There is a problem in that the shape retention ability of the molded product is small after the resin comes out of the die until it solidifies. For example, in hollow extrusion molding, the parison sags due to its own weight, resulting in non-uniform thickness. The degree of such adverse effects is more significant when a resin having a small average molecular weight is molded at a high temperature. Moreover, molding at high temperatures is economically disadvantageous. That is, a large amount of thermal energy is required for heating, and the cooling time becomes long. If the cooling process is the rate-limiting step in high-speed molding, high-speed moldability will be reduced. Furthermore, there is a need to use a resin with a large average molecular weight in view of the strength of the molded product and other aspects. Therefore, the average molecular weight is large (MFI is small)
A method for extruding resins at low temperatures and high speeds has been desired. The present invention provides an extrusion molding method that improves this point. As a result of repeated research on the melt rheology of polypropylene, the present inventors discovered that by adding ultra-high molecular weight polypropylene, it is possible to raise the melt break point during extrusion molding and significantly increase the critical shear rate. The present invention has now been completed. The present invention uses 100 parts by weight of polypropylene having a melt fluidity index (MFI) of 0.2 g/10 min to 4 g/10 min measured at a temperature of 230°C and a load of 2160 g.
Add 2 to 30 parts by weight of ultra-high molecular weight polypropylene with an MFI of 0.01g/10min or less, at 210°C above the melting point.
This is a method for extruding polypropylene in the following temperature range. The ultra-high molecular weight polypropylene used in the present invention has a melt fluidity index (MFI) of 0.01 g/10 min or less when measured under L conditions, ie, at a temperature of 230° C. and a load of 2160 g according to ASTM D1238.
If the MFI is 0.01 g/10 min or more, the effect of improving the critical shear rate cannot be recognized by its addition, so high-speed extrusion moldability is not improved. Ultra-high molecular weight polypropylene base polypropylene 100
The amount added is 2 to 30 parts by weight, preferably 3 to 10 parts by weight. If the amount added is less than 2 parts by weight, the effect of improving the critical shear rate is not substantially observed, and if it is more than 30 parts by weight, the critical shear rate is undesirably lowered. The ultra-high molecular weight polypropylene used in the present invention may be produced by any method as long as it has an MFI of 0.01 g/10 min or less, and can be used without any restrictions. Additionally, polypropylene copolymerized with a small amount of olefin such as ethylene has an MFI of 0.01.
g/10 min or less, it can be used in the present invention without any problem. Therefore, the ultra-high molecular weight polypropylene referred to in the present invention is a general term that also includes these copolymers. Ultra-high molecular weight polypropylene can generally be produced by substantially the same method as the method for producing the base polypropylene, which will be described later. For example, in the polymerization method of the base polypropylene, the ultra-high molecular weight polypropylene of the present invention can be obtained by polymerizing with a very small amount of hydrogen as a molecular weight regulator or without using it at all. Further, when obtaining ultra-high molecular weight polypropylene by randomly copolymerizing other olefins, the polymerization is carried out in the presence of an olefin monomer to be copolymerized during polymerization. In this case, a copolymer having substantially the same composition as the polymerization gas phase concentration is obtained. Furthermore, when obtaining ultra-high molecular weight polypropylene by block copolymerization, propylene is first polymerized, and then an olefin monomer or a mixed monomer of propylene and olefin monomers to be copolymerized is polymerized. In addition, when the ultra-high molecular weight polypropylene is a copolymer, the content of other olefins in the copolymer is limited to 5% by weight in the case of a random copolymer and 20% by weight in the case of a block copolymer. It is common to do so. The base polypropylene used in the present invention is
If the MFI is 0.2g/10min to 4g/10min or less, it can be used without any restrictions. Furthermore, polypropylene copolymerized with a small amount of other olefins such as ethylene can be similarly used as long as the MFI satisfies the above range. Therefore, in the present invention, these copolymers are also referred to as the base polypropylene. When the MFI of the base polypropylene is less than 0.2 g/10 min and when it is more than 4 g/10 min, no improvement in the critical shear rate due to the addition of ultra-high molecular weight polypropylene is observed. The base polypropylene used in the present invention can be produced by various methods using, for example, Ziegler type polymerization catalysts and improved catalysts thereof. For example, using titanium trichloride and diethylaluminium compounds as catalysts, in a solvent such as heptane,
It is obtained by feeding hydrogen and propylene to polymerize at about 60°C with stirring, and after completing the desired polymerization, stop the polymerization with isopropyl alcohol or the like. In this case, if it is desired to obtain polypropylene with a low MFI, the amount of hydrogen feed may be reduced in the above operation. Conversely, if you want to obtain polypropylene with a large MFI, you can increase the amount of hydrogen feed. When the base polypropylene is a copolymer, other olefin monomers may be copolymerized in the same manner as in the case of the ultra-high molecular weight polypropylene copolymer described above. In the case of random copolymerization, the content of other olefins in the copolymer is desirably 5% by weight or less, and in the case of block copolymerization, the content of other olefins is preferably 20% by weight or less. The ultra-high molecular weight polypropylene and the base polypropylene may be mixed in powder form and then directly passed through an extrusion molding machine, or may be kneaded by a method commonly used for kneading fillers. For example, mixing is performed using a mixing roll, a kneader, a Banbury mixer, a kneading extruder, etc., but mixing using a kneading extruder is most efficient. In this case, the components dry blended in advance may be added to an extruder, extruded into rods, and then cut with a cutter to obtain pellets. In the present invention, polypropylene containing a predetermined amount of ultra-high molecular weight polypropylene has a melting point of 210
Extrusion molding at temperatures below ℃. Needless to say, extrusion molding is impossible at temperatures below the melting point.
At temperatures above 210°C, the addition of ultra-high molecular weight polypropylene does not improve the critical shear rate. Extrusion molding as used in the present invention is a general term that includes all forms of extrusion molding such as rod extrusion, fiber extrusion, pipe extrusion, plate extrusion, sheet extrusion, film extrusion, other profile extrusions, and hollow extrusion. . The present invention will be explained below with reference to Examples, but the present invention is not limited thereto. In addition, in the following examples, the critical shear rate is
Length L = 5 mm, diameter D using a circular tube rheometer
Using a nozzle with = 0.5 mm and L/D = 10, the volumetric outflow velocity Q c at which melt rupture begins was measured and calculated using the following formula. Critical shear rate = 32Q c /πD 3 In addition, in the following examples, as a stabilizer
BHT (dibutylhydroxytoluene) and
Each contains 0.3 parts by weight of DLTP (dilaurylthiopropionate). Example 1, Comparative Examples 1 to 3 Ultra-high molecular weight polypropylene powder with MFI shown in Table 1 was added to 100 parts by weight of polypropylene (trade name "Tokuyama Polypro FB111") powder with MFI = 1.0 g/10 min as shown in Table 1. After mixing and kneading with a mixing roll at 175°C for 25 minutes, the critical shear rate was measured at 190°C. The results are shown in Table 1.

