JPS6128626B2 - - Google Patents

Info

Publication number
JPS6128626B2
JPS6128626B2 JP53157192A JP15719278A JPS6128626B2 JP S6128626 B2 JPS6128626 B2 JP S6128626B2 JP 53157192 A JP53157192 A JP 53157192A JP 15719278 A JP15719278 A JP 15719278A JP S6128626 B2 JPS6128626 B2 JP S6128626B2
Authority
JP
Japan
Prior art keywords
silicon carbide
sample
strength
sintered body
kgf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53157192A
Other languages
Japanese (ja)
Other versions
JPS5585468A (en
Inventor
Shinichi Hara
Yukio Takeda
Kosuke Nakamura
Tokio Oogoshi
Mitsuru Ura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP15719278A priority Critical patent/JPS5585468A/en
Publication of JPS5585468A publication Critical patent/JPS5585468A/en
Publication of JPS6128626B2 publication Critical patent/JPS6128626B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 本発明は炭化珪素の焼結体に係り、特に高強度
の炭化珪素の焼結体に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a sintered body of silicon carbide, and particularly to a sintered body of high strength silicon carbide.

炭化珪素は高温における強度が大きく、化学的
にも極めて安定な材料であり、耐食性や耐酸化性
に優れるなどの特徴を有する。このような炭化珪
素の特徴から高温の構造材料への適用が注目さ
れ、検討されている。これに伴い、高強度焼結体
の製造法の確立が望まれている。
Silicon carbide has high strength at high temperatures, is a chemically extremely stable material, and has characteristics such as excellent corrosion resistance and oxidation resistance. Due to these characteristics of silicon carbide, its application as a high-temperature structural material is attracting attention and being studied. Along with this, there is a desire to establish a method for manufacturing high-strength sintered bodies.

従来より、高強度炭化珪素を得るために主とし
てホツトプレス法が研究されて来ている。その結
果、炭化珪素粉末に金属あるいは金属化合物を添
加し、2000℃前後でホツトプレスすることにより
常温曲げ強度数10Kg/mm2ないし100Kg/mm2の炭化珪
素焼結体が得られている。
Conventionally, hot pressing methods have been mainly studied in order to obtain high-strength silicon carbide. As a result, a silicon carbide sintered body having a room temperature bending strength of 10 Kg/mm 2 to 100 Kg/mm 2 has been obtained by adding a metal or a metal compound to silicon carbide powder and hot pressing at around 2000°C.

炭化珪素は非常に硬い材料でほとんどクリープ
を起こさず、ぜい性破壊する傾向にある。そして
材料の表面に欠陥があると、欠陥部分に応力集中
を起こし、予想よりもはるかに低い力により破壊
される。この傾向は特に高強度の炭化珪素焼結体
に見られる。これは、十分な焼結により、炭化珪
素粒子間の結合が強くなり、表面欠陥が目立つて
来たことにほかならない。この対策としては1μ
m以上の深く鋭い表面傷は完全に無くす必要があ
る。
Silicon carbide is a very hard material that exhibits little creep and is prone to brittle fracture. If there is a defect on the surface of the material, stress will be concentrated in the defective area, and the material will break with a much lower force than expected. This tendency is particularly seen in high-strength silicon carbide sintered bodies. This is simply due to sufficient sintering, which strengthens the bonds between silicon carbide particles and makes surface defects more noticeable. As a countermeasure for this, 1μ
It is necessary to completely eliminate deep and sharp surface scratches of m or more.

従来より行われている方法としては鏡面研摩が
あるが、深い傷は研摩により削り落すのは容易で
ない。複雑形状物の場合は更に容易でない。
Mirror polishing is a conventional method, but it is difficult to remove deep scratches by polishing. It is even more difficult for objects with complex shapes.

本発明の目的は炭化珪素焼結体の表面欠陥を容
易に無くすことにある。
An object of the present invention is to easily eliminate surface defects in silicon carbide sintered bodies.

本発明は炭化珪素焼結体表面に生じた焼結時の
治具の食い込み、機械加工による傷などの欠陥
を、同等の物質を被覆して無くし、機械強度を再
現性良く向上させることにある。
The present invention aims to eliminate defects such as bite of jigs during sintering and scratches caused by machining that occur on the surface of a silicon carbide sintered body by coating it with an equivalent material, thereby improving mechanical strength with good reproducibility. .

