JPS6128606B2 - - Google Patents

Info

Publication number
JPS6128606B2
JPS6128606B2 JP52007893A JP789377A JPS6128606B2 JP S6128606 B2 JPS6128606 B2 JP S6128606B2 JP 52007893 A JP52007893 A JP 52007893A JP 789377 A JP789377 A JP 789377A JP S6128606 B2 JPS6128606 B2 JP S6128606B2
Authority
JP
Japan
Prior art keywords
zeolite
granules
metakaolin
type
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52007893A
Other languages
Japanese (ja)
Other versions
JPS52103391A (en
Inventor
Wan Chi Chan
Haaman Hofuman Goodon
Eichihoon Emiiru
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WR Grace and Co
Original Assignee
WR Grace and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WR Grace and Co filed Critical WR Grace and Co
Publication of JPS52103391A publication Critical patent/JPS52103391A/en
Publication of JPS6128606B2 publication Critical patent/JPS6128606B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/14Type A
    • C01B39/18Type A from a reaction mixture containing at least one aluminium silicate or aluminosilicate of a clay type, e.g. kaolin or metakaolin or its exotherm modification or allophane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • B01J20/183Physical conditioning without chemical treatment, e.g. drying, granulating, coating, irradiation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S423/00Chemistry of inorganic compounds
    • Y10S423/21Faujasite, e.g. X, Y, CZS-3, ECR-4, Z-14HS, VHP-R
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S423/00Chemistry of inorganic compounds
    • Y10S423/24LTA, e.g. A, alpha, ZK-4, ZK-21, ZK-22

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Analytical Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Description

【発明の詳細な説明】 本発明は吸着工程において実質的に有用な形状
の約4乃至10Åの有効細孔径を有する合成結晶性
ゼオライトを製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing synthetic crystalline zeolites having an effective pore size of about 4 to 10 Å in a form that is substantially useful in adsorption processes.

ゼオライト型又は結晶性アルミノ珪酸塩のミク
ロ選択性吸着剤はシリカ、アルミナ、四面体の三
次元構造をもつている。このゼオライト構造は大
きな開放アルミノ珪酸塩ケージの繰り返し三次元
ネツトワークを特徴とし、小さな均一の開口部お
よび細孔で結合している。これらのミクロ選択性
吸着剤のある種のものはケイ酸ナトリウムおよび
アルミン酸ナトリウムから合成することにより製
造している。合成後これらの大きな空隙を水で充
たす。この水は加熱することによりケージを破壊
することなく追い出すことができる。脱水した場
合これらの空隙は大量の水または分圧の低い他の
蒸気を再吸着することができる。この均一構造す
なわちアルミノ珪酸塩空隙に連結した細孔開口部
のためにこれらのゼオライトは大きな分子を空隙
から排除し小さな分子を通過させ吸着されるのを
許すという独特の性質を示す。それによりその径
と形に従つて分子のミクロ選択性吸着剤として作
用するのである。
Zeolite-type or crystalline aluminosilicate microselective adsorbents have a three-dimensional structure of silica, alumina, and tetrahedrons. This zeolite structure is characterized by a repeating three-dimensional network of large open aluminosilicate cages, connected by small uniform openings and pores. Some of these microselective adsorbents have been synthesized from sodium silicate and sodium aluminate. After synthesis, these large voids are filled with water. This water can be expelled by heating without destroying the cage. When dehydrated, these voids can readsorb large amounts of water or other vapors at low partial pressures. Because of this homogeneous structure, the pore openings connected to the aluminosilicate voids, these zeolites exhibit the unique property of excluding large molecules from the voids and allowing small molecules to pass through and be adsorbed. They thereby act as microselective adsorbents of molecules according to their size and shape.

