JPS61285006A - Controller of electric railcar - Google Patents

Controller of electric railcar

Info

Publication number
JPS61285006A
JPS61285006A JP60125553A JP12555385A JPS61285006A JP S61285006 A JPS61285006 A JP S61285006A JP 60125553 A JP60125553 A JP 60125553A JP 12555385 A JP12555385 A JP 12555385A JP S61285006 A JPS61285006 A JP S61285006A
Authority
JP
Japan
Prior art keywords
control device
motor
vibration
electric vehicle
outputs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60125553A
Other languages
Japanese (ja)
Inventor
Shinzo Hirao
平尾 新三
Hideo Terasawa
英男 寺澤
Hideki Hegihara
枌原 秀樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP60125553A priority Critical patent/JPS61285006A/en
Priority to ES555872A priority patent/ES8703359A1/en
Priority to MX002746A priority patent/MX168430B/en
Priority to AU58507/86A priority patent/AU592089B2/en
Publication of JPS61285006A publication Critical patent/JPS61285006A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PURPOSE:To obtain high viscous performance irrespective of an electric railcar speed by controlling the tensile force of a motor so that the intrinsic vibrating frequency component of a unitized axle becomes constant within an allowable range. CONSTITUTION:A digital filter DF produces only an intrinsic vibrating frequency component as a slip predriving phenomenon of a twisting vibration detected by a shaft torque sensor TS. A unitizing circuit RA unitizes an output signal level from the filter DF by the signal level of the entirety. A comparator CPR compares a unitized allowable amplitude reference AS with an output from the circuit RA, and outputs a creep control signal. An amplifier AMP outputs a gate signal to a chopper CH in response to the creep control signal, an acceleration current command IP and a main motor current IM.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は電気車の制御装置に係り、とぐに粘着性能を
最大限に発揮することができるものの構成に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a control device for an electric vehicle, and relates to a structure that can immediately maximize adhesive performance.

〔従来の技術) 電気車輛の駆動は車輪とレールとの間の摩擦力によって
行われるため、この摩擦力を最大限に利用することが車
両技術の基本である。第8図は車輪とレールとの間の摩
擦係数とすべり速度との関係を示す特性図で、摩擦係数
の値自体げレールの表面状態、天候、走行速度等によっ
て大巾に変動する。(車輪の引張力/軸重)が第8図P
点の摩擦係数(粘着係数と呼ばれる)を越えると大空転
か発生し、主電動機、歯車装置等の回転部分、レール表
面、m輪踏面に機械的損傷が発生するとともに引張力も
低下するためこれを防止し、しかもできるだけP点に近
い状態で運転を行うのが大きな課題である。一般にすべ
り速度がP点以下の領域を微小空転、即ちクリープ領域
、p点以上全スリップ@域と称す。ところで、従来は空
転の発生を検知してから引張力を低減する、いわゆる空
転発生後の事後処理制御システムが採用されていた。
[Prior Art] Electric vehicles are driven by the frictional force between wheels and rails, and the basis of vehicle technology is to make maximum use of this frictional force. FIG. 8 is a characteristic diagram showing the relationship between the coefficient of friction between the wheel and the rail and the sliding speed. The value of the coefficient of friction itself varies widely depending on the surface condition of the rail, weather, running speed, etc. (Wheel tensile force/axle load) is shown in Figure 8 P.
If the coefficient of friction at a point (called the coefficient of adhesion) is exceeded, a large slip will occur, causing mechanical damage to the main motor, rotating parts such as gears, rail surfaces, and m-wheel treads, as well as reducing the tensile force. The major challenge is to prevent this and to operate in a state as close to point P as possible. Generally, the region where the slip velocity is below point P is called a micro-slip, ie, creep region, and the region where the slip speed is above point P is called the total slip @ region. By the way, conventionally, a so-called post-slip processing control system has been employed, which reduces the tensile force after detecting the occurrence of slip.