【表】 実施例 2 MFI=1.9g/10minのポリプロピレン(商品名
“徳山ポリプロYE120”)粉末にMFI=0.009g/
10min超高分子量ポリプロピレン粉末を第2表に
示す添加量混合し、175℃において2.5分間ミキシ
ングロールにより混練した後、190℃において臨
界せん断速度を測定した。結果を第2表に示す。
[Table] Example 2 MFI = 0.009 g / 10 min to polypropylene (trade name "Tokuyama Polypro YE120") powder
The amount of ultra-high molecular weight polypropylene powder shown in Table 2 was mixed for 10 minutes, and the mixture was kneaded at 175°C for 2.5 minutes using a mixing roll, and then the critical shear rate was measured at 190°C. The results are shown in Table 2.

【表】 実施例3〜5、比較例4、5 第3表に示すMFIを有するポリプロピレン粉末
100重量部にMFI=0.004g/10minの超高分子量
ポリプロピレン粉末を5重量部混合し、175℃に
おいて2.5分間ミキシングロールにより混練した
後、190℃において臨界せん断速度を測定した。
結果を第3表に示す。
[Table] Examples 3 to 5, Comparative Examples 4 and 5 Polypropylene powder having MFI shown in Table 3
5 parts by weight of ultra-high molecular weight polypropylene powder with MFI = 0.004 g/10 min were mixed with 100 parts by weight, and after kneading with a mixing roll at 175°C for 2.5 minutes, the critical shear rate was measured at 190°C.
The results are shown in Table 3.