ゼオライトは微粉末として製造工程から取出す
ので、流れから気体または液体を吸着させるため
の固体床の中に充填することが出来る結粒体状構
造(nodular structure)に該ゼオライトを成形
することが必要である。これは通常ゼオライトを
粘土の様な物質で結合させることにより行なう。
しかしながら、そのような方法の不利な点は粘土
が不活性であり、このため該床の15乃至20%(結
合剤として使用する粘土の百分率に依存してい
る)が不活性であることである。
Since the zeolite is removed from the manufacturing process as a fine powder, it is necessary to form the zeolite into a nodular structure that can be packed into a solid bed to adsorb gases or liquids from the stream. be. This is usually done by bonding the zeolite with a clay-like material.
However, a disadvantage of such a method is that the clay is inert and therefore 15-20% of the bed (depending on the percentage of clay used as binder) is inert. .

タツガート(Taggert)に付与されたアメリカ
合衆国特許第3119659号は粘土性結合剤をゼオラ
イトに転換するための後続処理により粘土をゼオ
ライトに転換する、いわゆる継ぎ目無しシーブ
(binderless sieve)の製造方法を開示してい
る。同法は該粘土結合剤をゼオライトに転換する
ために水酸化ナトリウム溶液浴中で前記結粒体
(nodules)を加熱する結晶化工程を含む。
U.S. Pat. No. 3,119,659 to Taggert discloses a method for making so-called binderless sieves in which clay is converted to zeolite with a subsequent treatment to convert the clayey binder to zeolite. There is. The method includes a crystallization step in which the nodules are heated in a sodium hydroxide solution bath to convert the clay binder to zeolite.

本応用方法は粘土をA型またはX型ゼオライト
とブレンドし、充分な量の水酸化ナトリウム溶液
を加えビーズを形成することにより継ぎ目無しA
型モレキユラーシーブを製造する。所望の場合は
該中心をA型またはX型ゼオライト、水酸化ナト
リウムおよび粘土の混合物に加えてもよい。つい
で該混合物を通常の焼成炉中93乃至316℃(200乃
至600〓)の温度で焼成する。焼成前の製品は30
乃至45%の水分を含有しており、乾燥および焼成
により水分含有量は1乃至5%に低下する。
This application method involves blending clay with type A or type X zeolite and adding sufficient amount of sodium hydroxide solution to form beads.
Manufactures type molecular sieves. If desired, the center may be added to a mixture of Type A or Type X zeolite, sodium hydroxide and clay. The mixture is then fired in a conventional kiln at a temperature of 93-316°C (200-600°). The product before firing is 30
It contains 45% to 45% water, and the water content decreases to 1 to 5% by drying and firing.

本法は熟成工程(aging step)を必要としない
点でタツガートの方法の改良法である。本法は93
乃至316℃(200乃至600〓)の温度において粘土
結合剤を乾燥しゼオライトに転換する。該温度
は、継ぎ目無しモレキユラーシーブを製造するた
めのタツガートおよびその他の方法の結晶化温度
よりも実質的に高い。さらにその上ビーズが形成
する時にビーズ中に存在する水を使用することに
よつて結晶化を行わせる。そして結晶化を水酸化
ナトリウム溶液または加圧条件下で行わせること
を必要としない。
This method is an improvement on Tazgart's method in that it does not require an aging step. This law is 93
The clay binder is dried and converted to zeolite at temperatures between 200 and 600°C. The temperature is substantially higher than the crystallization temperature of Tatzgart and other processes for producing seamless molecular sieves. Additionally, crystallization is effected by using the water present in the beads as they form. And it is not necessary to carry out the crystallization in sodium hydroxide solution or under pressurized conditions.

