JPS61284542A - Production of fiber reinforced composite metallic material - Google Patents
Production of fiber reinforced composite metallic materialInfo
- Publication number
- JPS61284542A JPS61284542A JP12685985A JP12685985A JPS61284542A JP S61284542 A JPS61284542 A JP S61284542A JP 12685985 A JP12685985 A JP 12685985A JP 12685985 A JP12685985 A JP 12685985A JP S61284542 A JPS61284542 A JP S61284542A
- Authority
- JP
- Japan
- Prior art keywords
- fiber reinforced
- mold
- molten
- plunger
- fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Manufacture Of Alloys Or Alloy Compounds (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明はマトリックス金属中に繊維強化材が埋入された
繊維強化金属複合材料の製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing a fiber reinforced metal composite material in which a fiber reinforcement material is embedded in a matrix metal.
(従来の技術)
近年゛、炭素、アルミナ、炭化ケイ素等からなる高強度
、高弾性を有する繊維を強化材とし、アルミニウム、マ
グネシウムのような軽金属又はそれ ゛ら0合金
をマトリックスとした繊維強化金属複合材料(以下、F
RMという。)の開発が活発化しており、これに関する
FRMの製造方法も従来より種々考案さ、れている。(Prior art) In recent years, fiber-reinforced metals have been developed in which fibers with high strength and high elasticity made of carbon, alumina, silicon carbide, etc. are used as reinforcement materials, and light metals such as aluminum and magnesium or alloys thereof are used as a matrix. Composite materials (hereinafter referred to as F
It's called RM. ) has been actively developed, and various FRM manufacturing methods related to this have been devised and used.
これら従来のFRMの製造方法の代表的なものとして加
圧鋳造方法がある。この方法は、第3図に示すように底
板26を有する有底円筒状の鋳型21内に予備成形され
た繊維強化材23を装入し、ヒータ22により予熱後、
マトリックス金属溶湯24を注入し、その後前記鋳型2
1に嵌装されたプランジャ25によりマトリックス金属
を繊維強化材へ加圧浸透させた後、凝固させて目的とす
るFRMを得る方法である。A pressure casting method is a typical method for manufacturing these conventional FRMs. In this method, as shown in FIG. 3, a preformed fiber reinforced material 23 is charged into a bottomed cylindrical mold 21 having a bottom plate 26, and after being preheated by a heater 22,
The matrix metal molten metal 24 is injected, and then the mold 2
In this method, the matrix metal is infiltrated into the fiber reinforced material under pressure using a plunger 25 fitted in the fiber reinforced material 1, and then solidified to obtain the desired FRM.
(発明が解決しようとする問題点)
この加圧鋳造方法で問題となるのが加圧時の脱気である
。すなわち、鋳型内部空間の空気及びガス成分の脱気は
、プランジャの押し込みに従って、鋳型内面とプランジ
ャとの微小な隙間からの自然脱気に頼っている。装入し
た繊維強化材に空気が残っている場合、あるいは繊維強
化材を予熱する際の高温加熱時における繊維強化材の吸
着ガス成分がガス化した場合、これらの脱気が不十分で
あれば、その部分へ溶融マトリックス金属が圧入、浸透
され難い。従って、製造後のFRMの機械的強度もこの
未浸透部分が欠陥となり、所期のものが得られず、延い
ては製造歩留りの低下、コストの増大を招来するものと
なる。(Problems to be Solved by the Invention) A problem with this pressure casting method is degassing during pressurization. That is, the air and gas components in the mold interior space are degassed by natural degassing from a minute gap between the mold inner surface and the plunger as the plunger is pushed. If air remains in the charged fiber reinforced material, or if adsorbed gas components of the fiber reinforced material are gasified during high temperature heating when preheating the fiber reinforced material, if these are insufficiently degassed. , it is difficult for molten matrix metal to be press-fitted and penetrated into that part. Therefore, the mechanical strength of the FRM after manufacture becomes defective due to the unpenetrated portions, and the desired mechanical strength cannot be obtained, resulting in a decrease in manufacturing yield and an increase in cost.
