JPS61286745A - Apparatus for diagnosing embrittlement - Google Patents
Apparatus for diagnosing embrittlementInfo
- Publication number
- JPS61286745A JPS61286745A JP12897885A JP12897885A JPS61286745A JP S61286745 A JPS61286745 A JP S61286745A JP 12897885 A JP12897885 A JP 12897885A JP 12897885 A JP12897885 A JP 12897885A JP S61286745 A JPS61286745 A JP S61286745A
- Authority
- JP
- Japan
- Prior art keywords
- embrittlement
- measuring
- current
- temperature
- measurement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
Abstract
Description
【発明の詳細な説明】
(発明の技術分野〕
本発明は脆化診断装置に係り、特に長時間高温にさらさ
れる金属材料、例えば蒸気タービン部材の経年的な脆化
量を分極特性を非破壊的に計測することにより測定する
脆化診断装置に関する。DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to an embrittlement diagnostic device that non-destructively detects the amount of embrittlement over time in metal materials exposed to high temperatures for long periods of time, such as steam turbine components. The present invention relates to a embrittlement diagnostic device that measures embrittlement by
一般に、分極試験は金属材料の耐腐食性や応力腐食割れ
感受性を測定するために実施される。これは、通常、第
8図のブロック図に示すように、特定の電解液5の中に
試料9を入れ、照合電極3と試料9の間の電位をスキャ
ナー92を接続されたポテンショスタット91により変
化させ、この時対極4と試料9の間に流れる電流をクー
ロンメータ93または対数変換器94を介して接続され
る記録計95によつ5て計測する試験である。Generally, polarization tests are performed to measure the corrosion resistance and stress corrosion cracking susceptibility of metal materials. Usually, as shown in the block diagram of FIG. 8, a sample 9 is placed in a specific electrolyte 5, and the potential between the reference electrode 3 and the sample 9 is adjusted by a potentiostat 91 connected to a scanner 92. In this test, the current flowing between the counter electrode 4 and the sample 9 is measured by a recorder 95 connected via a coulomb meter 93 or a logarithmic converter 94.
このような試験による試験結果は、例えば第9図の曲線
図に示すようになる。同図は照合電極3と試料9の間の
電位を最初は一定の速度で増加させ、特定の電位で保持
した後に電位を減少させて行なった場合の測定結果であ
る。ところで、ある特定の溶液でこの分極試験を行なう
と、脆化した材料と脆化していない材料では分極特性に
顕著な差が現われることが知られている。例えば、文献
「蒸気タービン部材の新しい非破壊的経年劣化診断技術
」 (斉藤潔他4名著、構造用金属材料の劣化・罰傷の
実態と非破壊検査技術シンポジウム論文集、日本非破壊
検査協会、昭和59年9月)にはこの点が詳述されてい
る。つまり、蒸気タービンロータ用の低合金鋼(CrM
oV鋼)について健全材と焼戻し脆化材料に対してれぞ
れ分極試験を行なうと、結果は第9図に示すようになり
、電流の極小値I、(再不働態電流)と脆化量とを関係
づけることができる。ただし、脆化量とは破面遷移温度
FATTの上背分ΔFATTである。蒸気タービンの1
4温羽根などに使用されるマルテンサイト系ステンレス
鋼(12Cr鋼)について分極試験を行なうと結果は第
10図の曲線図に示すようになり、ピーク電流■、をや
はり脆化量の一つである上部硼酸衝撃値に関係づけるこ
とができる。The test results of such a test are shown in the curve diagram of FIG. 9, for example. The figure shows the measurement results when the potential between the reference electrode 3 and the sample 9 was initially increased at a constant rate, held at a specific potential, and then decreased. By the way, it is known that when this polarization test is performed using a certain solution, a significant difference appears in the polarization characteristics between embrittled and non-embrittled materials. For example, the literature "New Nondestructive Aging Deterioration Diagnosis Technology for Steam Turbine Components" (by Kiyoshi Saito and 4 other authors, the actual state of deterioration and damage of structural metal materials and collection of papers from the Nondestructive Inspection Technology Symposium, Japan Nondestructive Inspection Association, (September 1982) explains this point in detail. In other words, low alloy steel (CrM) for steam turbine rotors
When a polarization test was conducted on a sound material and a tempered embrittlement material (oV steel), the results were shown in Figure 9, and the minimum value of current I, (repassivation current) and the amount of embrittlement were can be related. However, the amount of embrittlement is the upper height ΔFATT of the fracture surface transition temperature FATT. steam turbine 1
When a polarization test is conducted on martensitic stainless steel (12Cr steel) used in 4-temperature blades, the results are shown in the curve diagram in Figure 10, and the peak current ■ is also one of the embrittlement amounts. It can be related to a certain upper boric acid impact value.