本方法の第一工程は粘土とA型またはX型ゼオ
ライト性アルミノ珪酸塩を混合する工程である。
該粘土の存在量は約10乃至30%、好ましくは20%
である。A型またはX型ゼオライトを製造する方
法は本発明の部分ではない。それは幾つかの発行
された特許において記載されている。ごく簡単に
述べると、本方法は、水酸化ナトリウムおよび三
水和アルミナからアルミン酸ナトリウム溶液を調
整し、所望の濃度に稀釈した珪酸ナトリウムを加
え、さらに、もし所望の場合は、核中心を加える
ことから構成されている。ついでこの混合物を約
100乃至125℃の温度において結晶化を完結させる
に充分な時間加熱する。生成物を別、洗浄し、
もしゼオライトをカルシウム型またはその他の型
に転換することを所望する場合は塩化カルシウム
またはその他の塩と交換反応を行わせる。その後
製品を乾燥し貯蔵する。
The first step of the method is to mix the clay and the type A or type X zeolitic aluminosilicate.
The amount of clay present is about 10 to 30%, preferably 20%
It is. The method of making Type A or Type X zeolites is not part of this invention. It has been described in several issued patents. Very briefly, the method involves preparing a sodium aluminate solution from sodium hydroxide and trihydrated alumina, adding diluted sodium silicate to the desired concentration, and, if desired, adding core centers. It consists of Then add this mixture to approx.
Heat at a temperature of 100-125°C for a sufficient time to complete crystallization. Separate and wash the product;
If it is desired to convert the zeolite to the calcium form or other forms, an exchange reaction with calcium chloride or other salts is carried out. The product is then dried and stored.

われわれの方法の次の工程においては粘土(メ
タカオリン)およびA型またはX型ゼオライトを
ブレンドし充分な量の水酸化ナトリウムを加え
る。水酸化ナトリウムは10乃至25重量パーセント
の濃度でゼオライトおよび粘土混合物のブレンド
に加える。この水酸化ナトリウム供給量はメタカ
オリン粘土結合剤のすべてをゼオライトに転換さ
せるに要する理論量の約90乃至120%に相当す
る。所望の場合は、核中心をこの混合物に加えて
もよい。ついで、該混合物を所望の径の結粒体に
成形する。本方法のこの工程は通常行われている
ものであり、粒径により結粒体の造粒および分離
を必要とする可能性がある。結粒体はその成形後
約30乃至40%の水分含有量を有するのが好まし
い。この水分は上記成形工程において加えた水酸
化ナトリウム溶液に由来する。ついで、該結粒体
をロータリー焼成炉または他の通常の型の焼成装
置中で93乃至316℃(200乃至600〓)の温度にお
いて乾燥すると同時にメタカオリンをゼオライト
に転換し、次いで204乃至649℃(400乃至1200
〓)の温度で焼成する。乾燥温度及び焼成温度を
上記範囲内で選ぶことによつて、満足すべき吸収
剤をつくるに必要な物理的強度及び反応特性を有
する粒状物が得られる。上記温度が低過すぎるか
又は高過ぎる場合には、メタカオリンは結晶化し
てゼオライトを形成しないであろう。更に、最初
の粒状物の水分含量が低過ぎる場合にはメタカオ
リンは結晶化してゼオライトを形成することが困
難になり、又水分含量が高過ぎる場合には、結晶
化の前に別の乾燥工程を実施しない限り粒状物は
製造工程の間に別々に離れてしまう傾向がある。
従つて乾燥前の水分含量を30〜45重量%とするの
が好ましい。この乾燥の間に水分含有量は約10乃
至20%に低下し、焼成によつて約1乃至5%、好
ましくは約3%に低下する。最終製品は約95乃至
100%のA型結合剤を有するA型またはX型ゼオ
ライトを含有し、かつ吸着工程における使用に適
した硬度の大きい結粒体状製品である。
The next step in our method is to blend the clay (metakaolin) and type A or type X zeolite and add a sufficient amount of sodium hydroxide. Sodium hydroxide is added to the zeolite and clay mixture blend at a concentration of 10 to 25 weight percent. This amount of sodium hydroxide feed corresponds to about 90 to 120% of the theoretical amount required to convert all of the metakaolin clay binder to zeolite. If desired, nuclear centers may be added to this mixture. The mixture is then formed into granules of a desired diameter. This step of the method is conventional and may require granulation and separation of the granules depending on particle size. Preferably, the agglomerate has a moisture content of about 30 to 40% after its shaping. This moisture originates from the sodium hydroxide solution added in the molding process. The granules are then dried in a rotary kiln or other conventional type of calcination equipment at temperatures of 93 to 316°C (200 to 600°C), simultaneously converting the metakaolin to zeolite, and then drying at 204 to 649°C (200 to 600°C). 400 to 1200
〓) Bake at a temperature of 〓). By selecting the drying and calcination temperatures within the above ranges, granules are obtained that have the physical strength and reactivity properties necessary to make a satisfactory absorbent. If the temperature is too low or too high, metakaolin will not crystallize to form zeolite. Furthermore, if the initial moisture content of the granules is too low, metakaolin will have difficulty crystallizing to form zeolite, and if the moisture content is too high, another drying step is required before crystallization. Unless done otherwise, the particulates tend to separate during the manufacturing process.
Therefore, it is preferable that the water content before drying is 30 to 45% by weight. During this drying the moisture content is reduced to about 10-20% and by calcination to about 1-5%, preferably about 3%. The final product is approximately 95 to
It is a hard, granular product containing type A or type X zeolite with 100% type A binder and suitable for use in adsorption processes.

