JPS61284540A - Production of contact point material for vacuum circuit breaker - Google Patents

Production of contact point material for vacuum circuit breaker

Info

Publication number
JPS61284540A
JPS61284540A JP60127677A JP12767785A JPS61284540A JP S61284540 A JPS61284540 A JP S61284540A JP 60127677 A JP60127677 A JP 60127677A JP 12767785 A JP12767785 A JP 12767785A JP S61284540 A JPS61284540 A JP S61284540A
Authority
JP
Japan
Prior art keywords
contact material
weight
porous body
performance
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60127677A
Other languages
Japanese (ja)
Inventor
Eizo Naya
納谷 榮造
Mitsuhiro Okumura
奥村 光弘
Isamu Komota
古茂田 勇
Eijiro Ikeda
池田 栄二郎
Giichi Nagata
永田 義一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP60127677A priority Critical patent/JPS61284540A/en
Publication of JPS61284540A publication Critical patent/JPS61284540A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacture Of Switches (AREA)

Abstract

PURPOSE:To produce a contact point material having excellent dielectric strength performance and breaking performance by infiltrating copper at the temp. above the m.p. in a non-oxidizing atmosphere to a porous body obtd. by pressing metallic powder having a high m.p. under the prescribed pressure. CONSTITUTION:The single or plural metallic powders or intermetallic powders having the m.p. of copper are mixed and thereafter the mixture is pressed under the prescribed pressure to obtain a green compact consisting of the porous body. Copper is then infiltrated into the porous body at the temp. above the m.p. of copper and below the temp. at which the sintering of the porous body does not relatively progress in the non-oxidizing atmosphere or reducing atmosphere. The porous body consisting of W alone or consisting essentially of Cr, contg. a slight ratio of Cu as an additive, if necessary, and contg. >=1 kinds among Ti, Zr, Al and Si as the other additives is adequately used for the above- mentioned porous body. The contact point material for the vacuum circuit breaker having the excellent breaking performance and dielectric strength performance, a long electrical life and low welding tripping force is obtd. by the above-mentioned method.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発F!Aはしゃ断性能、耐電圧性能に優れ、電気的
寿命が長く、溶着引けずし力の低い真空しゃ断器用接点
材料に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This F! A relates to a contact material for a vacuum breaker that has excellent breaking performance and withstand voltage performance, has a long electrical life, and has low welding and pulling force.

〔従来の技術〕[Conventional technology]

真空しゃ断器は、その無保守、無公害性、優れたしゃ断
性能及耐電圧性能を有するため、適用範囲が急速に拡大
してきている。またそれに伴い、真空しゃ断器が使用さ
れる電圧、電流共に増大する傾向にあり、高耐電圧化、
大谷量化への要求がより厳しくなって来ている。一方、
真空しゃ断器の性能を左右する最も大きな要素が接点材
料であり、何頭に優れた接点材料を開発するかという事
が、直に優れた真空しゃ断器の開発につながっている。
Vacuum breakers are rapidly expanding their range of applications because they require no maintenance, are non-polluting, and have excellent breaking performance and withstand voltage performance. Along with this, there is a tendency for the voltage and current at which vacuum breakers are used to increase, resulting in higher withstand voltages and
OtaniRequirements for quantification are becoming more stringent. on the other hand,
The most important factor that affects the performance of a vacuum breaker is the contact material, and the number of excellent contact materials that can be developed will directly lead to the development of an excellent vacuum breaker.

現在ガスしゃ断器、油しゃ断器や真空しゃ断器に用いら
れているCu−W接点材料は当初気中で用いられており
徐々にその写囲気が油やガスに拡大されてきたものであ
る。従ってその使用雰囲気上、接点材料の消耗、ミクロ
な破壊が著しくこれを防止するため、非常に強固な多孔
質体を得る工夫をしていた。例えば特公昭5l−409
4(18に記載のCu −WC−Coから成る接点接料
はこの多孔体を得るため真空中1400℃で仮焼結を行
っている。又池の成分の接点材料として、例えば特公昭
59−30761号に記載のCu−Cr接点材料につい
ても圧粉成型体(多孔質体)の焼結の重要性について述
べられており、この焼結が接点材料としての強さ、硬さ
、靭性等を上げるのに必要であるとしている。又、特公
昭57−2122号に記載の真空胸閉器用接触子材料と
しての浸透複合金属およびその製造法でも多孔体として
のCr−Zr 、 Cr−Ni、Cr−Ti、Z r−
N i、Zr−Mnが1500℃で、Cr−Mn、 T
i −Fe 、 ’l”i −Ni 、Ti−Mnが1
400℃で、Zr−Tiが1650℃で焼結する旨が記
載されている。
The Cu-W contact materials currently used in gas circuit breakers, oil circuit breakers, and vacuum circuit breakers were initially used in air, and their scope has gradually expanded to oil and gas. Therefore, due to the atmosphere in which it is used, efforts have been made to obtain a very strong porous body in order to prevent the wear and tear of the contact material and micro-destruction. For example, special public Sho 5l-409
The contact material made of Cu-WC-Co described in 4 (18) is pre-sintered at 1400°C in vacuum to obtain this porous body. Regarding the Cu-Cr contact material described in No. 30761, the importance of sintering the compacted powder body (porous body) is also mentioned, and this sintering improves the strength, hardness, toughness, etc. of the contact material. In addition, in Japanese Patent Publication No. Sho 57-2122, a permeable composite metal as a contact material for a vacuum chest occluder and a method for manufacturing the same, Cr-Zr, Cr-Ni, Cr as a porous body is used. -Ti, Zr-
Ni, Zr-Mn at 1500°C, Cr-Mn, T
i -Fe, 'l''i -Ni, Ti-Mn is 1
It is stated that Zr-Ti is sintered at 400°C and sintered at 1650°C.