¥、9図ないし第1)図は従来の電気車の制御装置にお
ける空転検知方式である。それぞれ電圧比較方式、電流
比較方式及び速度発電機方式を示す説明図で、各方式の
検出感度、原理9問題点の比較を下表に示す。
Figures 9 through 1) show a slip detection method in a conventional electric vehicle control device. The following table is an explanatory diagram showing the voltage comparison method, current comparison method, and speed generator method, respectively, and a comparison of the detection sensitivity and nine problems of the principles of each method.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のような従来の電気車の制御装置においては、空転
検知方式によってその検出感度に若干の差異は認められ
るが、いずれも空転発生後即ちスリップ@域での検出で
あるため第8図のR点近傍で空転を検知し、8点まで引
張力を下げて再粘着させる方式であり、実用粘着係数が
比較的低い領域で使用されることになり、以下のような
欠点があった。即ち、電気機関車においては、動軸を増
す必要から製作コストが高くなり、また動軸数を一定と
するとけん引荷重が小さくなる。そして、電車において
は一編成中の(電動車/付随車)即ち電動車比率が犬き
くなり製作コスト及び保守コストが高(なる。
In conventional electric vehicle control devices such as those described above, there are slight differences in detection sensitivity depending on the slip detection method, but in both cases the detection is performed after the slip has occurred, that is, in the slip @ region, so the R in Fig. 8 This method detects idling near a point, lowers the tensile force to 8 points, and re-adhes it, and it is used in an area where the practical adhesive coefficient is relatively low, and it has the following drawbacks. That is, in electric locomotives, the production cost increases because of the need to increase the number of moving axles, and if the number of moving axles is kept constant, the traction load becomes smaller. In trains, the proportion of electric vehicles in a train (electric vehicle/travel) increases, resulting in high production and maintenance costs.

この発明は上記のような問題点を解消するためになされ
たもので、粘着性能を最大限に発揮することができる電
気車の制御装置を提供することを目的とするものである
This invention was made to solve the above-mentioned problems, and an object thereof is to provide a control device for an electric vehicle that can maximize adhesive performance.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係わる電気車の制御装置け、空転前駆現象と
しての輪軸のねじり振動における固有振動周波数成分を
検出して振動検出信号を出力する軸トルクセンナ、上記
振動検出信号レベルを全体の振動レベルによってユニッ
ト化した信号と、上記固有振動周波数成分のユニット化
した許容最大振巾基準とを比較し、ユニット化した固有
振動同波数成分が一定になるように上記電動機の引張力
を制御する電動機制御装ffi!を備えたものである。
A control device for an electric vehicle according to the present invention includes a shaft torque sensor that detects a natural vibration frequency component in torsional vibration of a wheel shaft as a pre-slip phenomenon and outputs a vibration detection signal, and a unit in which the level of the vibration detection signal is determined by the overall vibration level. a motor control device ffi that compares the converted signal with a permissible maximum amplitude standard of the unitized natural vibration frequency component and controls the tensile force of the electric motor so that the unitized natural vibration same wave number component becomes constant; ! It is equipped with the following.

〔作用] この発明においては、空転前駆現象の段階で、ユニット
化した輪軸の固有振動周波数成分を許容範囲で一定にな
るように電動機の引張力を制御するので、空転を生じる
ことな(、かつ車両速度に関係なく高い粘着性能が得ら
れる。
[Operation] In this invention, at the stage of the slip precursor phenomenon, the tensile force of the electric motor is controlled so that the natural vibration frequency component of the unitized wheel axle remains constant within an allowable range, so that slipping does not occur (and High adhesive performance can be obtained regardless of vehicle speed.

〔発明の実施例〕 以下、この発明の実権例を図面について説明する。[Embodiments of the invention] Hereinafter, practical examples of this invention will be explained with reference to the drawings.