われわれの発明を、以下の特定のしかし非限定
的の実施例により示す。
Our invention is illustrated by the following specific but non-limiting examples.

実施例 1 本実施例は、本発明に係る継ぎ目無しゼオライ
ト結粒体をプラントにおいて製造する方法を示し
ている。
Example 1 This example shows a method for producing seamless zeolite aggregates according to the present invention in a plant.

ナトリウム型のA型ゼオライト1360Kg(3000
lbs)およびメタカオリン272Kg(600 lbs)を通
常の混合法でブレンドする。水酸化ナトリウム
118Kg(260 lbs)(メタカオリンをA型ゼオライ
トに転換するに要する理論量の120%)の全量を
約17重量パーセント水酸化ナトリウムに稀釈した
溶液として加えた。この量はメタカオリン45.3Kg
(100 lbs)当り100%水酸化ナトリウム19.5Kg
(43 lbs)に相当する。つぎに該ブレンドを混合
して薄いペーストとし、混合物を粒径約4乃至8
メツシユの結粒体に成形するためにブレンド粉末
約434Kg(960 lbs)をペーストに加えた。この添
加は、粘土をゼオライトに転換するカセイアルカ
リの量を理論量の95%に低下させる。
Sodium type A zeolite 1360Kg (3000
lbs) and 272 Kg (600 lbs) of metakaolin are blended using conventional mixing methods. Sodium hydroxide
A total of 118 kg (260 lbs) (120% of the theoretical amount required to convert metakaolin to type A zeolite) was added as a diluted solution in about 17 weight percent sodium hydroxide. This amount is metakaolin 45.3Kg
19.5Kg of 100% Sodium Hydroxide per (100 lbs)
(43 lbs). The blend is then mixed into a thin paste and the mixture has a particle size of about 4 to 8.
Approximately 434 Kg (960 lbs) of blended powder was added to the paste to form it into mesh granules. This addition reduces the amount of caustic that converts clay to zeolite to 95% of the theoretical amount.