通常、分極試験は第8図に示すように被測定試料を電解
溶液の中に浸すことにより行なうが、この分極試験を実
機部材から試料を切り出して電解液中で行なうことなく
非破壊的に行なえるようにしたのが特開昭59−815
52号公報、特開昭57−142540号公報、特開昭
57−138051号公報などに開示されている装置で
ある。分極試験を非破壊で行なうことができるように、
これらの試験装置は第11図の概略構成図に示すような
測定セル1を有しており、これを被測定物であるタービ
ンロータ2に押し当てることにより分極特性の測定を行
なう。同図に示すように、測定セル1はパツキン6に囲
まれた開口部8を有し、測定セル1内に電解液5を充填
して、照合電極3と対極4間の電流値をポテンショスタ
ット91を介して測定するとともに温度計7に接続され
る温度測定装置96により温度測定を行なうことによっ
てタービンロータ2の脆化量を測定する。Normally, a polarization test is performed by immersing the sample to be measured in an electrolytic solution as shown in Figure 8, but this polarization test can be performed non-destructively without cutting out the sample from the actual component and placing it in the electrolytic solution. It was published in Japanese Unexamined Patent Application Publication No. 59-815 that
This device is disclosed in Japanese Patent Application Laid-Open No. 57-142540, Japanese Patent Application Laid-Open No. 57-138051, and the like. So that polarization tests can be performed non-destructively,
These test devices have a measurement cell 1 as shown in the schematic diagram of FIG. 11, and measure polarization characteristics by pressing this against a turbine rotor 2, which is an object to be measured. As shown in the figure, the measuring cell 1 has an opening 8 surrounded by a packing 6, and the measuring cell 1 is filled with an electrolytic solution 5, and the current value between the reference electrode 3 and the counter electrode 4 is controlled by a potentiostat. The amount of embrittlement of the turbine rotor 2 is measured by measuring the temperature via the temperature measuring device 91 and the temperature measuring device 96 connected to the thermometer 7 .
しかしながら、これら従来の試験装置においては以下に
述べるような不都合があった。However, these conventional test devices have the following disadvantages.
(1) 計測値が測定セルに依存する。(1) The measured value depends on the measurement cell.
分極試験は材料の電気化学的特性を測定しているため、
測定中にFe”が電解液中に溶は出してくる。そして、
電解液の容量に比べてFe2+の量が十分に小さければ
測定結果はその影響をほとんど受けない。ところが、電
解液の量に比べてFe2+のmが大きい時には測定結果
がその彩管を受けるため、ばらつきを生じて不正確にな
る。Because polarization tests measure the electrochemical properties of materials,
During the measurement, Fe'' is dissolved into the electrolyte. Then,
If the amount of Fe2+ is sufficiently small compared to the capacity of the electrolytic solution, the measurement results will hardly be affected by it. However, when m of Fe2+ is large compared to the amount of electrolyte, the measurement results are influenced by the color tube, resulting in variations and inaccuracies.
(2) 計測値が測定温度に依存する。(2) The measured value depends on the measured temperature.
分極特性の測定は高温で長時間使用されるブラントの部
材に対して非破壊的に行なわれる。このため、計測はプ
ラントが設置されている現場で行なわれることが多いが
、測定時の温度は計測する時期によって変化する。これ
に対して、分極特性は材料の電気化学的特性であるため
、その化学反応の速度が温度に依存し、従って精度の高
い測定のための障害となっていた。Measurement of polarization characteristics is performed non-destructively on blunt members that are used at high temperatures for long periods of time. For this reason, measurements are often performed at the site where the plant is installed, but the temperature at the time of measurement changes depending on the time of measurement. On the other hand, since the polarization property is an electrochemical property of the material, the rate of the chemical reaction depends on the temperature, which has been an obstacle to highly accurate measurement.
以上述べたように、従来の分極試験方式の脆化診断装置
は測定セルの容量や測定時の温度によって計測結果が影
響を受け、測定結果にばらつきを生じていた。また第9
図の曲線図に示すように、計測された電流■、は脆化m
ΔFATTを示すのみで実機部材の信頼性の診断に必要
な破面遷移温11FATTの絶対値そのものを正確に測
定することは困難であるため、脆化診断の信頼性向上の
障害となっていた。As described above, in the conventional embrittlement diagnostic device using the polarization test method, the measurement results are affected by the capacitance of the measurement cell and the temperature at the time of measurement, resulting in variations in the measurement results. Also the 9th
As shown in the curve diagram in the figure, the measured current ■ is the embrittlement m
It is difficult to accurately measure the absolute value of the fracture surface transition temperature 11FATT, which is necessary for diagnosing the reliability of actual machine parts, by simply showing ΔFATT, which has been an obstacle to improving the reliability of embrittlement diagnosis.
従って、本発明の目的は従来の分極試験装置が有してい
た測定セルに起因する測定ばらつきや、測定温度に起因
する測定誤差を低減し、精度よく分極特性を測定し、部
材の脆化量を判定するとともに最終的に部材の破面遷移
温度FATTの絶対値や上部硼酸衝撃値を正確に算出す
ることを可能とした脆化診断装置を提供することにある
。Therefore, the purpose of the present invention is to reduce the measurement variations caused by the measurement cells of the conventional polarization test equipment and the measurement errors caused by the measurement temperature, to measure polarization characteristics with high accuracy, and to reduce the amount of embrittlement of parts. An object of the present invention is to provide an embrittlement diagnostic device that can accurately calculate the absolute value of the fracture surface transition temperature FATT and the upper boric acid impact value of the member.