又、一方で多孔体に浸入させる金属f!i、分として合
金を使用する例として特公昭45−35101号にCu
−Ti 、Cu−Ta %Cu−Zrがあげられている
Also, on the other hand, the metal f! that is infiltrated into the porous body! As an example of using an alloy for i, Cu
-Ti, Cu-Ta%Cu-Zr are mentioned.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の真空しゃ断器用接点材料は以上のようK、従来か
らの粉末冶金法による製造方法を行っているため、多孔
質体の強度、靭性等の特性は向上しているが、電流の入
切により、接点を構成している成分の中で融点が低いも
のから選択的に溶融、蒸発飛散し、強固な多孔質体部が
残り、結果として耐電圧性能が低下してくるという問題
があった。又添加物を加えた場合にはしゃ断性能が低下
するという問題点があった。
As mentioned above, conventional contact materials for vacuum circuit breakers are manufactured using the conventional powder metallurgy method, which improves properties such as the strength and toughness of the porous body. Among the components constituting the contact, those with lower melting points are selectively melted and evaporated and scattered, leaving a strong porous body, resulting in a decrease in voltage resistance. Furthermore, when additives are added, there is a problem in that the blocking performance is reduced.

この発明は上記のような問題点を解消するためになされ
たもので、耐電圧性能および添加物を加えた場合にはし
ゃ断性能に優れた真空しゃ断器用接点材料と得ることを
目的とする。
This invention was made to solve the above-mentioned problems, and aims to provide a contact material for a vacuum breaker that has excellent voltage resistance and breaking performance when additives are added.

〔問題点を解決するための手段」 この発明に係る真空しゃ断器用接点材料は単一もしくは
複数の銅の融点以上の融点をもつ金属粉末、金属間化合
物粉末を所望する多孔質体の成分比に合わせて秤量混合
し、金型に充填し所定の圧力でプレスすることで多孔質
体と得、この多孔質体に銅を銅の融点以上かつ多孔質体
の焼結が比較的進まない温度以下で浸入させることで得
るものである。
[Means for Solving the Problems] The contact material for a vacuum breaker according to the present invention includes a single or multiple metal powder or intermetallic compound powder having a melting point higher than the melting point of copper in a desired composition ratio of a porous body. A porous body is obtained by weighing and mixing them, filling them into a mold, and pressing at a predetermined pressure. Copper is added to this porous body at a temperature above the melting point of copper and below a temperature at which sintering of the porous body does not progress relatively. It can be obtained by infiltrating it with water.

〔作用〕[Effect]

本発明では多孔質体を得るたのに高温で焼結していない
ので多孔質体がそれほど強固には形成されていないため
、電流をしゃ断する際、銅と池の成分が同時に蒸発する
。その結果、接点の表面の金属成分の変化が少く、電子
放出が少いため耐電圧性能が向上する。
In the present invention, although a porous body is obtained, it is not sintered at a high temperature, so the porous body is not formed very strongly, so when the current is cut off, the copper and pond components evaporate at the same time. As a result, there is little change in the metal components on the surface of the contact, and less electron emission occurs, resulting in improved withstand voltage performance.

〔発明の実施例] 以下、この発明の実施例について従来例と比較しながら
説明する。
[Embodiments of the Invention] Hereinafter, embodiments of the present invention will be described while comparing them with conventional examples.