また、従来の加圧鋳造方法では、マトリックス金属溶湯
を繊維強化材の長さ方向から加圧・浸透させるため、繊
維強化材がプランジャの圧力によって座屈する場合があ
り、大形のFRMの製造が困難となっていた。In addition, in the conventional pressure casting method, the molten matrix metal is pressurized and infiltrated from the length direction of the fiber reinforced material, so the fiber reinforced material may buckle due to the pressure of the plunger, making it difficult to manufacture large FRMs. It was becoming difficult.
本発明はかかる問題に鑑みなされたものであって、繊維
強化材にマトリックス金属溶湯を加圧・浸透させてFR
Mを製造するに際し、繊維強化材が装填された鋳型空間
に空気及びガス成分が残留せず、また、大形の繊維強化
材を用いても座屈が生じず、それ数置品質かつ大形のF
RMが得られる製造方法を提供することを目的とする。The present invention was made in view of the above problem, and is an FR material in which molten matrix metal is pressurized and permeated into a fiber reinforced material.
When manufacturing M, air and gas components do not remain in the mold space loaded with fiber reinforcement, buckling does not occur even when large fiber reinforcement is used, and it is possible to achieve numerical quality and large size. F of
It is an object of the present invention to provide a manufacturing method by which RM can be obtained.
(問題点を解決するための手段)
上記目的を達成するための本発明の特徴とする手段は、
加圧鋳造法において、繊維強化材を装入した後その上面
に押え部材を当接し、該繊維強化材の側面と鋳型内面と
の間にマトリックス金属溶湯を注入して密封し、前記押
え部材あるいは鋳型底部の少なくともいずれか一方から
繊維強化材の占める鋳型内部空間の空気及びガス成分を
真空脱気した後又は真空脱気しつつ、前記溶湯を加圧し
て繊維強化材の側面より浸透させる点にある。(Means for Solving the Problems) The features of the present invention for achieving the above object are as follows:
In the pressure casting method, after charging the fiber reinforced material, a holding member is brought into contact with the upper surface of the reinforcing material, and molten matrix metal is injected between the side surface of the fiber reinforcing material and the inner surface of the mold to seal it, and the holding member or After or while vacuum degassing the air and gas components in the inner space of the mold occupied by the fiber reinforced material from at least one of the mold bottoms, the molten metal is pressurized and penetrated from the side of the fiber reinforced material. be.
(実施例) 以下、本発明の実施例を図面を参照して説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.
第1図及び第2図は、本発明方法を通用する製造装置の
一例を示す断面図である。図において、鋳型1は外周に
予熱用のヒータ4が設けられた円筒状の鋳型本体2と、
該本体2の底部を形成する底板3とから構成されている
。該鋳型1には円筒状のプランジャ5が上下方向摺動自
在に嵌装されており、その内部には内面に摺動自在に押
え部材6が装着されている。該押え部材6は押え欅9に
補強板8を介して仕切り部材7が連結された構造となっ
ており、押え棒9の中心部には真空排気孔10が軸方向
に沿って貫通形成されており、該排気孔10は補強板8
に多数開設された脱気孔に連通している。前記仕切り部
材7は多孔質セラミックスや150〜300メツシユの
金属製スクリーンで形成されており、前記補強板8によ
りバックアップされている。図示省略しているが、押え
棒9に開設された真東排気孔10は真空排気装置に連結
されている。FIGS. 1 and 2 are cross-sectional views showing an example of a manufacturing apparatus to which the method of the present invention can be applied. In the figure, a mold 1 includes a cylindrical mold body 2 provided with a preheating heater 4 on the outer periphery;
A bottom plate 3 forms the bottom of the main body 2. A cylindrical plunger 5 is fitted into the mold 1 so as to be slidable in the vertical direction, and a presser member 6 is slidably attached to the inner surface of the plunger 5 . The presser member 6 has a structure in which a partition member 7 is connected to a presser keyaki 9 via a reinforcing plate 8, and a vacuum exhaust hole 10 is formed through the center of the presser bar 9 along the axial direction. The exhaust hole 10 is connected to the reinforcing plate 8.