上記目的を達成するために、本発明は試料に対向する開
口部を有し、内部に電解液を充填すると共に参照電極と
対極を配した測定セルと、前記参照電極と対極間に関数
的に電圧を印加すると共にその電流値を測定する計測手
段と、予め設定された条件と前記計測手段の出力信号に
基づいて試料の脆化量を演算する手段とを備えたことを
特徴とする脆化診断装置を提供するものである。In order to achieve the above object, the present invention provides a measurement cell having an opening facing a sample, filled with an electrolytic solution, and having a reference electrode and a counter electrode arranged therein, and a measurement cell having an opening facing the sample, and a measurement cell having a reference electrode and a counter electrode arranged therein. Embrittlement characterized by comprising a measuring means for applying a voltage and measuring the current value, and a means for calculating the amount of embrittlement of a sample based on preset conditions and an output signal of the measuring means. The present invention provides a diagnostic device.
以下、図面を参照しながら本発明の詳細な説明する。 Hereinafter, the present invention will be described in detail with reference to the drawings.
第1図は本発明の一実施例に係る脆化診断装置のブロッ
ク図で、特にCrMoV低合金鋼で作られた蒸気タービ
ンロータの脆化測定に適用した場合を例示するものであ
る。同図に示すように、測定セル1は被測定物であるロ
ータ2の表面に押しつけて固定されている。測定セル1
は例えば第11図の概略構成図に示すような構造となっ
ている。つまり、測定セル1内に電解液5を満たすとと
もに対極4と照合電極3と温度計7を配しており、パツ
キン6で囲まれた開口部8を介して電解液5がロータ2
に接するよう構成される。この、対極4と照合電極3は
ポテンショスタット91に接続されている。一方、ポテ
ンショスタット91はロータ2とも接続される。温度計
7の出力は温度測定装置96に接続しており、温度測定
装置96からの信号は温度補正演算装置97に接続され
ている。ポテンショスタット91の出力信号は分極特性
演算装置98に接続される。分極特性演算装置98の出
力信号は温度補正演算装置97の出力信号および測定セ
ル補正演算装置99の出力信号とともに脆化診断装置1
00に接続される。FIG. 1 is a block diagram of an embrittlement diagnostic device according to an embodiment of the present invention, which particularly illustrates a case where the device is applied to embrittlement measurement of a steam turbine rotor made of CrMoV low alloy steel. As shown in the figure, a measurement cell 1 is pressed and fixed against the surface of a rotor 2, which is an object to be measured. Measuring cell 1
For example, it has a structure as shown in the schematic diagram of FIG. 11. That is, the measuring cell 1 is filled with an electrolytic solution 5, and a counter electrode 4, a reference electrode 3, and a thermometer 7 are arranged.
It is configured so that it is in contact with The counter electrode 4 and reference electrode 3 are connected to a potentiostat 91. On the other hand, the potentiostat 91 is also connected to the rotor 2. The output of the thermometer 7 is connected to a temperature measuring device 96, and the signal from the temperature measuring device 96 is connected to a temperature correction calculation device 97. The output signal of the potentiostat 91 is connected to a polarization characteristic calculation device 98. The output signal of the polarization characteristic calculation device 98 is combined with the output signal of the temperature correction calculation device 97 and the output signal of the measurement cell correction calculation device 99 in the embrittlement diagnosis device 1.
Connected to 00.
脆化層演算装置100の出力信号は衝撃特性演算装N1
01を介して出力装置102に導出される。The output signal of the embrittlement layer calculation device 100 is the impact characteristic calculation device N1.
01 to the output device 102.
測定に係る各種設定データは設定データ入力装置103
に設定され、設定データは衝撃特性演算装置101と測
定セル補正演算装置99に送出される。Various setting data related to measurement are input to the setting data input device 103.
The setting data is sent to the impact characteristic calculation device 101 and the measurement cell correction calculation device 99.
かかる構成において、次にその作用を説明する。In this configuration, its operation will be explained next.
ポテンショスタット91によりロータ2と照合電極3間
の電位差を制御し、一定速度で電位を上昇させた後に一
定時間電位を保持し、逆に一定速度で電位を減少させて
いき、このとき対極4とロータ2の間に流れる電流をポ
テンショスタット91によって測定する。この測定に係
る電流と電圧は逐時分極特性演算装@98に入力される
。この電流と電圧の関係は第9図の曲線図のようになる
。電流の極小値1.(再不働!21電流)は分極特性演
算装ff198によって算出され、脆化量演算−装置1
00に入力される。The potentiostat 91 controls the potential difference between the rotor 2 and the reference electrode 3, increases the potential at a constant rate, holds the potential for a certain period of time, and conversely decreases the potential at a constant rate. The current flowing between the rotors 2 is measured by a potentiostat 91. The current and voltage related to this measurement are input to the polarization characteristic calculation unit @98 in time. The relationship between this current and voltage is as shown in the curve diagram in FIG. Minimum value of current 1. (Re-immobility!21 current) is calculated by the polarization characteristic calculation device ff198, and the embrittlement amount calculation device 1
00 is input.
脆化量ΔFATTと再不働態電流Irとは第2図の特性
図に示すような関係となる。ところがこの関係は温度T
が一定温度T。であり、しかも測定試料のFe2+の溶
出量が電解液5の■に対して十分に小ざい場合に成立す
るものである。これに対して、一般にプラントの構造部
品の脆化診断を行なう場合、計測は現地で行なう必要が
あり、測定湯度Tは必ずしも一定潟度T。とはならない
。The amount of embrittlement ΔFATT and the repassivation current Ir have a relationship as shown in the characteristic diagram of FIG. 2. However, this relationship depends on the temperature T
is a constant temperature T. Moreover, this holds true when the amount of Fe2+ eluted from the measurement sample is sufficiently smaller than (2) of the electrolytic solution 5. On the other hand, when diagnosing embrittlement of structural parts of a plant, measurements must be performed on-site, and the measured hot water temperature T is not necessarily a constant lagoonal temperature T. It is not.