本発明は以下に述べる方法により容易に実現さ
れる。
The present invention can be easily realized by the method described below.

第1には気相反応法である。焼結または焼結後
機械加工を施した炭化珪素焼結体を反応容器内に
入れ、原料ガスを容器内に導入し反応させて焼結
体上に付着被覆させる。この方法の特徴として
は、均一な皮膜の生成が可能である。
The first is a gas phase reaction method. A silicon carbide sintered body that has been sintered or machined after sintering is placed in a reaction vessel, and a raw material gas is introduced into the vessel and reacted to adhere and coat the sintered body. A feature of this method is that it is possible to produce a uniform film.

第2には有機シラン化合物を塗布、含浸などに
より焼結体に付着させ焼成する方法である。有機
シラン化合物としてはエチルシリケート、ポリカ
ルボキシシラン等がある。この方法の特徴は、容
易に十分な厚さの膜が得られることである。
The second method is to attach an organic silane compound to a sintered body by coating, impregnating, etc., and then firing it. Examples of organic silane compounds include ethyl silicate and polycarboxysilane. A feature of this method is that a film of sufficient thickness can be easily obtained.

さらに、高温で分解して珪素又は炭化珪素が生
成される物質例えば種々のシリコーン系バイン
ダ、シリコーン樹脂又は、有機シラン化合物を焼
結体に塗布し、炭化水素雰囲気中で加熱しても同
様の効果が得られる。
Furthermore, the same effect can be obtained by coating the sintered body with a substance that decomposes at high temperatures to produce silicon or silicon carbide, such as various silicone binders, silicone resins, or organic silane compounds, and heating it in a hydrocarbon atmosphere. is obtained.

炭化珪素微粉末をスラリーにするなどして付着
し焼成する方法は焼成に1800℃以上の高温が必要
なこと、製品の表面の凹凸が大きい事から本発明
の目的とする効果は得られない。
The method of attaching fine silicon carbide powder to a slurry and firing it requires a high temperature of 1800° C. or higher for firing, and the surface of the product has large irregularities, so that the desired effect of the present invention cannot be obtained.

また本発明の対象となる炭化珪素焼結体はある
程度以上高密度のものが要求される。焼結が不完
全で相対密度が80%に達しない焼結体に適用して
も本発明の効果は得られない。本発明は表面欠陥
の排除に効果がある。
Further, the silicon carbide sintered body to which the present invention is applied is required to have a certain degree of high density. Even if the present invention is applied to a sintered body which is incompletely sintered and whose relative density does not reach 80%, the effects of the present invention cannot be obtained. The present invention is effective in eliminating surface defects.

以下本発明の詳細を具体的実施例によつて説明
する。
The details of the present invention will be explained below using specific examples.

実施例 1 平均粒径2μmの炭化珪素粉末に対して平均粒
径2μmの窒化アルミニウム粉末を2重量%添加
し、さらにシリコーンワニスを10重量%添加し、
らいかい機により1時間混練して炭化珪素粉末組
成物を得た。上記のシリコーンワニスはこれを熱
分解すると珪素として2重量%添加したのとほゞ
等しい。上記炭化珪素粉末組成物を1×10-4torr
以下の真空中で、2000℃、200Kgf/cm2のもとに1
時間ホツトプレスすることによつて、炭化珪素の
理論密度に対して98%の相対密度を有する焼結体
が得られた。この焼結体を2mm×2mm×50mmの直
方体に切断して強度側定用の試料(A)を作成した。
次に、2mm×50mmの面のうち1面は焼結時の表面
が残るようにし、他の3面を鏡面に仕上げた試料
(B)を作成し、この試料20個について焼結時のまゝ
の表面に引張り応力が加わるようにし、曲げ強度
を測定したところ、80〜105Kgf/mm2であつた。
Example 1 2% by weight of aluminum nitride powder with an average particle size of 2 μm was added to silicon carbide powder with an average particle size of 2 μm, and 10% by weight of silicone varnish was added,
The mixture was kneaded for 1 hour using a milling machine to obtain a silicon carbide powder composition. When the above-mentioned silicone varnish is thermally decomposed, it is almost equivalent to adding 2% by weight of silicon. The above silicon carbide powder composition was heated at 1×10 -4 torr.
1 in the following vacuum at 2000℃ and 200Kgf/cm 2
By hot pressing for a period of time, a sintered body having a relative density of 98% of the theoretical density of silicon carbide was obtained. This sintered body was cut into a rectangular parallelepiped of 2 mm x 2 mm x 50 mm to prepare a sample (A) for strength evaluation.
Next, one of the 2 mm x 50 mm surfaces was left with the sintered surface, and the other three surfaces were finished with a mirror finish.
(B) was prepared, tensile stress was applied to the surface as it was at the time of sintering, and the bending strength was measured, and it was 80 to 105 Kgf/mm 2 .