It communicates with numerous deaeration holes installed in the area. The partition member 7 is made of porous ceramics or a metal screen of 150 to 300 meshes, and is backed up by the reinforcing plate 8. Although not shown, the due east exhaust hole 10 opened in the presser bar 9 is connected to a vacuum exhaust device.
次に、本発明によるFRMの製造方法を第1図及び第2
図に基づいて説明する。Next, the method for manufacturing an FRM according to the present invention will be explained as shown in FIGS. 1 and 2.
This will be explained based on the diagram.
まず、押え部材6を引き抜いた状態でプランジャ5のみ
を鋳型1に装着し、底板3に当接するまで下降させてお
く。該プランジャ5の内部に予備成形されてかさ密度が
高められた繊維強化材11を装入する。次いで、第1図
の如く、押え部材6をプランジャ5に装着して、繊維強
化材11を底板3に当接するまで押し下げる。この状態
で繊維強化材11を300℃以上からマトリックス金属
の融点までの一温度範囲で予熱する。かかる温度まで予
熱するのは、繊維強化材11の繊維表面に吸着している
ガス成分を離脱させると同時に、繊維強化材11のマト
リックス−金属溶湯に対する濡れを良くし、マトリック
ス金属溶湯が浸透し易いようにするためである。尚、予
熱によって、繊維強化材が酸化劣化する場合には、不活
性ガス雰囲気下にて予熱を行うことが肝要である。First, only the plunger 5 is attached to the mold 1 with the presser member 6 pulled out, and is lowered until it comes into contact with the bottom plate 3. A fiber reinforced material 11 that has been preformed and has an increased bulk density is charged inside the plunger 5. Next, as shown in FIG. 1, the presser member 6 is attached to the plunger 5, and the fiber reinforced material 11 is pushed down until it comes into contact with the bottom plate 3. In this state, the fiber reinforcement material 11 is preheated within a temperature range from 300° C. or higher to the melting point of the matrix metal. Preheating to such a temperature allows the gas components adsorbed on the fiber surface of the fiber reinforcement material 11 to be released, and at the same time improves the wetting of the fiber reinforcement material 11 to the matrix-molten metal, making it easier for the matrix metal molten metal to penetrate. This is to ensure that. In addition, if the fiber reinforcing material deteriorates due to oxidation due to preheating, it is important to perform the preheating under an inert gas atmosphere.
次に、プランジャ5を引き上げ、マトリックス金属溶湯
を前記繊維強化材11と鋳型1の内面との間に注入して
繊維強化材11の周側を前記溶湯で満すと共に、第2図
の如くプランジャ5の下面が前記溶湯の上面に当接する
まで下降させ、繊維強化材11の回りを密封し、その後
、繊維強化材11が占める鋳型lの内部空間の空気及び
ガス成分、すなわち繊維強化材11内の空気及び予熱時
に発生したガス成分を真空脱気する。これらのガス成分
は、前記仕切り部材7、補強Fi8の脱気孔及び押え棒
9の真空排気孔10を通って鋳型1外へ排出される。Next, the plunger 5 is pulled up and the matrix metal molten metal is injected between the fiber reinforced material 11 and the inner surface of the mold 1 to fill the circumferential side of the fiber reinforced material 11 with the molten metal. 5 is lowered until the lower surface of the molten metal comes into contact with the upper surface of the molten metal, the area around the fiber reinforced material 11 is sealed, and then the air and gas components in the internal space of the mold l occupied by the fiber reinforced material 11, that is, the inside of the fiber reinforced material 11. The air and gas components generated during preheating are vacuum degassed. These gas components are discharged to the outside of the mold 1 through the partition member 7, the deaeration hole of the reinforcement Fi8, and the evacuation hole 10 of the presser bar 9.
その後、プランジャ5を下降させ、前記溶湯12を加圧
して、該溶湯12を繊維強化材11の周側より加圧・浸
透させる。尚、マトリックス金属溶湯を加圧するのは、
鋳型1内の空気等を真空脱気した後に限らず、真空脱気
を行いつつ、プランジャ5を下降して、前記溶湯を加圧
・浸透させてもよい。Thereafter, the plunger 5 is lowered to pressurize the molten metal 12, so that the molten metal 12 is pressurized and penetrated from the circumferential side of the fiber reinforced material 11. In addition, pressurizing the matrix metal molten metal is as follows:
The plunger 5 may be lowered to pressurize and infiltrate the molten metal, not only after the air in the mold 1 is vacuum degassed, but also while performing the vacuum deaeration.