(”実施例1) 平均粒径2.5μmのW粉末と粒径25μm以下のCu
粉末を重量比で95対5の割合で秤量し、2時間混合を
行つ−た。次にこの混合粉末を所定量、金型に充填し、
単位面積当り1〜4トンの荷重を加え、円板状の圧粉体
を得た。この圧粉体に無酸素銅と水素雰囲気中1250
℃で浸入させCu−W接点材料を得た。得られた接点材
料の最終成分比はCu −69重量%WWCu−76重
量%W 、 Cu−84重量%W及びCu−90重量%
Wの4種類で、圧粉体を作る際に加える荷重を変化させ
ることで、圧粉体中の銅の浸入する空孔量を調節した。
(Example 1) W powder with an average particle size of 2.5 μm and Cu with a particle size of 25 μm or less
The powders were weighed at a weight ratio of 95:5 and mixed for 2 hours. Next, fill the mold with a predetermined amount of this mixed powder,
A load of 1 to 4 tons per unit area was applied to obtain a disc-shaped powder compact. This green compact is mixed with oxygen-free copper and 1250 ml of oxygen in a hydrogen atmosphere.
C. to obtain a Cu-W contact material. The final component ratios of the resulting contact material were Cu-69% by weight, WW Cu-76% by weight, Cu-84% by weight, and Cu-90% by weight.
Using four types of W, the amount of pores into which copper penetrates into the green compact was adjusted by changing the load applied when making the green compact.

その後、接点材料は機械加工により、直径2υnの電極
に加工し、真空しゃ断器に組み込み、電気テストを行っ
た。
Thereafter, the contact material was machined into an electrode with a diameter of 2υn, assembled into a vacuum breaker, and electrically tested.

(従来例1) 平均粒径2.5μmのW粉末と粒径25μm以下のCu
粉末?■量比で95対5の割合で秤量し、2時間混合を
行った。次にこの混合粉末を所定量、金型に充填し、単
位面積当り1〜4トンの荷重を加え、円板状の圧粉体を
得た。この圧粉体を真空中1500℃で2時間焼結し、
その後、無酸素銅を水素雰囲気中1250℃で浸入させ
Cu  W接点材料を得た。
(Conventional example 1) W powder with an average particle size of 2.5 μm and Cu with a particle size of 25 μm or less
Powder? (2) They were weighed at a ratio of 95:5 and mixed for 2 hours. Next, a predetermined amount of this mixed powder was filled into a mold, and a load of 1 to 4 tons per unit area was applied to obtain a disc-shaped green compact. This green compact was sintered in vacuum at 1500°C for 2 hours,
Thereafter, oxygen-free copper was immersed in a hydrogen atmosphere at 1250° C. to obtain a CuW contact material.

得られた接点材料の最終成分比はCu−70重量%W、
Cu−76重量%W及びCu−84重量%の3種類であ
った。これらの接点材料は実施例1と同じく、直径20
mの電極に加工され、真空しゃ断器に組み込まれた。
The final component ratio of the obtained contact material was Cu-70%W by weight;
There were three types: Cu-76% by weight W and Cu-84% by weight. These contact materials have a diameter of 20 mm as in Example 1.
It was processed into an electrode of m and was incorporated into a vacuum breaker.

この発明の実施例1と従来例1の相慮点は従来例では圧
粉体を真空中1500℃で焼結しているのに対し、この
発明の実施例では焼結していない点である。
A point of consideration between Example 1 of the present invention and Conventional Example 1 is that in the conventional example, the green compact is sintered in a vacuum at 1500°C, whereas in the Example of the present invention, it is not sintered. .

これらの接点材料を組込んだ真空しゃ断器の電気テスト
の結果を以下に示す。第1図はCu−W接点材料の#電
圧性能について示したもので、横軸はWの重量%、縦軸
は従来例1のCu−69重量%Wの耐電圧性能を1とし
た時の耐電圧性能を示している。図中1は実施例1に示
した本発明接点材料の耐電圧性能と表わし、図中2は従
来例1に示したCu−W接点材料の耐電圧性能を表わし
ている。
The results of electrical tests on vacuum circuit breakers incorporating these contact materials are shown below. Figure 1 shows the #voltage performance of the Cu-W contact material, where the horizontal axis is the wt% of W and the vertical axis is when the withstand voltage performance of Cu-69wt%W of Conventional Example 1 is taken as 1. Indicates voltage resistance performance. 1 in the figure represents the withstand voltage performance of the contact material of the present invention shown in Example 1, and 2 in the figure represents the withstand voltage performance of the Cu-W contact material shown in Conventional Example 1.

第1図より本発明接点材料の耐電圧性能が従来のものに
比べ、2〜3倍も優れていることが判る。
It can be seen from FIG. 1 that the withstand voltage performance of the contact material of the present invention is two to three times better than that of the conventional contact material.