第1図はこの発明を適用した一実施例における電気車の
制御装置の制御ブロックである。図において、(Pan
)けパンタグラフ、(O)! )はパンタグラフ(Pa
n)からの直流入力を制御して、台車(BG)内に組込
まハた主心動機(TM)に直流電流を供給するチョッパ
回路、(TS)は台車(BG)の輪軸のねじり振動を検
出する軸トルクセンサ、  (I)?)け軸トルクセン
サ(TS)で検出したねじり振動のうち空転前駆現象と
しての固有振動周波数峻1分のみをHi出すディジタル
フィルタ回路である。(RA)はディジタルフィルタ回
FNr(DF)からの出力としての空転前駆現象となる
周波数成分の信号レベルヲ全体の信号レベルによってユ
ニット化するための回路である。これけ軸トルクセンサ
による検出信号の大きさが、車輪とレール面の摩擦状態
(輪重、車速等によって変化)によって変化するため、
ユニット化回路(RA)によって、輪重及び車速等の影
響t−な(すごとができる。ディジタルフィルタ回路(
DF’)はその入力部に増巾器(図示せず)を設け、所
定の範囲の周波数帯を通過せしめ、その中から空転前駆
現象による周波数成分をマイクロプロセッサを使ってデ
ィジタル的に処理して抽出するもので、信号処理時開は
数m8程度と極めて早い信号処理を行うことができる。
FIG. 1 is a control block of a control device for an electric vehicle in an embodiment to which the present invention is applied. In the figure, (Pan
)ke pantograph, (O)! ) is a pantograph (Pa
Chopper circuit that controls the DC input from n) and supplies DC current to the main motor (TM) built into the bogie (BG), (TS) detects torsional vibration of the wheelset of the bogie (BG) Shaft torque sensor, (I)? ) This is a digital filter circuit that outputs Hi only one minute of the natural vibration frequency, which is a pre-slip phenomenon, out of the torsional vibration detected by the shaft torque sensor (TS). (RA) is a circuit for unitizing the signal level of the frequency component which is a slip precursor phenomenon output from the digital filter circuit FNr (DF) according to the overall signal level. Since the magnitude of the detection signal from the spindle torque sensor changes depending on the friction condition between the wheel and rail surface (changes depending on wheel load, vehicle speed, etc.),
The unitized circuit (RA) allows you to overcome the effects of wheel load, vehicle speed, etc.Digital filter circuit (
DF') is equipped with an amplifier (not shown) at its input section to allow a predetermined range of frequencies to pass through, and a microprocessor is used to digitally process the frequency component caused by the slip precursor phenomenon. It is possible to perform extremely fast signal processing, with a signal processing time of about several m8.

そして軸トルクセンサ(TS)とディジタルフィルタ回
IB(DF)とにより振動検出回路(VS)を構成する
。(cpR)は上記固有振動周波数成分のユニット化し
た許容最大振巾基準(As)とユニット化回路(RA)
からの出力とを比較する比較器、<5c)n比較器(C
PR)からの出力を受けてクリープ量を制御する制御信
号を出力するクリープ制御器、(AMP)はクリープ制
御器(SC)からの制御信号と加速電流指令(工P)と
直流変成器(DCCT )により検出した主電動機電流
(工M)とを入力してチョッパ回1)M(CH)にゲー
ト信号全出力する増巾器である。そして、チョッパ’回
路(OFり、ユニット化回路(RA)、ユニット化さf
lに許容最大振巾基準(As) l比較器(C!PR)
 、クリープ制御器(SC)及び増巾器(AMP)によ
り電動機制御装置としてチョッパ制御装置(TMC) 
’c構成する。
A vibration detection circuit (VS) is constituted by the shaft torque sensor (TS) and the digital filter circuit IB (DF). (cpR) is the unitized maximum allowable amplitude standard (As) of the above natural vibration frequency component and the unitized circuit (RA)
Comparator (<5c) n comparator (C
The creep controller (AMP) receives the output from the creep controller (PR) and outputs a control signal to control the creep amount. This is an amplifier that inputs the main motor current (M) detected by ) and outputs the full gate signal to the chopper circuit 1) M (CH). Then, chopper' circuit (OF), unitized circuit (RA), unitized f
Maximum allowable amplitude standard (As) for l Comparator (C!PR)
, chopper control device (TMC) as a motor control device using a creep controller (SC) and an amplifier (AMP)
'c configure.