次に上記と同様にして3面を鏡面仕上げし、1
面は約10μmぐらいの凹凸を研摩により形成した
試料(C)について、この凹凸面に引張り応力が加わ
るようにして曲げ強度を測定したところ25〜35Kg
f/mm2であつた。これから明らかなように、炭化珪
素焼結体の強度は表面仕上げの程度に左右され
る。言い換えれば表面の傷、欠陥に影響されるた
め、信頼性のある焼結体を得るには、表面の欠陥
が皆無であることが望まれる。
Next, mirror finish the 3 sides in the same way as above, and
The bending strength of the sample (C), which had an uneven surface of about 10 μm formed by polishing, was measured by applying tensile stress to the uneven surface, and it was 25 to 35 kg.
It was f/ mm2 . As is clear from this, the strength of the silicon carbide sintered body depends on the degree of surface finish. In other words, since it is affected by scratches and defects on the surface, in order to obtain a reliable sintered body, it is desirable that there be no defects on the surface.

前記試料(A)の4面共鏡面仕上げして上記同様に
曲げ強度を測定したところ、72〜103Kgf/mm2であ
つた。最大値は焼結したままの表面を持つ試料(B)
の場合とほとんど変わらないが、最小値は低い。
これは試料によつては無視し得ない微少欠陥が研
摩によつて形成されたためと考えられる。
When all four sides of the sample (A) were mirror-finished and the bending strength was measured in the same manner as above, it was 72 to 103 Kgf/mm 2 . The maximum value is for the sample with an as-sintered surface (B)
It is almost the same as in the case of , but the minimum value is lower.
This is thought to be due to the fact that, depending on the sample, non-negligible micro defects were formed by polishing.

前記試料(A)を反応管に入れ黒鉛治具の上に固定
した。四塩化炭素および四塩化珪素を水素ガスを
キヤリアとして反応管を導入した。高周波加熱に
より1300℃〜1350℃に保ち、炭化珪素を合成し、
試料上に約20μmの厚さに析出させた。この場
合、1300℃以下では反応速度が著しく低下し、
1200℃では収率が悪く実用にならなかつた。また
13500℃を越えると結晶成長が速くなり、表面の
凹凸が増す傾向がある。
The sample (A) was placed in a reaction tube and fixed on a graphite jig. Carbon tetrachloride and silicon tetrachloride were introduced into a reaction tube using hydrogen gas as a carrier. Synthesize silicon carbide by keeping it at 1300℃~1350℃ using high frequency heating.
It was deposited on the sample to a thickness of about 20 μm. In this case, the reaction rate decreases significantly below 1300℃,
At 1200°C, the yield was poor and it was not practical. Also
When the temperature exceeds 13,500°C, crystal growth tends to accelerate and the surface roughness tends to increase.

次に炭化珪素を析出させた面を除き、他の3面
を鏡面研摩し試料(D)を得た。これについて炭化珪
素析出面に引張り応力が加わるようにして曲げ強
度を測定した結果、101〜113Kgf/mm2であつた。
Next, the surface on which silicon carbide was deposited was removed, and the other three surfaces were mirror-polished to obtain a sample (D). Regarding this, the bending strength was measured by applying tensile stress to the silicon carbide precipitation surface, and the result was 101 to 113 Kgf/mm 2 .