尚、この耐電圧性能の測定方法は1回の負荷開閉を行な
った後、電極を開離した状態で所定の電圧を印加し、放
電の有無を調べることを数千〜数万回くり返し、放電を
起こす確率を測定する方法を用いた。以Fに示す雌の実
施例も同様な方法で耐電圧性能を測定している。又、従
来から行われているコンディショニングと呼ばれている
耐電圧試験の方法でこれらの接点材料の耐電圧性能を測
定した所、従来例と実施例でほとんど差が見られなかつ
念。これより、今回用いた耐電圧性能の測定法は実際に
使用されているしゃ断器の耐電圧性能に近い値を求める
のに有効である。
The method for measuring withstand voltage performance is to apply a predetermined voltage with the electrodes separated after switching the load once and check for the presence or absence of discharge, which is repeated several thousand to tens of thousands of times. We used a method to measure the probability of occurrence. The withstand voltage performance of the female example shown in F below was also measured in the same manner. Furthermore, when we measured the voltage resistance performance of these contact materials using a conventional voltage resistance test method called conditioning, we found that there was almost no difference between the conventional example and the example. From this, the method of measuring withstand voltage performance used this time is effective in determining a value close to the withstand voltage performance of circuit breakers actually used.

第2図は同じ〈実施例1のCu−70重量%Wと従来例
1のCu−69重量%Wについての電気的寿命を示した
もので、電流しゃ断性能と負荷開閉回数の関係を表わし
ている。縦軸は従来例1のCu−69重量%Wの初期の
しゃ断性能を1とした時のしゃ断性能を示し、横軸は負
荷開閉回数を示している。
Figure 2 shows the electrical life of the same Cu-70wt%W of Example 1 and Cu-69wt%W of Conventional Example 1, and shows the relationship between the current interrupting performance and the number of load switching times. There is. The vertical axis shows the breaking performance when the initial breaking performance of Cu-69wt%W of Conventional Example 1 is set to 1, and the horizontal axis shows the number of load switching times.

図中3は本発明接点材料の電気的寿命を示し、図中4t
/i従来例の電気的寿命を示している。第2図より、本
発明接点材料が従来のものに比べ、1.3倍の存命をも
つことが判る。
3 in the figure indicates the electrical life of the contact material of the present invention, and 4t in the figure
/i Shows the electrical life of the conventional example. From FIG. 2, it can be seen that the contact material of the present invention has a lifespan 1.3 times longer than that of the conventional material.

(実施例2) 粒径325mesh以下のCr粉末と粒径25μm以下
のCu粉末を重量比で88対12の割合で秤量し、2時
間混合と行った。次にこの混合粉末を所定量、金型に充
填し、単位面積当り1〜4トンの荷重と加え、円板状の
圧粉体を得た。この圧粉体に無酸素銅を水素雰囲気中1
250℃で浸入させCu−Cr接点材料を得た。得られ
た接点材料の最終成分比はCu−44重量%Cr%Cu
−65重量%、 Crの2種類であった。
(Example 2) Cr powder with a particle size of 325 mesh or less and Cu powder with a particle size of 25 μm or less were weighed at a weight ratio of 88:12 and mixed for 2 hours. Next, a predetermined amount of this mixed powder was filled into a mold, and a load of 1 to 4 tons per unit area was applied to obtain a disc-shaped green compact. Oxygen-free copper is added to this green compact in a hydrogen atmosphere.
A Cu-Cr contact material was obtained by infiltration at 250°C. The final component ratio of the obtained contact material was Cu-44% by weight Cr% Cu
-65% by weight and Cr.

その後接点材料は直径20mの電極に機械加工され、真
空しゃ断器に組込み、電気テストを行った。
The contact material was then machined into a 20 m diameter electrode, assembled into a vacuum breaker, and electrically tested.

(従来例2) 粒径325mesh以下のCr粉末と粒径25μm以下
のCu粉末を重量比で88対12の割合で秤量し、2時
間混合と行った。次にこの混合粉末と所定量、金型に充
填し、単位面積当り1〜4トンの荷重を加え、円板状の
圧粉体を得た。この圧粉体を真空中1′500℃で2時
間焼結し、その後、無酸素銅を水素雰囲気中1250℃
で浸入させCu Cr接点材料を得た。得られた接点材
料の最終成分比はCu−44重重%さ、Cu−65重量
%Crの2種類であった。こ九らの接点材料は直径20
mの電極に機械加工された後、真空しゃ断器に組込み、
電気テス)k行った。
(Conventional Example 2) Cr powder with a particle size of 325 mesh or less and Cu powder with a particle size of 25 μm or less were weighed in a weight ratio of 88:12 and mixed for 2 hours. Next, a predetermined amount of this mixed powder was filled into a mold, and a load of 1 to 4 tons per unit area was applied to obtain a disc-shaped powder compact. This compact was sintered in vacuum at 1'500°C for 2 hours, and then oxygen-free copper was sintered at 1250°C in a hydrogen atmosphere.
to obtain a CuCr contact material. The final component ratios of the contact materials obtained were two types: Cu-44% by weight and Cu-65% by weight Cr. The diameter of these contact materials is 20
After being machined into m electrodes, it is assembled into a vacuum breaker,
I went to electric test) k.