なお、上記の輪軸の空転前駆現象としての自励振動にお
ける固有振動周波数は駆動系のねじりバネ、宣軸のねじ
りバネ系のねじりバネ剛性および車輪歯車、主電動機回
転子等の慣性モーメントによってきまり、−次、二次等
のねじり固有振動周波数が存在する。第2図は上記ねじ
り固有振動周波数の振巾が、すべり率と央い相関を持っ
ていることを示す。第2図によれば、すべり率が増大す
ると上記ねじり固有振動周波数の振巾がすべり率に比例
して増大していることがわかる。
Note that the natural vibration frequency of the self-excited vibration as a precursor to wheel shaft slipping is determined by the torsion spring of the drive system, the torsion spring rigidity of the torsion spring system of the spindle, and the moment of inertia of the wheel gear, main motor rotor, etc. -There are torsional natural vibration frequencies such as second order and second order. FIG. 2 shows that the amplitude of the above-mentioned torsional natural vibration frequency has a moderate correlation with the slip rate. According to FIG. 2, it can be seen that as the slip rate increases, the amplitude of the torsional natural vibration frequency increases in proportion to the slip rate.

次に、上記のように構成さね、たこの発明の一実施例と
しての電気車の制御装置の動作を説明する。
Next, the operation of the control device for an electric vehicle constructed as described above as an embodiment of the present invention will be described.

台車(BG)の輪軸装置に組込まわた主電動機(TM)
によって車軸が駆動されるが、車輪とレールの間にすべ
り速度が発生すると、車軸にねじり振動が発生するウセ
して、このねじり振動の固有振動周波数成分けI!2図
に示すようにすべり率の上昇とともに増加する。また、
上記ねじり振動の固有振動周波数成分け、第3図に示す
ように、車両速度には2?1″比例して増加するので、
車両速度の影響を除去するため、前記ユニット化回5%
 (RA) Klけである。従って、軸トルクセンサ(
TS)により上記ねじり振動全検出し、こねからデイジ
タルフイルタ回M (I)?)によりその固有振動成分
のみを取出し、更に、その出力をユニット化回路(RA
)でユニット化し、第8図の4点に対応する振#成分と
ユニット化した許容最大振巾基準(As)と比較器(○
PR)により比較しその結果がクリープ制御器(SCり
を介して増巾器(AMP )に入力さhる。そして、加
速電流指令(工P)を受けた増巾器(AMP )けチョ
ッパ回路((Jr)のゲート制御回路を制御し、上記ね
じり振1)3[分がvjB図のq点近傍に対応する値を
維持するように主電動機電流指令(工P)を制御して主
電動機(TM)の引張力を制御する。
Main electric motor (TM) built into the wheel axle device of the bogie (BG)
However, when a sliding speed occurs between the wheel and the rail, torsional vibration is generated in the axle, and the natural vibration frequency component of this torsional vibration is I! As shown in Figure 2, it increases as the slip rate increases. Also,
As shown in Figure 3, the natural vibration frequency component of the above-mentioned torsional vibration increases in proportion to the vehicle speed by 2 to 1", so
To remove the influence of vehicle speed, the unitization time is 5%.
(RA) It's Kl. Therefore, the shaft torque sensor (
TS) to detect all of the above torsional vibrations, and from kneading to digital filter times M(I)? ) extracts only its natural vibration component, and further outputs its output to a unit circuit (RA
), and the vibration # components corresponding to the four points in Fig. 8, the unitized maximum allowable amplitude standard (As), and the comparator (○
PR) and the result is input to the amplifier (AMP) via the creep controller (SC).Then, the amplifier (AMP) chopper circuit receives the acceleration current command (P). ((Jr)), and controls the traction motor current command (P) so that the above torsional vibration 1)3[min is maintained at a value corresponding to the vicinity of point q in the vjB diagram. (TM) tensile force is controlled.

上記のように、この発明の一実施例において汀、上記制
御によって電気車は第8図の4点におけるすべり速度v
8で運転することになり、レールの表面状態や天候等の
条件に関係なく、車輪とレールとの間の最大粘着係数に
ほぼ近い値を利用できるので、電気機関車の場合にあっ
ては動軸政を減少させることができ(例えば6動軸から
41)1)軸に減少可能)、電気機関車の製布コストの
大巾な低減、省資源が図られ、また主電動機等の単機容
量の増大によって効率向上による省エネルギー化を図る
ことができる。更に電車の場合には粘着係数の改善によ
って一編成列嵐における電動車比率全低減することがで
き、初期投資の大巾な節減と省資源、また列車重量の低
減による省エネルギー化と保守費の低減t−図ることが
できる。
As mentioned above, in one embodiment of the present invention, the above control causes the electric vehicle to slide at a sliding speed v at the four points in FIG.
In the case of electric locomotives, it is possible to use a value close to the maximum adhesion coefficient between the wheels and the rails, regardless of conditions such as the surface condition of the rails or the weather. It is possible to reduce the number of shafts (for example, from 6 moving shafts to 41), 1) shafts), greatly reduce the manufacturing cost of electric locomotives, save resources, and increase the capacity of single machines such as traction motors. Energy savings can be achieved by increasing efficiency. Furthermore, in the case of trains, by improving the adhesion coefficient, it is possible to completely reduce the ratio of electric vehicles in a train, resulting in significant initial investment savings and resource savings, as well as energy savings and maintenance cost reductions by reducing train weight. t-can be measured.