また、実構造物の任意の部位で測定′を可能とするため
には測定セル1を極力小さくする必要がある。Furthermore, in order to make measurement possible at any location of the actual structure, it is necessary to make the measurement cell 1 as small as possible.
従って、測定中に電解液5中に溶は出すFe2+の量に
対して十分大きな電解液墨を得ることは困難である。Therefore, it is difficult to obtain a sufficiently large electrolyte black for the amount of Fe2+ dissolved into the electrolyte 5 during measurement.
温度T、で計測される再不働態電流を1.とすると、こ
の値は温度によるばらつきを含んでいる。The repassivation current measured at temperature T is 1. This value includes variations due to temperature.
温度補正FA算装置97はこの電流1.を!S準温度T
oに対応する値I0へ補正する作用を右する。The temperature correction FA calculation device 97 calculates this current 1. of! S quasi-temperature T
The action of correcting o to the value I0 is performed.
一方、測定セル補正演算装置99は測定セル1を代表す
る値、つまり電解液容置■と測定面積△の容量/面積比
によって再不fII態電流と脆化量との関係(評価曲線
)を補正し、温度補正された再不働態電流■。から脆化
量ΔFATTを求める。On the other hand, the measurement cell correction calculation device 99 corrects the relationship (evaluation curve) between the re-FII state current and the amount of embrittlement using a value representative of the measurement cell 1, that is, the capacity/area ratio of the electrolyte container ■ and the measurement area Δ. and temperature-compensated re-passive current■. The amount of embrittlement ΔFATT is calculated from
脆化診断装置100によって算出された脆化量すなわち
破面遷移温度FATTの上昇分ΔFATTは衝撃特性演
算装置101に入力される。衝撃特性演算装置101は
まず最初に被測定物の製造時の破面遷移温度FATTを
材料の化学成分と製造時の機械的性質(引張り強さ等)
を利用して算出する。次に製造時の破面遷移温度FAT
Tにその上昇分ΔFATTを加えて現時点での破面遷移
温度FATTとする。設定データ入力装@103は製造
時の破面遷移温度FATTを求めるために必要な化学成
分や機械的性質および測定セルの開側面積Aと電解液の
体積■を入力設定し、これらの値を衝撃特性演算装置1
01と測定セル補正演算装置99に送出するものである
。The amount of embrittlement calculated by the embrittlement diagnosis device 100, that is, the increase ΔFATT in the fracture surface transition temperature FATT is input to the impact property calculation device 101. The impact property calculation device 101 first calculates the fracture surface transition temperature FATT at the time of manufacture of the object to be measured, the chemical composition of the material, and the mechanical properties at the time of manufacture (tensile strength, etc.).
Calculate using. Next, the fracture surface transition temperature FAT during manufacturing
The increase amount ΔFATT is added to T to obtain the current fracture surface transition temperature FATT. The setting data input device @103 is used to input and set the chemical components and mechanical properties necessary to determine the fracture surface transition temperature FATT during manufacturing, as well as the open area A of the measurement cell and the volume of the electrolyte solution. Impact characteristic calculation device 1
01 and is sent to the measurement cell correction calculation device 99.
出力装置102は分極特性計測の結果得られる第9図の
ような分極曲線と脆化伍ΔFATTおよび破面遷移温度
FATTを出力する。The output device 102 outputs a polarization curve as shown in FIG. 9 obtained as a result of polarization characteristic measurement, an embrittlement level ΔFATT, and a fracture surface transition temperature FATT.
測定セル1の中に挿入する温度計7は、測定温度の変化
範囲内で使用可能で温度を電気的に出力できるものなら
どんなものでも良く、例えば熱雷対や電気抵抗温度計等
が利用される。The thermometer 7 inserted into the measurement cell 1 may be of any type as long as it can be used within the range of measurement temperature changes and can output temperature electrically; for example, a thermometer, an electrical resistance thermometer, etc. may be used. Ru.
ここで、温度補正演算装置97による湿度補正の具体的
方法について説明する。Here, a specific method of humidity correction by the temperature correction calculation device 97 will be explained.
分極特性である再不働態電流しは測定セル1の容量/面
積比V/Aが無限大の時、測定温度Tに対して第3図の
特性図に示すように変化する。When the capacitance/area ratio V/A of the measurement cell 1 is infinite, the repassivation current, which is a polarization characteristic, changes with respect to the measurement temperature T as shown in the characteristic diagram of FIG. 3.
従って、第3図の特性を利用すれば温度T、に対する測
定値I、からどのΔF△−r Tの曲線にのっているか
が判る。この曲線をΔF A T’ T i とすると
、基準温度T。に対する再不働態電流l。を求めること
ができる。Therefore, by using the characteristics shown in FIG. 3, it can be determined which curve of ΔFΔ-rT lies on the measured value I with respect to temperature T. If this curve is ΔF A T' T i , then the reference temperature T. The repassivation current for l. can be found.