(実施例3) 粒径325mash以下のCr粉末と粒径350mes
h以下のTi粉末と粒径25μm以下のCr粉末を重量
比で88対1対11の割合で秤量し、2時間混合を行っ
た。次にこの混合粉末を所定量、金型に充填し、単位面
積当り1〜4トンの荷重を加え、円板状の圧粉体とした
。この圧粉体に無酸素銅を水素雰囲気中1250℃で浸
入させCuCr−Ti接点材料を得た。
(Example 3) Cr powder with a particle size of 325 mash or less and a particle size of 350 mes
A Ti powder having a particle size of 25 μm or less and a Cr powder having a particle size of 25 μm or less were weighed at a weight ratio of 88:1:11, and mixed for 2 hours. Next, a predetermined amount of this mixed powder was filled into a mold, and a load of 1 to 4 tons per unit area was applied to form a disc-shaped green compact. Oxygen-free copper was infiltrated into this green compact at 1250°C in a hydrogen atmosphere to obtain a CuCr-Ti contact material.

得られた接点材料の最終成分比はCu−44重量%さ一
〇、5重量%T1であった。又、同様な方法で、最初の
配合比を変えることで、Cu−44重量%Cr 0.1
重量%T1、Cu−44重量%Cr−1重量%で1、C
u−44重量%Cr−2重量%T1、Cu 44重量%
Cr−3重量%Ti、Cu−44重量Cr%−5重量%
Ti、Cu−65重量%Cr −0,1重量%Ti、C
u−65重量%Cr−0,5重量%Ti。
The final component ratio of the resulting contact material was 10% by weight of Cu-44 and 5% by weight of T1. In addition, by using the same method and changing the initial blending ratio, Cu-44 wt% Cr 0.1
wt% T1, Cu-44 wt% Cr-1 wt% 1, C
u-44% by weight Cr-2% by weight T1, Cu 44% by weight
Cr-3% by weight Ti, Cu-44% by weight Cr-5% by weight
Ti, Cu - 65% by weight Cr - 0.1% by weight Ti, C
u-65 wt% Cr-0.5 wt% Ti.

Cu−65重量%Cr−1重量%Ti、 Cu−65重
量%Cr−2重量%T1、Cu−65重量%Cr −3
重量%Ti、Cu−65重量%−5重量%T1の接点材
料を得た。
Cu-65% by weight Cr-1% by weight Ti, Cu-65% by weight Cr-2% by weight T1, Cu-65% by weight Cr-3
A contact material with weight% Ti, Cu-65wt%-5wt% T1 was obtained.

(従来例3) 粒径325mesh以下のOr粉末と粒径25μm以下
のCu粉末を重麓比で88対12の割合で秤量し、2時
間混合を行った。次にこの混合粉末を所定量、金型に充
填し、単位面積当り1〜4トンの荷重を加え、円板状の
圧粉体を得た。この圧粉体を真空中1500℃で2時間
焼結した。一方、浸入させる合金としてCu−Ti合金
を溶解法で製造した。用意したCu−Ti合金tfiC
u0.2重量%T1、Cu−1重量%T1、Cu−2重
量%Ti、Cu−4重量%T1、Cu−6重量%T1、
Cu−10重量%T1であった。これらの合金を水素雰
囲気中1250℃で先に用意した焼結体に浸入させ接点
材料を得た。得られた接点材料の最終成分比はCu−4
4重量%Cr−0,1重量%T1、Cu−44重量%C
r−0,5重量%で1、Cu−44重量%Cr−1重量
%T1、 Cu−44重量%Cr−2重量%T1、Cu
−44重量%Cr−3重量%T1、Cu−44重量%C
r−57X量%T1であった。
(Conventional Example 3) Or powder with a particle size of 325 mesh or less and Cu powder with a particle size of 25 μm or less were weighed at a ratio of 88:12 and mixed for 2 hours. Next, a predetermined amount of this mixed powder was filled into a mold, and a load of 1 to 4 tons per unit area was applied to obtain a disc-shaped green compact. This green compact was sintered in vacuum at 1500°C for 2 hours. On the other hand, a Cu-Ti alloy was manufactured by a melting method as an alloy to be infiltrated. Prepared Cu-Ti alloy tfiC
u0.2 wt% T1, Cu-1 wt% T1, Cu-2 wt% Ti, Cu-4 wt% T1, Cu-6 wt% T1,
It was Cu-10% by weight T1. These alloys were infiltrated into the previously prepared sintered body at 1250° C. in a hydrogen atmosphere to obtain a contact material. The final component ratio of the contact material obtained was Cu-4
4% by weight Cr-0, 1% by weight T1, Cu-44% by weight C
r-0.5 wt% 1, Cu-44 wt% Cr-1 wt% T1, Cu-44 wt% Cr-2 wt% T1, Cu
-44 wt% Cr-3 wt% T1, Cu-44 wt% C
r-57X amount %T1.