第4図けこの発明を適用し7:他の実権例における電気
車の制御装置の制御ブロック図で、第1図のチョッパ回
路(OH)に代り主変圧器(VTR)とその2次側に接
続されたサイリスタブリッジ回路(TUB)が採用され
ており、ユニット出回II(RA)。
Figure 4 Applying this invention 7: A control block diagram of a control device for an electric vehicle in another practical example, in which the chopper circuit (OH) in Figure 1 is replaced by a main transformer (VTR) and its secondary side. A connected thyristor bridge circuit (TUB) is adopted and the unit circulation II (RA).

ユニット化された許容最大振巾基準(As) 、比較器
(cpR) 、クリープ制御器(sc)及び増巾器(A
MP )を含めて電動機制御装置としてのサイリスタ位
相制御装置t (TMO)を構成している。この場合、
交流電気車として、上記一実施例の場合と同様の効果を
達成することができる。
Unitized maximum allowable amplitude standard (As), comparator (cpR), creep controller (sc) and amplifier (A
MP ) constitutes a thyristor phase control device t (TMO) as a motor control device. in this case,
As an AC electric vehicle, the same effects as in the above embodiment can be achieved.

85図は第1I5!!Iのディジタルフィルタ回路(D
F)をアナログフィルタ回1B(AF)と検波回Fly
 CDF2T)とで構成した実権例で、軸トルクセンサ
(F8)による輪軸のねじれ振動のうち固有振動周波数
成分を検出する方式である。
Figure 85 is 1I5! ! I digital filter circuit (D
F) is analog filter circuit 1B (AF) and detection circuit Fly
CDF2T), which detects the natural vibration frequency component of the torsional vibration of the wheel set using the shaft torque sensor (F8).

第6図は第4図のディジタルフィルタ回路(DF)をア
ナログフィルタ回VPr(AF)と検波回K(DET)
とで構成した実権例で、軸ドルクセ/す(TS)による
輪軸のねじり振動のうち、固有振動周波数成分を検出す
る方式である。
Figure 6 shows the digital filter circuit (DF) in Figure 4 as an analog filter circuit VPr (AF) and a detection circuit K (DET).
This is a method of detecting the natural vibration frequency component of the torsional vibration of the wheel set due to the shaft Druxe/Su (TS).

gJ5図および第6図に示す実施例においても、ユニッ
ト化した固有振動周波数成分の振巾をユニット化した許
容最大振巾基準(As)と比較して、ユニット化した固
有振動周波¥に、成分が一定になるよう主電動機(TM
)の引張力を制御することにより、すべり率を許容しな
がら粘着性能を最大限に発揮することができる電気車の
制御器@を提供する。
In the examples shown in Fig. gJ5 and Fig. 6, the amplitude of the unitized natural vibration frequency component is compared with the unitized maximum allowable amplitude standard (As), and the component is The traction motor (TM
To provide a controller for an electric vehicle that can maximize adhesive performance while allowing a slip rate by controlling the tensile force of ).

¥J7図は電動機制御装置として可変′1圧可変周波数
制御回路(VVVF )を使用したサイリスタ可変電圧
可変周波数制御装置(TMO)″t−適用した場合のこ
の発明の他の実権例を示し、この場合主′L!動機(T
M)として3相かご形銹導電動機を使用する電気車の制
御装置を提供する。
¥J7 Figure shows another practical example of this invention when a thyristor variable voltage variable frequency control device (TMO) using a variable voltage variable frequency control circuit (VVVF) is applied as a motor control device. Case Lord'L! Motive (T
M) provides a control device for an electric vehicle using a three-phase squirrel cage rust conduction motor.