かかる手段によれば、繊維強化材11がプランジャ5の
圧力によって座屈しないため、大形の成形品を得る場合
特に有利である。勿論、繊維強化材11の回りの空気、
ガス成分等は皆無とされているので、繊維強化材11と
マトリックス金属とが良好に密着した高品質の複合材料
が得られる。According to this method, the fiber reinforced material 11 does not buckle due to the pressure of the plunger 5, which is particularly advantageous when obtaining a large-sized molded product. Of course, the air around the fiber reinforced material 11,
Since there is no gas component, etc., a high-quality composite material in which the fiber reinforcing material 11 and the matrix metal are well bonded can be obtained.
マ) IJフックス属溶湯が繊維強化材に完全に浸透し
た後、凝固・冷却するのを待って、底板3をはずし、上
部から押し出せば、成形品を鋳型から容易に取り出すこ
とができ、所期のFRMが得られる。M) After the IJ Fuchs molten metal has completely penetrated into the fiber reinforced material, wait for it to solidify and cool down, then remove the bottom plate 3 and push it out from the top. The FRM of the period is obtained.
(宛所の効果)
以上説明した通り、本発明によれば、鋳型内に繊維強化
材を装入し、次いでマトリックス金属溶湯を注入して、
これを前記強化材に加圧・?+aさせる前、あるいは加
圧・浸透を行いつつ、鋳型内部の空気及び予熱に伴い発
生したガス成分を真空脱気するので、マトリックス金属
溶湯が浸透しない部分を可及的に減少することができ、
更にマトリックス金属と繊維強化材とがより良(密着し
、機械的性質の向上、製品歩留りの向上、コストの低減
を図ることができる。(Effect of destination) As explained above, according to the present invention, the fiber reinforcement material is charged into the mold, then the matrix metal molten metal is poured,
Pressure is applied to the reinforcing material. Since the air inside the mold and the gas components generated during preheating are vacuum degassed before +a or while pressurizing and permeating, the area where the molten matrix metal does not permeate can be reduced as much as possible.
Furthermore, the matrix metal and the fiber reinforcing material are in better (adhesion) contact, thereby improving mechanical properties, improving product yield, and reducing costs.
また、マトリックス金i溶湯は繊維強化材の側面から加
圧・浸透されるので、繊維強化材の長さ方向より加圧・
浸透する場合に比べて、繊維強化材に座屈による潰れが
生じに<<、大形のFRMも容易に製造することができ
る。In addition, since the matrix gold i molten metal is pressurized and infiltrated from the side of the fiber reinforced material, it is pressurized and penetrated from the length direction of the fiber reinforced material.
Compared to the case of permeation, the fiber reinforced material does not collapse due to buckling, and large-sized FRMs can be manufactured easily.