ただし、このΔFATT、は測定セルのV/Aの影響を
含んだ見掛けのものであり、■oち測定セル1の代表値
である容量/面積比V/Aの影フ1を含んだものである
。従って、測定セル1の影響を取り除くためさらに補正
が必要である。However, this ΔFATT is an apparent value that includes the influence of the V/A of the measurement cell, and also includes the influence of the capacitance/area ratio V/A, which is the representative value of the measurement cell 1. be. Therefore, further correction is required to remove the influence of measurement cell 1.
そこで、次に測定セル1に起因する誤差の補正方法につ
いて説明する。Therefore, next, a method of correcting errors caused by the measurement cell 1 will be explained.
分極特性の測定中に溶液中に溶は出すFe2+は、被測
定物に測定セル1を押し当てた時に被測定物が電解液5
に接する面積、すなわち測定面積Aに比例する。従って
、測定中に電解液5中に溶は出すFe2+の邑と電解液
5の体積■との比は測定面積へと電解液5の体積Vとの
容ffi/面積比V/Aで表わすことができる。Fe2+, which is dissolved into the solution during the measurement of polarization characteristics, is caused by the fact that when the measurement cell 1 is pressed against the measurement object, the electrolyte 5
, that is, it is proportional to the measurement area A. Therefore, the ratio between the volume of Fe2+ dissolved in the electrolytic solution 5 during measurement and the volume of the electrolytic solution 5 can be expressed as the volume ffi/area ratio V/A of the volume V of the electrolytic solution 5 to the measurement area. I can do it.
第4図は基準温度T。における再不働態化電流■ と脆
化jΔFATTの関係を817面積比■/Δをパラメー
タとして表わした特性図である。Figure 4 shows the reference temperature T. 817 is a characteristic diagram showing the relationship between the repassivation current (■) and the embrittlement jΔFATT using the area ratio (■/Δ) as a parameter.
す゛なわち、容量/面積比V/Aが一定値S。より大き
ければ評価曲線は一つの曲線となり、それよりも小さけ
ればその値によって評価曲線は変化する。測定セル補正
演算装置99は設定データ入力装置103からの出力で
ある測定セル1の代表値である容暑/面積比V/Aを用
い、第4図の曲線上で温度補正演算装置97で求められ
た再不働態電流I。に対する脆化但ΔFATTを求める
。In other words, the capacity/area ratio V/A is a constant value S. If it is larger, the evaluation curve becomes one curve, and if it is smaller, the evaluation curve changes depending on the value. The measurement cell correction calculation device 99 uses the temperature/area ratio V/A, which is the representative value of the measurement cell 1 and is output from the setting data input device 103, and calculates the value using the temperature correction calculation device 97 on the curve shown in FIG. The repassivating current I. Find the embrittlement difference ΔFATT.
以上のようにして求められた脆化囲ΔFA、T−Tが温
度Tと測定セル1の影響を取除いた真の脆化吊ΔFAT
Tである。The embrittlement envelope ΔFA and T-T obtained as above are the true embrittlement envelope ΔFAT with the influence of temperature T and measurement cell 1 removed.
It is T.
次に、衝撃特性演算装置101で製造時の破面遷移温度
FATTを算出する方法について説明する。Next, a method of calculating the fracture surface transition temperature FATT during manufacturing using the impact property calculation device 101 will be described.
材料の破面遷移温度FATTはその化学成分および機械
的性質と相関関係がある。本実施例ではこの点に着目し
て、材料の製造時の破面遷移温度FATTを材料の各化
学成分の重量パーセントと機械的性質(引張り強さ、伸
び、降伏強さ等)との回帰式により算出する。すなわち
、各化学成分の重量パーセントおよび機械的性質をx、
<r=1〜n)とし、それに対応する回帰係数を8゜(
i=o−n)とすると、製造時の破面遷移温度FATT
は次式によって算出できる。The fracture transition temperature FATT of a material is correlated with its chemical composition and mechanical properties. In this example, we focused on this point, and calculated the fracture surface transition temperature FATT during material manufacture using a regression equation between the weight percentage of each chemical component of the material and mechanical properties (tensile strength, elongation, yield strength, etc.). Calculated by That is, the weight percent and mechanical properties of each chemical component are x,
< r = 1 to n), and the corresponding regression coefficient is 8° (
i=o-n), the fracture surface transition temperature FATT during manufacturing
can be calculated using the following formula.
FATT=B + Σ B・X・ ・・・・・・(
1)0 、 11
1=ま
ただし、B、は回帰係数、X、は独立変数、具体目
的には各化学成分の重量バーセン1−と機械的性質を表
わす係数である。ちなみに、回帰係数B、はあらかじめ
破面遷移温度FATTのわかっている材料について回帰
分析を行ない定めたものである。FATT=B + Σ B・X・・・・・・・(
1) 0, 11 1 = where B is a regression coefficient, X is an independent variable, and for specific purposes is a coefficient representing the weight basis 1- of each chemical component and mechanical properties. Incidentally, the regression coefficient B is determined by performing regression analysis on a material whose fracture surface transition temperature FATT is known in advance.