第12図は台車(BG) 1輪軸(Ax) 、歯車装置
(G)。
Figure 12 shows a bogie (BG), one wheel axle (Ax), and a gear system (G).

主電動機(TM)の構成を示す図面である。上記の実施
例は軸トルクセンサ(TS)を輪軸(aX)上に(TE
I)の如く取り付ける方式であったが、第12図に示す
如く輪軸(AX) i主電動機(TM)から歯*qrt
t<a>e介してトルクが云達され回転体としては一体
に構成されているので、第12図における軸トルクセン
サ(TS)け主電動機軸上に取付けても空転前駆現象と
しての自励振動を検出できる。
It is a drawing showing the configuration of a main electric motor (TM). In the above embodiment, the shaft torque sensor (TS) is placed on the wheel axle (aX) (TE
The installation method was as shown in I), but as shown in Fig. 12, the tooth *qrt
Since the torque is transmitted through t<a>e and the rotating body is integrally constructed, even if the shaft torque sensor (TS) shown in Fig. 12 is installed on the main motor shaft, self-excitation will occur as a precursor to slipping. Can detect vibrations.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したように、大空転が発生する前の
前駆現象としての輪軸のねじり振動の固有振動周波数成
分を検出し、この固有振動周波数成分の信号レベルを全
体のレベルによって、ユニット化することにより、検出
信号の速度依存性を7’i−<’した上で、同じくユニ
ット化した許容最大振巾規準と比較し、ユニット化した
固有振動周波数成分が一定となるように電動機の引張力
金制有する構成とし1こので、車輪とレールとの間のす
べり富を許容するように制御するため、最大粘着係数に
ほぼ近い粘着係数を利用することができ、電気車の粘着
性能を最大限に発揮することができるという効果がある
As explained above, this invention detects the natural vibration frequency component of the torsional vibration of the wheel set as a precursor phenomenon before the occurrence of a large slip, and unitizes the signal level of this natural vibration frequency component by the overall level. By setting the speed dependence of the detection signal to 7'i - With this configuration, in order to control the amount of slippage between the wheels and the rails, it is possible to use an adhesion coefficient that is almost close to the maximum adhesion coefficient, thereby maximizing the adhesion performance of electric vehicles. It has the effect of being able to demonstrate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例における電気車の制御装置
の制御ブロック図、第2図はねじり振動の1次、2次固
有振#周波数収分の振巾を示す図面、第3図は車両速度
と固有振動周波&成分の振巾との関係を示す特性図、第
4図ないし第7閃けこの発明のそれぞれ異なる他の実権
例における電気車の制御装置の制御ブロック図、第8図
げ車輪とレールとの間のすべり速度(率)と粘着係数と
の関係を示す特性図、第9図ないし@1)図は従来の電
気車の制御装置における空転検知方式であるそれぞれ電
圧比較方式、を流比較方式及び速度発電機方式を示す説
明図である。第12図は台車1輪軸、主電動機、歯車装
置の構成図である。 図において、(TM)は電動機としての主′邂動機、(
VS)は振動検出装置、(RA)けユニット化回路、(
As)はユニット化した許容最大振巾基準、(TMO)
は1!動機制御装置である。(BG)は台車、(AX)
は輪軸、(0)け歯車装置である。 なお、各図中同一符号は同−又は相当部分を示す。
Fig. 1 is a control block diagram of a control device for an electric vehicle according to an embodiment of the present invention, Fig. 2 is a drawing showing the amplitude of the primary and secondary natural vibration #frequency absorption of torsional vibration, and Fig. 3 is Characteristic diagrams showing the relationship between vehicle speed and the amplitude of the natural vibration frequency and component, Figures 4 to 7; and Figure 8, a control block diagram of the control device for an electric vehicle in other different practical examples of this invention. Characteristic diagrams showing the relationship between the sliding speed (rate) and the adhesion coefficient between the wheels and the rails, Figures 9 to 1) show the voltage comparison method, which is the slip detection method in the conventional electric vehicle control device. , is an explanatory diagram showing a flow comparison method and a speed generator method. FIG. 12 is a configuration diagram of one wheel shaft of the bogie, the main electric motor, and the gear device. In the figure, (TM) is the main motor as an electric motor, (
VS) is a vibration detection device, (RA) is a unitized circuit, (
As) is the unitized maximum allowable amplitude standard, (TMO)
is 1! It is a motive control device. (BG) is a trolley, (AX)
(0) is a wheel set, and (0) is a gear mechanism. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (8)