つぎに、ブレンド結粒体を造粒機にかけ、約10
メツシユのスクリーンを通過したものを本方法の
次の工程のために選び出した。われわれの方法の
次の工程において粒状ゼオライトを結粒体に成形
した。この結粒体の水分含量(T.V.)は約35重
量%であつた。その後結粒体をロータリー焼成炉
を93乃至316℃(200乃至600〓)の温度で通過さ
せることにより結晶化させた。乾燥の間外部水蒸
気は加えなかつた。該結粒体は乾燥器中に30乃至
60分間保つた。該結粒体を第二のパスを通つて
204乃至649℃(400乃至1200〓)の温度で操作し
ている焼成炉中を30乃至60分の滞留時間となるよ
うに通過させることにより該生成物を活性化し
た。生成物(8〜12メツシユビーズ)は次の特性
をもつ:954℃(1750〓)に加熱した際の重量減
少により決定した全蒸発量(T.V.)1.63;破壊強
度Kg4.44(lbs9.8);密度Kg/m3672(lbs/ft3
42);相対湿度10%での水分吸着量23.17;5%
スラリーのPH11.37。
Next, the blended granules are applied to a granulator, and the
Those that passed the mesh screen were selected for the next step in the method. In the next step of our method, the granular zeolite was formed into nodules. The moisture content (TV) of the granules was approximately 35% by weight. The granules were then crystallized by passing through a rotary kiln at a temperature of 93-316°C (200-600°C). No external steam was added during drying. The granules are placed in a dryer for 30 to 30 minutes.
It was kept for 60 minutes. passing the nodules through a second pass
The product was activated by passing it through a calciner operating at a temperature of 204-649°C (400-1200°) with a residence time of 30-60 minutes. The product (8-12 mesh beads) has the following properties: Total evaporation (TV) determined by weight loss on heating to 954°C (1750〓) 1.63; breaking strength Kg 4.44 (lbs 9.8); Density Kg/m 3 672 (lbs/ft 3
42); Moisture adsorption amount at 10% relative humidity 23.17; 5%
Slurry PH11.37.

実施例 2 実施例1におけると同様の濃度の反応試薬を使
つて製品をつくつた。本操作においては約149乃
至316℃(300乃至600℃)で運転する焼成炉中で
結晶化を行い、30乃至40分間焼成炉中に保つた。
前の操作においては結粒体中の液体により発生し
た水蒸気はメタカオリンをA型ゼオライトに転換
するための結晶化を完結させるに充分であつた。
結粒体の活性化は第二のパスにより約204乃至593
℃(400乃至1100〓)の温度の焼成炉を通して30
乃至40分の滞留時間で完成させた。生成物(8−
12メツシユビーズ)は本質的にはA型ゼオライト
であり、次の特性をもつていた。T.V.1.55;平均
破壊強度Kg4.53(lbs10.0);密度Kg/m3688(lbs/
ft43);相対湿度10%での水分吸着量22.43;5
%スラリー状結粒体のPH11.36。
Example 2 A product was made using similar concentrations of reaction reagents as in Example 1. In this operation, crystallization was carried out in a calciner operating at about 149-316°C (300-600°C) and kept in the calciner for 30-40 minutes.
In the previous operation, the water vapor generated by the liquid in the granules was sufficient to complete the crystallization to convert metakaolin to Type A zeolite.
Activation of nodules is approximately 204 to 593 by the second pass.
30°C through a firing furnace at a temperature of 400 to 1100°C.
It was completed in a residence time of 40 minutes. Product (8-
12 mesh beads) were essentially type A zeolites and had the following properties. TV1.55; Average breaking strength Kg4.53 (lbs10.0); Density Kg/m 3 688 (lbs/
ft3 43); Moisture adsorption amount at 10% relative humidity 22.43; 5
% slurry nodules PH11.36.

実施例 3 ロータリー焼成炉中で焼成を149乃至316℃
(300乃至600〓)の温度で行い結粒体が30乃至40
分間焼成炉にあつたという点を除き、本実施例に
おいて同量の反応試薬を使用し同じ工程を行つ
た。前記操作におけると同様結粒体からの蒸発に
より発生した水蒸気はメタカオリンを結晶化させ
て製品とするに充分であつた。該製品を第二のパ
スにより204乃至593℃(400乃至1100〓)で運転
する焼成炉を通し活性化した。結粒体を30乃至40
分間この温度に付した。取り出した製品(8−12
メツシユビーズ)は本質的に100%A型ゼオライ
トであり次の特性をもつていた。
Example 3 Firing in a rotary furnace at 149-316℃
(300 to 600〓)
The same amounts of reaction reagents were used and the same steps were followed in this example, except that the reactants were heated in the kiln for minutes. As in the previous operation, the water vapor generated by evaporation from the granules was sufficient to crystallize metakaolin into a product. The product was activated in a second pass through a calciner operating at 204-593°C (400-1100°). 30 to 40 nodules
This temperature was maintained for minutes. Removed product (8-12
The mesh beads were essentially 100% type A zeolite and had the following properties.