【表】 実施例7〜10、比較例6、7 MFI=1.0g/10minのポリプロピレン(商品名
“徳山ポリプロFB111”)粉末100重量部にMFI=
0.004g/10minの超高分子量ポリプロピレンを
5重量部混合し、175℃において2.5分間ミキシン
グロールにより混練した後、第4表に示す各温度
において臨界せん断速度を測定した。結果を第4
表に示す。
[Table] Examples 7 to 10, Comparative Examples 6 and 7 MFI = 1.0 g/10 min to 100 parts by weight of polypropylene (trade name "Tokuyama Polypro FB111") powder
5 parts by weight of ultra-high molecular weight polypropylene of 0.004 g/10 min were mixed and kneaded for 2.5 minutes at 175° C., and then the critical shear rate was measured at each temperature shown in Table 4. 4th result
Shown in the table.

【表】 実施例 11 MFI=1.0g/10minのポリプロピレン(商品名
“徳山ポリプロFB111”)粉末100重量部に、エチ
レンをランダム共重合したMFI=0.003g/10min
の超高分子量ポリプロピレン(エチレン含量1.2
重量%)粉末を5重量部添加し、175℃で2.5分間
ミキシングロールにより混練した後、190℃にお
いて臨界せん断速度を測定したところ2150sec-1
であつた。尚、超高分子量ポリプロピレンを添加
しない場合の臨界せん断速度は169sec-1であつ
た。 実施例 12 実施例11のポリプロピレン(商品名“徳山ポリ
プロFB111”)の代りにMFI=0.71g/10minのエ
チレン−ランダム共重合ポリプロピレン(エチレ
ン含量1.1重量%)(商品名“徳山ポリプロ
RB310”)を使用して同様に行なつたところ、臨
界せん断速度は1620sec-1であつた。また、超高
分子量ポリプロピレンを添加しない場合の臨界せ
ん断速度は148sec-1であつた。 実施例 13 MFI=1.3g/10minのエチレンブロツク共重合
体ポリプロピレン(商品名“徳山ポリプロ
MS620”)粉末100重量部にMFI=0.004g/10min
の超高分子量ポリプロピレン粉末を5重量部添加
し、175℃において臨界せん断速度を測定したと
ころ2830sec-1であつた。また、超高分子量ポリ
プロピレンを添加しない場合の臨界せん断速度は
890sec-1であつた。
[Table] Example 11 100 parts by weight of polypropylene (trade name "Tokuyama Polypro FB111") powder with MFI = 1.0 g/10 min was randomly copolymerized with ethylene. MFI = 0.003 g/10 min.
ultra-high molecular weight polypropylene (ethylene content 1.2
After adding 5 parts by weight of powder (% by weight) and kneading with a mixing roll at 175°C for 2.5 minutes, the critical shear rate was measured at 190°C and found to be 2150 sec -1
It was hot. The critical shear rate when no ultra-high molecular weight polypropylene was added was 169 sec -1 . Example 12 Instead of the polypropylene of Example 11 (trade name "Tokuyama Polypro FB111"), ethylene-random copolymerized polypropylene (ethylene content 1.1% by weight) with MFI = 0.71 g/10 min (trade name "Tokuyama Polypro FB111") was used.
RB310"), the critical shear rate was 1620 sec -1 . In addition, the critical shear rate when no ultra-high molecular weight polypropylene was added was 148 sec -1 . Example 13 MFI = 1.3g/10min ethylene block copolymer polypropylene (trade name “Tokuyama Polypropylene”)
MS620”) MFI=0.004g/10min for 100 parts by weight of powder
5 parts by weight of ultra-high molecular weight polypropylene powder was added, and the critical shear rate was measured at 175°C and found to be 2830 sec -1 . In addition, the critical shear rate when no ultra-high molecular weight polypropylene is added is
It was 890sec -1 .