これら実施例2及3と従来例2及3の接点材料を組込ん
だ真空しゃ断器の電気テストの結果を以下に示す。第3
図はCu−Cr−Ti接点材料のしゃ断性能について示
したもので、横軸はT1の添加量を重量%で示し、縦軸
は従来例2に示したCu 44重量%Crのしゃ断性能
を基準とした本発明接点材料のしゃ断性能を示している
。図中5は実施例3に示しfl Cu−44重量%Cr
−’l”i接点材料のしゃ断性能を表わし、T1添加量
0%が実施例2に示したCu−44重量%計の点を表わ
している。図中6は同じ〈実施例3に示したCu−65
fi量%Cr−Ti接点材料のしゃ断性能を表わし、T
1添加量0%が実施例2に示したCu−65重量%なの
点を表わしている。又、図中7は従来例3で示したCu
−44重量%Cr−I’i接点材料のしゃ断性能を表わ
し、T1添加量0%が従来例2で示したCu 44重量
%さの点を表わしている。尚、図中8は従来例2で示し
たCu−65重量%Crのしゃ断性it示す点である。
The results of electrical tests on vacuum breakers incorporating the contact materials of Examples 2 and 3 and Conventional Examples 2 and 3 are shown below. Third
The figure shows the breaking performance of the Cu-Cr-Ti contact material, where the horizontal axis shows the amount of T1 added in weight%, and the vertical axis shows the breaking performance of Cu 44% by weight Cr shown in Conventional Example 2. The figure shows the breaking performance of the contact material of the present invention. 5 in the figure indicates Example 3 fl Cu-44 wt% Cr
-'l'' represents the breaking performance of the i contact material, and the T1 addition amount of 0% represents the point on the Cu-44 weight % meter shown in Example 2. 6 in the figure is the same (as shown in Example 3). Cu-65
fi amount% represents the breaking performance of Cr-Ti contact material, T
1 addition amount of 0% represents the point of Cu-65 weight % shown in Example 2. In addition, 7 in the figure is Cu shown in conventional example 3.
-44% by weight Cr--I'i contact material is shown, and the T1 addition amount of 0% represents the point where Cu is 44% by weight as shown in Conventional Example 2. Note that 8 in the figure is a point indicating the breaking property it of Cu-65% by weight Cr shown in Conventional Example 2.

第3図より、第1に本発明接点材料が従来のものより優
れたしゃ断性能を有することが判り、Cr量が44重量
%の場合にはT1添加量が0.5重量%でしゃ断性能の
ピークを示し、Ti量が0から5重量%の範囲で従来の
Cu−44重量%Crより良いしゃ断性能を示している
。又Cr量が65重量%の場合もT11l加量が0.5
重量%付近でしゃ断性能のピークを示し、Ti量がOか
ら3重量%の範囲で従来のCu−65重量%Crより良
いしゃ断性能を示している。
From FIG. 3, it can be seen that firstly, the contact material of the present invention has better breaking performance than the conventional one, and when the Cr content is 44% by weight, the breaking performance is improved by adding T1 to 0.5% by weight. It shows a peak, and shows better breaking performance than the conventional Cu-44 wt% Cr when the Ti amount is in the range of 0 to 5 wt%. Also, when the Cr content is 65% by weight, the T11l addition is 0.5
The blocking performance peaks near the weight % range, and the blocking performance is better than the conventional Cu-65 weight % Cr when the Ti amount is in the range of O to 3 weight %.

又、第3図より、従来例3で示したCu−44重量%C
r−Ti接点材料のしゃ断性能は本発明接点材料のよう
に鋭いピークを示さず、T1添加量が増加すると共K、
減少していることが判る。
Moreover, from FIG. 3, Cu-44 weight %C shown in Conventional Example 3
The breaking performance of r-Ti contact material does not show a sharp peak unlike the contact material of the present invention, and as the amount of T1 added increases, K,
It can be seen that it is decreasing.

(その他の実施例) 実施例3と同一方法により、Cu−Cr−Zr %Cu
 −0r−AI 、 Cu−Cr−8i及びCu Cr
−Ti−8i接点材料を製造し、真空しゃ断器に組込み
、テストを行った。
(Other Examples) By the same method as Example 3, Cu-Cr-Zr%Cu
-0r-AI, Cu-Cr-8i and CuCr
- A Ti-8i contact material was manufactured, assembled into a vacuum breaker, and tested.