【特許請求の範囲】[Claims] (1)電動機によつて駆動される輪軸のねじり自励振動
における固有振動周波数成分を検出して振動検出信号を
出力する振動検出装置、上記振動検出信号レベルを全体
の信号レベルによつてユニット化し、このユニット化振
動検出信号と上記固有振動周波数成分のユニット化した
許容最大振巾基準とを比較しユニット化した固有振動周
波数成分が一定になるように上記電動機の引張力を制御
する電動機制御装置を備えたことを特徴とする電気車の
制御装置。
(1) A vibration detection device that detects the natural vibration frequency component of torsional self-excited vibration of a wheel set driven by an electric motor and outputs a vibration detection signal, and unitizes the vibration detection signal level by the overall signal level. , a motor control device that compares the unitized vibration detection signal with a unitized maximum allowable amplitude standard of the natural vibration frequency component and controls the tensile force of the electric motor so that the unitized natural vibration frequency component becomes constant; A control device for an electric vehicle characterized by comprising:
(2)振動検出装置は輪軸に取り付けられ上記輪軸の自
励振動を検出して検出信号を出力する軸トルクセンサと
上記検出信号を入力して上記自励振動の固有振動周波数
成分を取り出し振動検出信号を出力するフィルタ回路と
から構成されたことを特徴とする特許請求の範囲第1項
記載の電気車の制御装置。
(2) The vibration detection device includes a shaft torque sensor that is attached to the wheel axle and detects the self-excited vibration of the wheel axle and outputs a detection signal, and a shaft torque sensor that inputs the above-mentioned detection signal to extract the natural vibration frequency component of the self-excited vibration and detect the vibration. 2. The control device for an electric vehicle according to claim 1, further comprising a filter circuit that outputs a signal.
(3)フィルタ回路はディジタルフィルタ回路であるこ
とを特徴とする特許請求の範囲第2項記載の電気車の制
御装置。
(3) The control device for an electric vehicle according to claim 2, wherein the filter circuit is a digital filter circuit.
(4)フィルタ回路はアナログフィルタ回路と検出回路
とから構成されたことを特徴とする特許請求の範囲第2
項記載の電気車の制御装置。
(4) Claim 2, characterized in that the filter circuit is composed of an analog filter circuit and a detection circuit.
A control device for an electric vehicle as described in Section 1.
(5)電動機制御装置はチョッパ回路を使用して電動機
の電流を制御することにより上記電動機の引張力を制御
するチョッパ制御装置であることを特徴とする特許請求
の範囲第1項ないし第4項のいずれかに記載の電気車の
制御装置。
(5) Claims 1 to 4, characterized in that the motor control device is a chopper control device that controls the tensile force of the motor by controlling the current of the motor using a chopper circuit. A control device for an electric vehicle according to any one of the above.
(6)電動機制御装置はサイリスタブリッジ回路を使用
して電動機の電流を制御することにより上記電動機の引
張力を制御するサイリスタ位相制御装置であることを特
徴とする特許請求の範囲第1項ないし第4項のいずれか
に記載の電気車の制御装置。
(6) The motor control device is a thyristor phase control device that controls the tensile force of the motor by controlling the current of the motor using a thyristor bridge circuit. The control device for an electric vehicle according to any one of Item 4.
(7)電動機制御装置は3相かご形誘導電動機の引張力
を制御するサイリスタ可変電圧可変周波数制御装置であ
ることを特徴とする特許請求の範囲第1項ないし第4項
のいずれかに記載の電気車の制御装置。
(7) The motor control device is a thyristor variable voltage variable frequency control device that controls the tensile force of a three-phase squirrel-cage induction motor. Electric car control device.
(8)振動検出装置は輪軸と歯車装置を介して取り付け
られる主電動機軸に取り付けられ、上記輪軸の自励振動
を主電動機軸上で検出して、検出信号を出力する軸トル
クセンサと上記検出信号を入力して上記自励振動の固有
振動周波構成分を取り出し、振動検出信号を出力するフ
ィルタ回路とから構成されたことを特徴とする特許請求
の範囲第1項記載の電気車の制御装置。
(8) The vibration detection device is attached to the main motor shaft which is attached via the wheel axle and the gear system, and includes a shaft torque sensor that detects self-excited vibration of the wheel axle on the main motor shaft and outputs a detection signal, and a shaft torque sensor that outputs a detection signal. A control device for an electric vehicle according to claim 1, comprising a filter circuit that inputs a signal, extracts a natural vibration frequency component of the self-excited vibration, and outputs a vibration detection signal. .
JP60125553A 1985-06-10 1985-06-10 Controller of electric railcar Pending JPS61285006A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP60125553A JPS61285006A (en) 1985-06-10 1985-06-10 Controller of electric railcar
ES555872A ES8703359A1 (en) 1985-06-10 1986-06-09 Controller of electric railcar
MX002746A MX168430B (en) 1985-06-10 1986-06-09 CONTROL SYSTEM FOR VEHICLE WITH ELECTRIC MOTOR
AU58507/86A AU592089B2 (en) 1985-06-10 1986-06-10 Electric motor vehicle control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60125553A JPS61285006A (en) 1985-06-10 1985-06-10 Controller of electric railcar