Claims (1)

【特許請求の範囲】[Claims] 1 230℃の温度、2160gの荷重により測定した
溶融流動性指数(MFI)が0.2g/10min乃至4
g/10minのポリプロピレン100重量部に、MFI
が0.01g/10min以下の超高分子量ポリプロピレ
ン2乃至30重量部添加し、融点以上210℃以下の
温度範囲で押出すことを特徴とするポリプロピレ
ンの押出成形方法。
1 Melt fluidity index (MFI) measured at 230℃ and 2160g load is 0.2g/10min to 4
MFI to 100 parts by weight of polypropylene at g/10min
1. A method for extruding polypropylene, which comprises adding 2 to 30 parts by weight of ultra-high molecular weight polypropylene having a molecular weight of 0.01 g/10 min or less, and extruding at a temperature range from the melting point to 210°C.
JP579277A 1977-01-24 1977-01-24 Method of extrusion molding of polypropylene Granted JPS5391954A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP579277A JPS5391954A (en) 1977-01-24 1977-01-24 Method of extrusion molding of polypropylene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP579277A JPS5391954A (en) 1977-01-24 1977-01-24 Method of extrusion molding of polypropylene

Publications (2)

Publication Number Publication Date
JPS5391954A JPS5391954A (en) 1978-08-12
JPS6128694B2 true JPS6128694B2 (en) 1986-07-02

Family

ID=11620926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP579277A Granted JPS5391954A (en) 1977-01-24 1977-01-24 Method of extrusion molding of polypropylene

Country Status (1)

Country Link
JP (1) JPS5391954A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55123637A (en) * 1979-03-15 1980-09-24 Sumitomo Chem Co Ltd Extruded sheet of polypropylene
KR100254936B1 (en) 1995-10-18 2000-05-01 고토 기치 Olefin(co-)polymer compositions and method for producing the same and catalyst for olefin(co-)polymerization and method for producing the same
WO1997020869A1 (en) 1995-12-01 1997-06-12 Chisso Corporation Molded resin articles
TW425414B (en) * 1997-02-18 2001-03-11 Chisso Corp Preactivated catalyst for olefin (co)polymerization, catalyst for olefin (co)polymerization and olefin (co)polymer composition and their manufacturing method
WO1998044042A1 (en) 1997-04-02 1998-10-08 Chisso Corporation Modified olefin (co)polymer composition, process for preparing the same, and modified olefin (co)polymer composition molding
US6303696B1 (en) 1997-04-11 2001-10-16 Chisso Corporation Propylene (co)polymer composition using metallocene catalyst
TW504515B (en) 1997-08-07 2002-10-01 Chisso Corp Olefin (co)polymer composition

Also Published As

Publication number Publication date
JPS5391954A (en) 1978-08-12

Similar Documents

Publication Publication Date Title
US4547551A (en) Ethylene polymer blends and process for forming film
US20100164133A1 (en) Oxygen Tailoring of Polyethylene Resins
FI86876C (en) MEDICINAL PRODUCTS FOR SUSPENSION OF FREQUENCY
JPS6411061B2 (en)
CA1317057C (en) Thermoplastic compositions, their preparation and their use in making industrial articles
EP0080198A2 (en) Polymeric films having one-sided cling and compositions useful in their preparation
CN1087573A (en) The method for preparing foamed propylene polymer articles
CA2466640C (en) Oxygen tailoring of polyethylene resins
PT690891E (en) POLYMERIC COMPOSITIONS BASED ON HIGHLY PROCESSABLE LLDPE
BR112015024285B1 (en) process for the polymerization of propylene in the presence of a polymerization catalyst and for the production of a tube
JPS6128694B2 (en)
JPS63502992A (en) Ethylene polymer composition and method for producing the same
JPH07164434A (en) Method for compounding polymerized alpha-olefin resin
JPH06182756A (en) Melting and mixing method for ethylene polymers having different molecular weights
JPS6364465B2 (en)
CN106674720A (en) High-melt strength high-impact polypropylene foaming expanded beads and preparation method thereof
US2993882A (en) Process for coupling polyolefins
US3299186A (en) Melt blending of polyolefins
US6596783B2 (en) Process for producing foamed resin article
US3347957A (en) High-impact polypropylene composition containing ethylene/carboxylic acid salt copolymers
JPH11166083A (en) Polyethylene-based resin composition
EP3916048A1 (en) Polypropylene resin, polypropylene fiber and method for preparing same
JP2011245710A (en) Method for manufacturing polyolefin resin pellet
JPH05179009A (en) Production of masterbatch for modifying thermoplastic resin
JPH0384009A (en) Low molecular weight propylene-based polymer and its production