T.V. 1.58 平均破壊強度、Kg4.48(lbs9.9) 密度、Kg/m3685(lbs/ft342.8) 水分吸着量、10%相対湿度 23.06 5%スラリーのPH 11.42TV 1.58 Average breaking strength, Kg4.48 (lbs9.9) Density, Kg/m 3 685 (lbs/ft 3 42.8) Moisture adsorption, 10% relative humidity 23.06 PH of 5% slurry 11.42

Claims (1)

【特許請求の範囲】 1 粉末状ゼオライトを追加のゼオライトを生成
するに必要な量のメタカオリン、水酸化ナトリウ
ム及び水と混合し、得られた混合物を成形して反
応性ゼオライトを含有する粒状物を得、次いでこ
れを高められた温度で反応せしめてメタカオリン
をゼオライトに転換することを含む成形されたゼ
オライト粒状物を製造する方法において、 (a) 水分を含む成形された粒状物を93乃至316℃
(200乃至600〓)の温度で15乃至60分間加熱し
てその水分含量を減少せしめ、同時に該メタカ
オリンをゼオライトに転換し、 (b) そして該粒状物を204乃至649℃(400乃至
1200〓)の温度で15乃至60分間焼成する ことを特徴とする方法。 2 該焼成された粒状物が95乃至100%のゼオラ
イトを含む特許請求の範囲第1項記載の方法。 3 該粉末状ゼオライトがA型ゼオライト、X型
ゼオライト、Y型ゼオライト及びそれらの混合物
からなる群から選ばれる特許請求の範囲第1項記
載の方法。 4 工程(a)において加熱に付される粒状物が10乃
至30重量%のメタカオリンを含む特許請求の範囲
第1項記載の方法。 5 該加熱工程(a)を水蒸気を含む雰囲気中で行う
特許請求の範囲第1項記載の方法。 6 焼成工程を大気圧下で行う特許請求の範囲第
1項記載の方法。 7 焼成を空気の存在下で行う特許請求の範囲第
1項記載の方法。 8 成形された粒状物中に含まれる水酸化ナトリ
ウムが10乃至30重量パーセント溶液として存在す
る特許請求の範囲第1項記載の方法。
[Claims] 1. Powdered zeolite is mixed with metakaolin, sodium hydroxide, and water in amounts necessary to produce additional zeolite, and the resulting mixture is shaped to form granules containing reactive zeolite. a method of producing shaped zeolite granules comprising: (a) heating the moist shaped granules to 93 to 316°C;
(b) heating the granules at a temperature of 204-649°C (400-600°C) for 15-60 minutes to reduce its moisture content and simultaneously convert the metakaolin to zeolite;
A method characterized by firing at a temperature of 1200㎓ for 15 to 60 minutes. 2. The method of claim 1, wherein the calcined granules contain 95 to 100% zeolite. 3. The method of claim 1, wherein the powdered zeolite is selected from the group consisting of A-type zeolite, X-type zeolite, Y-type zeolite, and mixtures thereof. 4. The method according to claim 1, wherein the granules subjected to heating in step (a) contain 10 to 30% by weight of metakaolin. 5. The method according to claim 1, wherein the heating step (a) is performed in an atmosphere containing water vapor. 6. The method according to claim 1, wherein the firing step is performed under atmospheric pressure. 7. The method according to claim 1, wherein the firing is performed in the presence of air. 8. The method of claim 1, wherein the sodium hydroxide contained in the shaped granules is present as a 10 to 30 weight percent solution.
JP789377A 1976-02-25 1977-01-28 Improved molding and crystalization method for molecular sieve manufacture Granted JPS52103391A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US05/661,457 US4058586A (en) 1976-02-25 1976-02-25 Forming and crystallization process for molecular sieve manufacture

Publications (2)