Publications (1)

Publication Number Publication Date
JPS61285006A true JPS61285006A (en) 1986-12-15

Family

ID=14913049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60125553A Pending JPS61285006A (en) 1985-06-10 1985-06-10 Controller of electric railcar

Country Status (4)

Country Link
JP (1) JPS61285006A (en)
AU (1) AU592089B2 (en)
ES (1) ES8703359A1 (en)
MX (1) MX168430B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2058206A1 (en) * 2007-11-09 2009-05-13 Alstom Transport S.A. Railway vehicle bogie comprising a device for controlling the drive of the wheels, and corresponding control method.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2058206A1 (en) * 2007-11-09 2009-05-13 Alstom Transport S.A. Railway vehicle bogie comprising a device for controlling the drive of the wheels, and corresponding control method.
FR2923441A1 (en) * 2007-11-09 2009-05-15 Alstom Transport Sa RAILWAY VEHICLE BOGIE COMPRISING A WHEEL DRIVE CONTROL DEVICE AND CORRESPONDING CONTROL METHOD

Also Published As

Publication number Publication date
ES555872A0 (en) 1987-02-16
AU5850786A (en) 1986-12-18
ES8703359A1 (en) 1987-02-16
MX168430B (en) 1993-05-25
AU592089B2 (en) 1990-01-04

Similar Documents

Publication Publication Date Title
JPH07106007B2 (en) Adhesion control device for railway vehicles
US6012011A (en) Traction control system and a method for remedying wheel-slippage
US5841254A (en) Torque maximization and vibration control for AC locomotives
US6163121A (en) Torque maximization and vibration control for AC locomotives
JPH10510979A (en) Improved Traction Control for Recovering from Wheel Slip Conditions in Diesel Electric Traction Vehicles
JPH088728B2 (en) Electric vehicle readhesion control device
WO2005110802A1 (en) Electric vehicle control device
US4463289A (en) Wheel slip control using differential signal
JPH0880082A (en) Controller of electric rolling stock
JPS61285006A (en) Controller of electric railcar
JPH04248301A (en) Controller for electric vehicle
JPS631306A (en) Chopper control system
JPS61116903A (en) Controller of electric railcar
JPS6098804A (en) Controller of electric railcar
JPS6216003A (en) Controller for electric rolling stock
JPS61132006A (en) Controller of electric railcar
JPH0755004B2 (en) Electric vehicle control device
JPS6158404A (en) Controller of electric railcar
JPS60139104A (en) Controller of electric railcar
JPS627307A (en) Controller of electric railcar
JP2824696B2 (en) Electric car control device
JP2592536B2 (en) Power converter control device
JP3089920B2 (en) Electric car control device
JPH04121004A (en) Controller for electric motor vehicle
JPH0454801A (en) Controller for electric vehicle