上述のように、本実施例では、測定温度A′)3111
定ゼルに起因する分極特性値のバラツキを補正づること
により従来に比較してはるかに積電の良い信頼性の高い
分極特性を得ることができる。従って、これらの分極特
性値を利用して算出される脆化酊ΔFATTとしても精
度の良い値を得ることができる。また、従来は単に分極
特性計測結果として分極曲線を出力するのが一般的であ
ったが、本実施例の構成では設計、保守に直接必要な脆
化但ΔFATTや破面遷移温度FATT@算出して出力
するため保守管理に直ちに役立てることができる。As mentioned above, in this example, the measured temperature A') 3111
By correcting the variation in the polarization characteristic value caused by a constant cell, it is possible to obtain a highly reliable polarization characteristic with much better charge accumulation than in the past. Therefore, an accurate value can be obtained as the embrittlement stiffness ΔFATT calculated using these polarization characteristic values. In addition, conventionally, it was common to simply output a polarization curve as a polarization characteristic measurement result, but with the configuration of this embodiment, the embrittlement temperature ΔFATT and fracture surface transition temperature FATT @ calculated are directly necessary for design and maintenance. It can be used immediately for maintenance management as it is outputted as an image.
次に、本発明をマルテンサイト系ステンレス鋼(12C
r鋼)から成る蒸気タービンの高温動翼に適用した場合
について説明する。蒸気タービンの高温動翼はロータと
同様に高温(500℃以上)で長時間使用されるため、
経年的に脆化が起こり、その脆化間を定m的に把握する
ことが必要である。Next, the present invention was applied to martensitic stainless steel (12C
A case will be described in which the present invention is applied to a high-temperature rotor blade of a steam turbine made of steel. Like the rotor, the high-temperature rotor blades of a steam turbine are used for long periods of time at high temperatures (over 500°C).
Brittleness occurs over time, and it is necessary to periodically grasp the period of embrittlement.
ところが、12Cr鋼の場合、分極曲線は第10図の曲
線図に示すようになり、ピーク電流■ は上部硝酸衝撃
値E に対して第5図のp v
shelf
特性図に示すような関係となる。このため、分極特性演
算装置98はこのピーク電流I、を検知1ノ、脆化伍演
算装@100に入力する。脆化診断装置100は第5図
のピーク電流■。と上部硝酸衝撃値E の関係から
上部硝酸衝撃値Evshelf5helf
を算出づる。However, in the case of 12Cr steel, the polarization curve becomes as shown in the curve diagram in Fig. 10, and the peak current ■ is determined by p v in Fig. 5 with respect to the upper nitric acid impact value E.
The relationship is as shown in the shelf characteristic diagram. Therefore, the polarization characteristic calculation device 98 detects this peak current I and inputs it to the embrittlement 5 calculation device @100. The embrittlement diagnostic device 100 detects the peak current ■ in FIG. The upper nitric acid impact value Evshelf5helf is calculated from the relationship between the upper nitric acid impact value Evshelf and the upper nitric acid impact value E.
この際、ピーク電流ipに温度補正演算装置99により
温度補正を加え、測定セル1による補正を行なって温度
差と測定セル1に起因するバラツキの補正を行なうのは
、CrMoV低合金鋼のタービンロータの場合と同様で
ある。ただし、CrMOV低合金鋼の場合、温度補正は
第3図の電流I、と温度Tの関係を利用するが、12C
r鋼の場合、第6図の特性図に示すようなピーク電流I
、と温度Tの関係を利用する。At this time, temperature correction is applied to the peak current ip by the temperature correction calculation device 99, and correction is performed by the measurement cell 1 to correct the temperature difference and the variation caused by the measurement cell 1. The same is true for . However, in the case of CrMOV low alloy steel, temperature correction uses the relationship between current I and temperature T in Figure 3, but 12C
In the case of r steel, the peak current I as shown in the characteristic diagram in Figure 6
, and temperature T.
また、測定セル1の補正は第7図の特性図に示すように
、評価曲線を容fa/面積比V/△の値により補正する
。Further, the measurement cell 1 is corrected by correcting the evaluation curve using the value of the volume fa/area ratio V/Δ, as shown in the characteristic diagram of FIG.
また、タービンロータの場合は、脆化伍として破面遷移
温度FATTの上昇分ΔFATTが1qられるのに対し
、高温動翼の場合は、脆化世として上部硝酸衝撃値の絶
対値Evshelfが必要なため、W撃性性演算装置1
01は脆化診断装置100で算出された上部棚IIi!
ms値Evsゎ。1.をそのまま出力装置102に送出
する。設定データ入力装置103は測定セル1の計測面
V4Aと電解液5の容ff1Vだけ入力し、出力装置1
02は分極曲線、ピーク電流I 1上部棚域笥撃値Ev
shelfを出力する。In addition, in the case of a turbine rotor, the increase in the fracture surface transition temperature FATT is set by 1q as embrittlement progresses, whereas in the case of high-temperature rotor blades, the absolute value Evshelf of the upper nitric acid impact value is required as embrittlement progress. Therefore, W-impact calculation device 1
01 is the upper shelf IIi calculated by the embrittlement diagnosis device 100!
ms value Evsゎ. 1. is sent as is to the output device 102. The setting data input device 103 inputs only the measurement surface V4A of the measurement cell 1 and the volume ff1V of the electrolytic solution 5, and the output device 1
02 is the polarization curve, peak current I 1 upper shelf area siege value Ev
Output shelf.