Publication Number Publication Date
JPS52103391A JPS52103391A (en) 1977-08-30
JPS6128606B2 true JPS6128606B2 (en) 1986-07-01

Family

ID=24653676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP789377A Granted JPS52103391A (en) 1976-02-25 1977-01-28 Improved molding and crystalization method for molecular sieve manufacture

Country Status (9)

Country Link
US (1) US4058586A (en)
JP (1) JPS52103391A (en)
AU (1) AU500884B2 (en)
CA (1) CA1067059A (en)
DE (1) DE2707313A1 (en)
FR (1) FR2342250A1 (en)
IT (1) IT1075293B (en)
NL (1) NL7701863A (en)
ZA (1) ZA771081B (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2829165A1 (en) * 1978-07-03 1980-01-17 Henkel Kgaa METHOD FOR PRODUCING ALUMOSILICATE GRANULES
US4406823A (en) * 1981-10-05 1983-09-27 Ethyl Corporation Method of making zeolites
US4406822A (en) * 1981-10-05 1983-09-27 Ethyl Corporation Method of making zeolites
US4818508A (en) * 1985-08-20 1989-04-04 Uop Process for preparing molecular sieve bodies
US5223235A (en) * 1986-06-17 1993-06-29 J. M. Huber Corporation Synthetic alkali metal alumino-silicates compounds and their methods of preparation
EP0674600B1 (en) * 1992-12-16 2001-10-17 Chevron U.S.A. Inc. Preparation of aluminosilicate zeolites
US6270743B1 (en) * 1995-05-24 2001-08-07 Kuboto Corporation Method of manufacturing crystalline microporous materials
NO302559B1 (en) * 1996-06-27 1998-03-23 Norsk Leca As Preparation of inorganic cation exchanger from expanded clay beads and use of the prepared cation exchangers
US5785945A (en) * 1996-07-31 1998-07-28 Chevron Chemical Company Llc Preparation of zeolite L
US5785944A (en) * 1996-07-31 1998-07-28 Chevron U.S.A. Inc. Preparation of Y zeolite
US5716593A (en) * 1996-07-31 1998-02-10 Chevron U.S.A. Inc. Preparation of Y-type faujasite using an organic template
DE60036508T2 (en) * 1999-06-18 2008-06-26 Nippon Shokubai Co., Ltd. Non-binder zeolite molding, process for its preparation and its use
US6261534B1 (en) 1999-11-24 2001-07-17 Chevron U.S.A. Inc. Method for making ZSM-5 zeolites
US6632415B2 (en) 2001-04-09 2003-10-14 Chevron U.S.A. Inc. Methods for making molecular sieves
US20050063901A1 (en) * 2003-09-24 2005-03-24 Miller Stephen J. Preparation of molecular sieves involving spray drying
US7837977B2 (en) * 2005-09-13 2010-11-23 Chevron U.S.A. Inc. Preparation of titanosilicate zeolite TS-1
JP5394929B2 (en) * 2007-10-12 2014-01-22 株式会社イーテック Urethane adhesive composition
US20090326308A1 (en) * 2008-06-30 2009-12-31 Uop Llc Binderless adsorbents comprising nano-size zeolite x and their use in the adsorptive separation of para-xylene
US7820869B2 (en) * 2008-06-30 2010-10-26 Uop Llc Binderless adsorbents and their use in the adsorptive separation of para-xylene
US8609925B2 (en) * 2008-06-30 2013-12-17 Uop Llc Adsorbents with improved mass transfer properties and their use in the adsorptive separation of para-xylene
US7812208B2 (en) * 2008-09-22 2010-10-12 Uop Llc Binderless adsorbents with improved mass transfer properties and their use in the adsorptive separation of para-xylene
US8283274B2 (en) * 2009-07-20 2012-10-09 Uop Llc Binderless zeolitic adsorbents, methods for producing binderless zeolitic adsorbents, and processes for adsorptive separation of para-xylene from mixed xylenes using the binderless zeolitic adsorbents
US8992884B2 (en) * 2009-11-30 2015-03-31 Chevron U.S.A. Inc. Preparation of X zeolite
DE102012010109A1 (en) 2011-05-25 2012-11-29 Chemiewerk Bad Köstritz GmbH Binder-free zeolitic granules with faujasite structure and process for the preparation of such binder-free zeolitic granules together with use
EP3328518A1 (en) * 2015-05-22 2018-06-06 Alsitek Limited Pollutant-reducing mineral polymers
WO2019068135A1 (en) * 2017-10-04 2019-04-11 Neomaterials Pty Ltd Synthesis of zeolites
CN110921677B (en) * 2019-12-04 2021-05-11 广东石油化工学院 Method for preparing 4A zeolite from kaolin
CN113479903B (en) * 2021-08-20 2023-01-10 中化泉州能源科技有限责任公司 Method for preparing molecular sieve by using natural clay mineral