CuとCrは実施例3と同一粉末を用い、7i−は粒径
200mesh以下、AIは粒径350mesh以下、
Siは粒径200mesh以下のものを用いた。
The same powders as in Example 3 were used for Cu and Cr, 7i- had a particle size of 200 mesh or less, AI had a particle size of 350 mesh or less,
The Si used had a particle size of 200 mesh or less.

第4図は本発明接点材料の1つであるCu−Cr−に接
点材料のしゃ断性能を示したもので、横軸は訃の添加量
を表わし、縦軸は従来例2のCu−44重量%さ接点材
料のしゃ断性能?基準とした時の本発明接点材料のしゃ
断性Fi!、を示している。図中9は本発明接点材料の
1つであるCu−44重量%Cr −に接点材料のしゃ
断性能を表わし、図中10は同じ(Cu−65重量%C
r−Zr接点材料のしゃ断性能を表わしている。
Figure 4 shows the breaking performance of Cu-Cr-, which is one of the contact materials of the present invention, where the horizontal axis represents the amount of additive, and the vertical axis represents the weight of Cu-44 of conventional example 2. % Breaking performance of contact material? Breaking property Fi! of the contact material of the present invention when used as a standard! , is shown. 9 in the figure represents the breaking performance of the contact material for Cu-44 wt% Cr -, which is one of the contact materials of the present invention, and 10 in the figure represents the same (Cu-65 wt% C
It represents the breaking performance of r-Zr contact material.

第4図より、本発明接点材料が従来のものより優れたし
ゃ断性能を有することが判り、さが44重量%の場合に
はか添加量が0.1重量%付近でしゃ断性能のピークを
示し、2Srfiが0から1.6重量%の範囲で従来の
Cu−44重量%Crより良いしゃ断性能を示している
。又、Cr量が65重量%の場合もか添加量が0.1重
量%付近でしゃ断性能のピークを示し、か量が0か♂r
量%の範囲で従来のCu−65重量%Crより良いしゃ
断性能を示している。
From FIG. 4, it is clear that the contact material of the present invention has a better breaking performance than the conventional one, and when the sugar content is 44% by weight, the breaking performance peaks at around 0.1% by weight. , 2Srfi is in the range of 0 to 1.6% by weight, showing better breaking performance than the conventional Cu-44% by weight Cr. Also, when the amount of Cr is 65% by weight, the blocking performance peaks when the amount added is around 0.1% by weight, and when the amount is 0 or ♂r
It shows better breaking performance than the conventional Cu-65% by weight range of Cr.

第5図は同じく本発明接点材料の1つであるさ−Cr−
AI接点材料のしゃ断性能を示したもので、横軸td 
Atの添加量を表わし、縦軸は従来例2のへ一44重量
%Cr接点材料のしゃ断性能を基準とした時の本発明接
点材料のしゃ断性能と示している。
Figure 5 also shows one of the contact materials of the present invention -Cr-
Shows the breaking performance of AI contact material, horizontal axis td
The amount of At added is represented, and the vertical axis represents the breaking performance of the contact material of the present invention based on the breaking performance of the 44 wt % Cr contact material of Conventional Example 2.

図中12は本発明接点材料の1つであるCu−44重量
%Cr−Al接点材料のしゃ断性能を表わし、図中13
は同じ<Cu−65重量%Cr−Al接点材料のしゃ断
性能を表わしている。
12 in the figure represents the breaking performance of Cu-44wt% Cr-Al contact material, which is one of the contact materials of the present invention, and 13 in the figure
represents the breaking performance of the same <Cu-65 wt% Cr-Al contact material.

第5図より、本発明接点材料が従来のものより優れたし
ゃ断性能を有することが判り、さが44重量%の場合に
はAI添加量が0.3重量%付近でしゃ断性能のピーク
を示し、M量が0から2重量%の範囲で従来のCu−4
4重量%さより良いしゃ断性能を示している。又、Cr
量が65重量%の場合もAI添加量が0.3重量%符近
でしゃ断性能のピークを示し、Al量がOから2重量%
の範囲で従来のへ一65重量%Crより良いしゃ断性能
を示している。
From FIG. 5, it is clear that the contact material of the present invention has better breaking performance than the conventional one, and when the contact material is 44% by weight, the breaking performance peaks when the amount of AI added is around 0.3% by weight. , conventional Cu-4 with an M amount in the range of 0 to 2% by weight.
It shows better breaking performance than 4% by weight. Also, Cr
Even when the amount of Al is 65% by weight, the breaking performance peaks when the amount of Al added is around 0.3% by weight, and when the amount of Al is 2% by weight from O
In the range of 65 wt % Cr, it shows better breaking performance than the conventional 65% Cr.