実施例 2 実施例1の試料(A)を反応管に入れ黒鉛治具の上
に固定し、モノシランと二酸化炭素を導入した。
高周波加熱により試料を約1500℃に保ち、モノシ
ランと二酸化炭素から炭化珪素を合成し、試料上
に析出させた。
Example 2 Sample (A) of Example 1 was placed in a reaction tube and fixed on a graphite jig, and monosilane and carbon dioxide were introduced.
The sample was kept at approximately 1500°C by high-frequency heating, and silicon carbide was synthesized from monosilane and carbon dioxide and deposited on the sample.

次に炭化珪素を析出させた面以外を試料(D)と同
様に研摩し、炭化珪素析出面に引張り応力が加わ
るようにして曲げ強度を測定した。その結果98〜
114Kgf/mm2であつた。
Next, the surface other than the surface on which silicon carbide was precipitated was polished in the same manner as sample (D), and the bending strength was measured by applying tensile stress to the surface on which silicon carbide was precipitated. The result is 98~
It was 114Kgf/ mm2 .

実施例 3 実施例1の試料(B)の焼成したまゝの面にエチル
シリケートを塗布し、還元雰囲気中で徐々に加熱
し最高温度1500℃で30分保持した。その後酸素を
添加した雰囲気中で900℃で加熱し、表面に露出
している残留炭素を酸化除去し、試料(E)を作成し
た。これのエチルシリケート塗布面に引張り応力
が加わるようにして曲げ強度を測定した。その結
果89〜102Kgf/mm2であつた。
Example 3 Ethyl silicate was applied to the as-fired surface of sample (B) of Example 1, and the sample was gradually heated in a reducing atmosphere and held at a maximum temperature of 1500°C for 30 minutes. Thereafter, it was heated at 900° C. in an oxygen-added atmosphere to oxidize and remove the residual carbon exposed on the surface, producing sample (E). The bending strength was measured by applying tensile stress to the ethyl silicate coated surface. The result was 89-102Kgf/ mm2 .

実施例 4 実施例1の試料(B)の焼成したままの面にポリカ
ルボキシシラン(分子量約1500)を石油エーテル
に溶解して塗布し、実施例3と同様に焼成し測定
した。その結果、89〜105Kgf/mm2の強度が得られ
た。
Example 4 Polycarboxysilane (molecular weight approximately 1500) dissolved in petroleum ether was coated on the as-fired surface of sample (B) of Example 1, and was fired and measured in the same manner as in Example 3. As a result, a strength of 89 to 105 Kgf/mm 2 was obtained.

実施例 5 試料(C)に四塩化炭素、四塩化珪素、水素から生
成した炭化珪素を析出させるとその強度は99〜
110Kgf/mm2となつた。
Example 5 When silicon carbide produced from carbon tetrachloride, silicon tetrachloride, and hydrogen is precipitated on sample (C), its strength is 99~
It became 110Kgf/mm 2 .

実施例 6 試料(C)にモノシランと二酸化炭素から生成した
炭化珪素を析出させると強度は89〜113Kgf/mm2
なつた。
Example 6 When silicon carbide produced from monosilane and carbon dioxide was deposited on sample (C), the strength was 89 to 113 Kgf/mm 2 .

実施例 7 試料(C)にエチルシリケートを塗布し焼付けると
強度は92〜107Kgf/mm2となつた。
Example 7 When sample (C) was coated with ethyl silicate and baked, the strength was 92 to 107 Kgf/mm 2 .

実施例 8 試料(C)にエチルシリケートを含浸させ焼付ける
と強度は94〜113Kgf/mm2となつた。
Example 8 When sample (C) was impregnated with ethyl silicate and baked, the strength was 94 to 113 Kgf/mm 2 .

実施例 9 試料(C)にポリカルボシランを塗布し焼付けると
強度は82〜109Kgf/mm2となつた。
Example 9 When sample (C) was coated with polycarbosilane and baked, the strength was 82 to 109 Kgf/mm 2 .

以上の各実施例で明らかなように、炭化珪素焼
結体の表面に炭化珪素を被覆すると、表面欠陥へ
の応力集中が緩和され、強度が改善される。更に
機械加工後の強度低下を回復するものに有効であ
る。また、数μmないし数10μmの被覆で効果が
あるので加工後の精度をそのまま維持することが
できる。
As is clear from the above examples, when the surface of the silicon carbide sintered body is coated with silicon carbide, stress concentration on surface defects is alleviated and the strength is improved. Furthermore, it is effective for recovering strength loss after machining. Furthermore, since a coating of several micrometers to several tens of micrometers is effective, the accuracy after processing can be maintained.