この場合も、タービンロータについての例と同様に、温
度や測定セルに起因するバラツキの補正を行なって分極
特性を求めているため、従来方法よりも大幅に精度の良
い脆化間としての上部硝酸衝撃値E を得ることが
できる。In this case, as in the example for the turbine rotor, the polarization characteristics are determined by correcting for variations caused by temperature and measurement cells, so the upper nitric The impact value E can be obtained.
vshe l f
(発明の効果)
以上述べたように、本発明によれば、金属材料の経年的
な脆化を非破壊計測で求めるに当って、従来は単に測定
値のばらつきとしていた温度差に起因する誤差や測定セ
ルに起因する誤差について、温度差と分極特性の関係お
よび測定セルの代表値、つまり測定面積と電解液容量の
比と分極特性の関係を明確にし、これらの関係を利用し
て適切な補正を加えて分極特性を求めているため、従来
に比べてはるかに精度の良い分極特性を得る事ができ、
これから得られる脆化間も信頼性の高い脆化診断装置を
得ることができる。vshelf (Effects of the Invention) As described above, according to the present invention, when determining the aging embrittlement of metal materials by non-destructive measurement, temperature differences, which conventionally were simply considered as variations in measured values, can be Regarding errors caused by errors and errors caused by the measurement cell, clarify the relationship between the temperature difference and polarization characteristics and the representative value of the measurement cell, that is, the relationship between the ratio of measurement area and electrolyte capacity and polarization characteristics, and use these relationships. Since the polarization characteristics are determined by adding appropriate corrections, it is possible to obtain polarization characteristics with much higher accuracy than conventional methods.
As a result, a highly reliable embrittlement diagnostic device can be obtained even during embrittlement.
また、本発明は試験結果として分極曲線を出ノJするだ
けでなく、分極特性と脆化mの間に特有の関係があるこ
とに着目して、脆化伍△FATTかあるいは上部硝酸衝
撃値E を算出することvshe l f
を可能とした脆化診断装置を実現している。In addition, the present invention not only obtains a polarization curve as a test result, but also focuses on the unique relationship between polarization characteristics and embrittlement m, and calculates the embrittlement level △FATT or upper nitric acid impact value. An embrittlement diagnostic device that makes it possible to calculate E vsshelf has been realized.
一方、CrMOV低合金鋼に本発明を適用する場合、さ
らに化学成分や機械的性質と部材の製造時の破面遷移温
度FATTの間の関係と、ΔFATTから現時点での破
面遷移温度FATTの絶対値を求めるようになっている
ので、経年的に脆化することが懸念される高温で長時間
使用される構造物の保守管理に多大の貢献をすることが
できる。On the other hand, when applying the present invention to CrMOV low-alloy steel, the relationship between the chemical composition and mechanical properties and the fracture surface transition temperature FATT at the time of manufacturing the component, and the absolute value of the current fracture surface transition temperature FATT from ΔFATT. Since the value can be determined, it can greatly contribute to the maintenance and management of structures that are used for long periods of time at high temperatures, where there is concern that they may become brittle over time.
第1図は本発明の一実施例に係る脆化診断装置のブロッ
ク図、
第2図は脆化mΔFATTと再不lal態電流■。
の関係を示づ特性図、
第3図は測定湯度Tと再不II態電流■、の関係を示す
特性図、
第4図は測定セルの容fit/面積比V/Aと再不働S
電流I、の関係を示す特性図、
第5図はビーク′R流■ と上部硼酸衝撃値Evshe
lfの関係を示す特性図、
第6図は温度Tとピーク電流■、との関係を示す特性図
、
第7図は測定セル1の容量/面積比V/Aとピーク電流
■、の関係を示す特性図、
第8図は従来の分極試験装置のブロック図、第9図はC
rMoV低合金鋼に対する分極曲線の一例を示す曲線図
、
第10図は12Cr鋼に対する分極曲線の一例を示す曲
線図、
第11図は測定セルの一例を示す配置図である。
1・・・測定セル、2・・・タービンロータ、3・・・
照合電極、4・・・対極、5・・・電解液、6・・・パ
ツキン、7・・・温度計、91・・・ポテンショスタッ
ト、96・・・温度測定装置、97・・・温度補正演算
装置、98・・・分極特性演算装置、99・・・測定セ
ル補正演粋装置、100・・・脆化量演算装置、101
・・・衝撃特性演算装置、102・・・出力装置、10
3・・・設定データ入力装置。
出願人代理人 猪 股 清
第2図
測定温aT
見3図
第4図
第5図
莞9図
電位Y
第10図FIG. 1 is a block diagram of an embrittlement diagnostic device according to an embodiment of the present invention, and FIG. 2 shows embrittlement mΔFATT and re-alil state current (2). Figure 3 is a characteristic diagram showing the relationship between the measured hot water temperature T and the re-passive state current ■, and Figure 4 is a characteristic diagram showing the relationship between the measured cell fit/area ratio V/A and the re-passive current S.
A characteristic diagram showing the relationship between the current I and Figure 5 shows the relationship between the peak R current and the upper boric acid impact value Evshe.
Figure 6 is a characteristic diagram showing the relationship between temperature T and peak current ■, Figure 7 is a characteristic diagram showing the relationship between capacitance/area ratio V/A of measurement cell 1 and peak current ■. Figure 8 is a block diagram of a conventional polarization test device, Figure 9 is a characteristic diagram of C
FIG. 10 is a curve diagram showing an example of a polarization curve for rMoV low alloy steel; FIG. 10 is a curve diagram showing an example of a polarization curve for 12Cr steel; FIG. 11 is a layout diagram showing an example of a measurement cell. 1... Measuring cell, 2... Turbine rotor, 3...