第1図及び第2r!IJは本発明方法の実施過程におけ
る製造装置の断面図であり、第1図は繊維強化材の装入
後の予熱時の状態を、第2図はマトリックス金属溶湯注
入後の真空税気時の状態を示し、第3図は従来の加圧鋳
造方法における製造装置の断面図を示す。
1・・・鋳型、5・・・プランジャ、6・・・押え部材
、1゜・・・真空排気孔、11・・・繊維強化材、12
・・・マトリックス金属溶湯。
特 許 出 願 人 株式会社神戸製鋼所第2図
第3図Figures 1 and 2r! IJ is a cross-sectional view of the manufacturing equipment in the process of implementing the method of the present invention. Figure 1 shows the state during preheating after charging the fiber reinforcing material, and Figure 2 shows the state during vacuum heating after pouring the molten matrix metal. FIG. 3 shows a sectional view of a manufacturing apparatus in a conventional pressure casting method. DESCRIPTION OF SYMBOLS 1... Mold, 5... Plunger, 6... Holding member, 1°... Vacuum exhaust hole, 11... Fiber reinforced material, 12
...Matrix metal molten metal. Patent applicant: Kobe Steel, Ltd. Figure 2 Figure 3
Claims (1)
クス金属溶湯を注入し、該溶湯を加圧して繊維強化材に
浸透させる金属複合材料の製造方法において、 繊維強化材を装入した後その上面に押え部材を当接し、
該繊維強化材の側面と鋳型内面との間にマトリックス金
属溶湯を注入して密封し、前記押え部材あるいは鋳型底
部の少なくともいずれか一方から繊維強化材の占める鋳
型内部空間の空気及びガス成分を真空脱気した後又は真
空脱気しつつ、前記溶湯を加圧して繊維強化材の側面よ
り浸透させることを特徴とする繊維強化金属複合材料の
製造方法。[Scope of Claims] 1. A method for manufacturing a metal composite material, in which a fiber reinforced material is charged into a mold and preheated, and then a matrix metal molten metal is injected, and the molten metal is pressurized to penetrate into the fiber reinforced material, comprising: After charging the reinforcing material, a presser member is brought into contact with the upper surface of the reinforcing material,
A molten matrix metal is injected and sealed between the side surface of the fiber reinforced material and the inner surface of the mold, and air and gas components in the inner space of the mold occupied by the fiber reinforced material are removed from at least one of the pressing member or the bottom of the mold using a vacuum. A method for producing a fiber-reinforced metal composite material, which comprises applying pressure to the molten metal and allowing it to penetrate from the side surface of the fiber-reinforced material after degassing or while degassing under vacuum.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12685985A JPS61284542A (en) | 1985-06-10 | 1985-06-10 | Production of fiber reinforced composite metallic material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12685985A JPS61284542A (en) | 1985-06-10 | 1985-06-10 | Production of fiber reinforced composite metallic material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61284542A true JPS61284542A (en) | 1986-12-15 |
Family
ID=14945606
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12685985A Pending JPS61284542A (en) | 1985-06-10 | 1985-06-10 | Production of fiber reinforced composite metallic material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61284542A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63238968A (en) * | 1987-03-27 | 1988-10-05 | Toshiba Corp | Manufacture of metal base composite material |
-
1985
- 1985-06-10 JP JP12685985A patent/JPS61284542A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63238968A (en) * | 1987-03-27 | 1988-10-05 | Toshiba Corp | Manufacture of metal base composite material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4212256B2 (en) | Manufacturing method of composite material | |
US4802524A (en) | Method for making composite material using oxygen | |
US4573517A (en) | Fiber-reinforced metals | |
US5111871A (en) | Method of vacuum casting | |
JPH0734986B2 (en) | Molding device for composite products consisting of light alloy matrix and fibrous insert | |
JPS5996236A (en) | Production of composite material | |
US8807199B2 (en) | Liquid pressure forming | |
JP2643504B2 (en) | Mold casting equipment | |
JP4290850B2 (en) | Press forming method of disk-shaped parts made of aluminum matrix composite | |
JPS61284542A (en) | Production of fiber reinforced composite metallic material | |
EP0388235B1 (en) | Method and apparatus for casting | |
JPS624843A (en) | Production of fiber-reinforced composite metallic material | |
JP3073105B2 (en) | Manufacturing method of light alloy composite member | |
JPS61257442A (en) | Manufacture of composite material | |
JPS5893558A (en) | Production of composite fibrous metallic material | |
JP2976437B2 (en) | Manufacturing method of metal matrix composite material | |
EP1595623A1 (en) | Compound body manufacturing method, compound body manufacturing device, and compound body | |
JPS58221244A (en) | Method and apparatus for manufacturing composite material | |
JPH0421741B2 (en) | ||
JPH0381059A (en) | Manufacture of metal based composite material | |
JPS642471B2 (en) | ||
JPH0619536Y2 (en) | Gas pressure impregnation device | |
JPH0239648Y2 (en) | ||
JPS61222668A (en) | Production of composite material | |
JPS62151535A (en) | Production of fiber reinforced aluminum alloy |