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3119659A (en) * 1960-09-26 1964-01-28 Union Carbide Corp Process for producing molecular sieve bodies
US3119660A (en) * 1960-09-26 1964-01-28 Union Carbide Corp Process for producing molecular sieve bodies
US3394989A (en) * 1963-10-29 1968-07-30 Union Carbide Corp Zeolite "a" bodies and their preparation
US3338672A (en) * 1964-02-25 1967-08-29 Minerals & Chem Philipp Corp Method for making a faujasite-type crystalline zeolite
GB1132883A (en) * 1965-04-21 1968-11-06 Grace W R & Co Process for the production of zeolites in nodular form
US3433587A (en) * 1965-10-22 1969-03-18 Engelhard Min & Chem Method for preparing crystalline zeolite catalyst

Also Published As

Publication number Publication date
AU2259177A (en) 1978-08-31
JPS52103391A (en) 1977-08-30
DE2707313A1 (en) 1977-09-08
ZA771081B (en) 1978-01-25
FR2342250A1 (en) 1977-09-23
FR2342250B3 (en) 1979-10-19
US4058586A (en) 1977-11-15
CA1067059A (en) 1979-11-27
IT1075293B (en) 1985-04-22
AU500884B2 (en) 1979-06-07
NL7701863A (en) 1977-08-29

Similar Documents

Publication Publication Date Title
JPS6128606B2 (en)
JP4302766B2 (en) Zeolite body obtained by a method for obtaining LSX zeolite granular aggregates having a low inert binder ratio
CN101632916B (en) Bamboo carbon composite adsorbent and preparation method thereof
US3906076A (en) Process for producing zeolite X molecular sieve bodies
CA1181387A (en) Preparation of binderless 3a adsorbents
US2992068A (en) Method for making synthetic zeolitic material
US3979335A (en) Process for the preparation of synthetic zeolites
CN102861551B (en) Bax type zeolite granule and process for preparing the same
US5132260A (en) Zeolite granules with zeolitic binder
US3394989A (en) Zeolite "a" bodies and their preparation
JPS59199526A (en) Granular zeolite bound with silicate and manufacture
JP2782744B2 (en) Method for producing binderless zeolite molded body
JP2000210557A (en) Molded product containing x-type zeolite, manufacture and use application thereof
JPH03295805A (en) X-type zeolite molded body and its production
JPS6068052A (en) Zeolite composition suitable for separating oxygen and nitrogen and manufacture of its molded body
JPH026846A (en) Production of molded body of oxygen-nitrogen separating agent made of zeolite composition
JPS6240283B2 (en)
JPH02153818A (en) Production of zeolite moldings
KR100351624B1 (en) A manufacturing method of granulated adsorbent having multi-functions
JPH10101326A (en) Zeolite bead formed body having low wearing property and its production
RU2097124C1 (en) Method for production of sorbent and sorbent
JPH01304042A (en) Zeolite adsorbent for hydrogen psa and preparation thereof
JPH03295802A (en) High-strength a-type zeolite molded body and its production
JPH0248293B2 (en)
JPS6227037A (en) Thermally stable k-a type zeolite composition