Reference electrode, 4... Counter electrode, 5... Electrolyte, 6... Packing, 7... Thermometer, 91... Potentiostat, 96... Temperature measuring device, 97... Temperature correction Calculation device, 98... Polarization characteristic calculation device, 99... Measurement cell correction calculation device, 100... Embrittlement amount calculation device, 101
... Impact characteristic calculation device, 102 ... Output device, 10
3...Setting data input device. Applicant's representative Kiyoshi Inomata Figure 2 Measured temperature aT Figure 3 Figure 4 Figure 5 Figure 9 Potential Y Figure 10
Claims (1)
すると共に参照電極と対極を配した測定セルと、前記参
照電極と対極間に関数的に電圧を印加すると共にその電
流値を測定する計測手段と、予め設定された条件と前記
計測手段の出力信号に基づいて試料の脆化量を演算する
手段とを備えたことを特徴とする脆化診断装置。 2、前記計測手段は電解液の温度を計測する手段を備え
、この手段から前記演算手段に温度補正信号を与えるこ
とを特徴とする特許請求の範囲第1項に記載の脆化診断
装置。 3、前記演算手段は予め設定された条件として、測定セ
ル開口部面積と電解液の量を入力し、各量の比に基づい
て演算結果を補正することを特徴とする特許請求の範囲
第1項に記載の脆化診断装置。 4、前記演算手段は予め設定された条件として、試料の
成分、性質によつて決定される脆化量の初期値が入力さ
れ、試料の絶対的な脆化状態を演算することを特徴とす
る特許請求の範囲第1項に記載の脆化診断装置。[Claims] 1. A measurement cell having an opening facing the sample, filled with an electrolytic solution, and having a reference electrode and a counter electrode arranged therein, and applying a voltage functionally between the reference electrode and the counter electrode. An embrittlement diagnostic device comprising: a measuring means for measuring the current value at the same time; and means for calculating the amount of embrittlement of the sample based on preset conditions and an output signal of the measuring means. 2. The embrittlement diagnostic device according to claim 1, wherein the measuring means includes means for measuring the temperature of the electrolytic solution, and the means provides a temperature correction signal to the calculating means. 3. The calculation means inputs the measurement cell opening area and the amount of electrolyte as preset conditions, and corrects the calculation result based on the ratio of each amount. The embrittlement diagnostic device described in section. 4. The calculation means is characterized in that an initial value of the amount of embrittlement determined by the components and properties of the sample is inputted as a preset condition, and the absolute embrittlement state of the sample is calculated. An embrittlement diagnostic device according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12897885A JPS61286745A (en) | 1985-06-13 | 1985-06-13 | Apparatus for diagnosing embrittlement |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12897885A JPS61286745A (en) | 1985-06-13 | 1985-06-13 | Apparatus for diagnosing embrittlement |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61286745A true JPS61286745A (en) | 1986-12-17 |
Family
ID=14998098
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12897885A Pending JPS61286745A (en) | 1985-06-13 | 1985-06-13 | Apparatus for diagnosing embrittlement |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61286745A (en) |
-
1985
- 1985-06-13 JP JP12897885A patent/JPS61286745A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6280603B1 (en) | Electrochemical noise technique for corrosion | |
EP0504730B1 (en) | Electrochemical measurement system | |
CN113970516B (en) | Metal material corrosion monitoring system and method | |
CN106018505A (en) | Calibration method for concrete chlorine ion content meter | |
Aslam | Potentiodynamic polarization methods for corrosion measurement | |
JPH05340907A (en) | Diagnosing method of corrosion of reinforcing rod or the like in concrete | |
CN108318529A (en) | For the temperature-compensation method of voltage detecting, electric field fingerprint detection method and system | |
JPS61286745A (en) | Apparatus for diagnosing embrittlement | |
JPH0254514B2 (en) | ||
Garzon Sabogal et al. | Resonant column calibration and dynamic torsional shear testing using stepped frequency sweeps | |
Seok et al. | DC potential drop method for evaluating material degradation | |
JPS62145157A (en) | Method for discriminating material quality deterioration of alloy steel with age | |
JPH0210900B2 (en) | ||
JP3441181B2 (en) | Method for detecting deterioration of super heat resistant alloy steel | |
Murphy et al. | Advanced data acquisition for emerging nano-electrochemical sensors | |
JPH01145562A (en) | Inspecting method and device of fracture transition temperature | |
JPH01129154A (en) | Method and apparatus for inspecting embrittlement point of metal material | |
Bicego et al. | JR curve testing utilizing the reversing direct current electrical potential drop method | |
JPS58196450A (en) | Detection of crack shape | |
JP2605109B2 (en) | Deterioration and damage evaluation method for materials by measuring electrode impedance | |
CA2173904C (en) | A procedure for determining the type and quantity of a substance that can be converted electrochemically and that is contained in a gas sample | |
JPH01284732A (en) | Evaluating method for creep life expectancy of high temperature equipment | |
JPS6237340B2 (en) | ||
JPS60243553A (en) | Polarization measurement and apparatus thereof | |
RU2079824C1 (en) | Method testing authenticity of readings of thermoelectric converter |