酸化ホウ素を加えたホツトプレス炭化珪素焼結
体を使つた実験でもほぼ同様の効果を得た。
Almost the same effect was obtained in an experiment using a hot-pressed silicon carbide sintered body containing boron oxide.

Claims (1)

【特許請求の範囲】[Claims] 1 炭化珪素焼結体の表面に、気相反応法による
炭化珪素皮膜および有機珪素化合物の焼成による
炭化珪素皮膜のいずれか1つの炭化珪素皮膜を有
することを特徴とする炭化珪素焼結体。
1. A silicon carbide sintered body, characterized in that the silicon carbide sintered body has, on its surface, one of a silicon carbide film formed by a gas phase reaction method and a silicon carbide film formed by firing an organic silicon compound.
JP15719278A 1978-12-15 1978-12-15 Silicon carbide sintered body Granted JPS5585468A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15719278A JPS5585468A (en) 1978-12-15 1978-12-15 Silicon carbide sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15719278A JPS5585468A (en) 1978-12-15 1978-12-15 Silicon carbide sintered body

Publications (2)

Publication Number Publication Date
JPS5585468A JPS5585468A (en) 1980-06-27
JPS6128626B2 true JPS6128626B2 (en) 1986-07-01

Family

ID=15644203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15719278A Granted JPS5585468A (en) 1978-12-15 1978-12-15 Silicon carbide sintered body

Country Status (1)

Country Link
JP (1) JPS5585468A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4340636A (en) * 1980-07-30 1982-07-20 Avco Corporation Coated stoichiometric silicon carbide
JPS57209885A (en) * 1981-06-22 1982-12-23 Toshiba Ceramics Co Member for low melting point metal melt keeping furnace
JP2512977B2 (en) * 1988-01-13 1996-07-03 東京電力株式会社 Silicon carbide structural member
JP2649582B2 (en) * 1989-08-25 1997-09-03 東芝セラミックス 株式会社 Method for producing SiC coated SiC ceramics
JPH0832591B2 (en) * 1989-10-11 1996-03-29 日本ピラー工業株式会社 Composite material

Also Published As

Publication number Publication date
JPS5585468A (en) 1980-06-27

Similar Documents

Publication Publication Date Title
US3275722A (en) Production of dense bodies of silicon carbide
US4179299A (en) Sintered alpha silicon carbide ceramic body having equiaxed microstructure
US4080415A (en) Method of producing high density silicon carbide product
US3954483A (en) Dense polycrystalline silicon carbide
US4346049A (en) Sintered alpha silicon carbide ceramic body having equiaxed microstructure
JPS5934156B2 (en) Alumina-coated aluminum nitride sintered body
US3492153A (en) Silicon carbide-aluminum nitride refractory composite
GB2048953A (en) Sintering silicon carbide in boron containing atmosphere
JPH1012692A (en) Dummy wafer
JPS6128626B2 (en)
USRE30286E (en) Method of producing high density silicon carbide product
EP0504441A1 (en) High strength composite ceramic structure and process for producing the same
US3427373A (en) Method for the manufacture of alumina refractories having an aluminum nitride coating
JP3297547B2 (en) Method for producing silicon carbide sintered body
JPS6152110B2 (en)
JPH0692761A (en) Sic-cvd coated and si impregnated sic product and its manufacture
JPS5930672B2 (en) Silicon carbide powder composition for sintered bodies
JPS61163180A (en) High size precision and anti-abrasivity silicon carbide composite body and manufacture
JPH0525833B2 (en)
JPS6225635B2 (en)
JP2549813B2 (en) Silicon nitride powder
JPS6054980A (en) Composite ceramic powder and manufacture
JPH05105587A (en) Method for producing artificial diamond-coated powder
JPS60152677A (en) Cubic boron nitride coated hard material and its production
JPH0524924A (en) Sic-coated silicon nitride-silicon carbide combined sintered compact