第6図は同じく本発明接点材料の1つであるへ−Cr−
8i接点材料のしゃ断性能を示したもので、横軸はSl
の添加量を表わし、縦軸は従来例2のへ一44重量%々
接点材料のしゃ断性能を基準とした時の本発明接点材料
のしゃ断性能を示している。
Figure 6 also shows -Cr- which is one of the contact materials of the present invention.
This shows the breaking performance of 8i contact material, and the horizontal axis is Sl
The vertical axis represents the breaking performance of the contact material of the present invention based on the breaking performance of the contact material of Conventional Example 2 containing 44% by weight.

図中14は本発明接点材料の1つであるCu−44重量
%Cr−81接点材料のしゃ断性能を表わし、図中15
は同じ(Cu−65重量%Cr−81接点材料のしゃ断
性能を表わしている。
14 in the figure represents the breaking performance of Cu-44wt% Cr-81 contact material, which is one of the contact materials of the present invention, and 15 in the figure
are the same (representing the breaking performance of Cu-65 wt% Cr-81 contact material).

第6図より、本発明接点材料が従来のものより優れたし
ゃ断性能を有することが判り、Crが44重量%の場合
には5iiK加量が0.5重量%付近にしゃ断性能の緩
いピークを示し、Si量が0から5重量%近くまでの範
囲で従来のCu−44重量%さより良いしゃ断性能を示
している。又、ω量が65重量%の場合も5ill加量
が0.5]1(量%付近で緩いしゃ断性能のピークを示
し、今回の実験で製造したS1量Oから5重量%全頭域
で従来のCu−65重量%Crより良いしゃ断性能を示
した。
From FIG. 6, it can be seen that the contact material of the present invention has a better breaking performance than the conventional one, and when the Cr content is 44% by weight, the breaking performance shows a gentle peak around 0.5% by weight when the 5iiK addition is 0.5% by weight. It shows better breaking performance than the conventional Cu-44 weight % Si content in the range from 0 to nearly 5 weight %. In addition, when the ω amount is 65% by weight, the 5ill addition is 0.5]1 (the breaking performance shows a gentle peak around the amount %, and the S1 amount produced in this experiment is 5% by weight). It showed better breaking performance than the conventional Cu-65 wt% Cr.

第7図は同じく本発明接点材料の1つであるCu−Cr
−Ti−Si接点材料のしゃ断性能を示したもので、成
分が4元になるため、Cu−Cr−’I” iに81を
添加する形で表わしている。横軸はSlの添加量を表わ
し、縦軸は従来例2のCu−44][量%針接点材料の
しゃ断性能と基準とした際の本発明接点材料のしゃ断性
能と示している。図中16は本発明接点材料の1つであ
るCu−44重量%Cr−0,1重量%Ti−Si接点
材料のしゃ断性能を表わし、図中17は同じくへ一44
重量%Cr −0,5重量%Ti−Si接点材料のしゃ
断性能を表わし、図中18はCu−44重量%Cr−1
重量%Ti−8L接点材料のしゃ断性能を表わしている
Figure 7 shows Cu-Cr, which is also one of the contact materials of the present invention.
-It shows the breaking performance of Ti-Si contact material, and since the components are four elements, it is expressed in the form of adding 81 to Cu-Cr-'I''i.The horizontal axis shows the amount of Sl added. The vertical axis shows the breaking performance of the contact material of the present invention based on the breaking performance of the Cu-44][amount% needle contact material of Conventional Example 2. In the figure, 16 indicates the breaking performance of the contact material of the present invention. 17 represents the breaking performance of the Cu-44wt% Cr-0.1wt% Ti-Si contact material, and 17 in the figure also shows the breaking performance of the Cu-44wt%Cr-0.1wt%Ti-Si contact material.
Weight % Cr -0.5 weight % Ti-Si represents the breaking performance of the contact material, 18 in the figure is Cu-44 weight % Cr-1
% by weight represents the breaking performance of the Ti-8L contact material.

第7図より、本発明接点材料が従来のものよシ優れたし
ゃ断性能を有することが判り、Ti量が1重量%までの
範囲で、81量がOから5重量%の範囲であれば、従来
のCu−44重量%□□□接点材料より良い性it示す
ことが判る。
From FIG. 7, it can be seen that the contact material of the present invention has better breaking performance than the conventional one, and when the Ti amount is within the range of 1% by weight and the 81 amount is within the range of O to 5% by weight, It can be seen that it exhibits better properties than the conventional Cu-44 weight % □□□ contact material.

また、実施例2以下の本発明接点材料の電気的性能とし
て実施例1のCu−W接点材料と同じく耐電圧性能の測
定も行った。第8因にその一例であるCu −Cr−S
i接点材料の耐電圧性能を示す。横軸risiの添加量
2表わし、縦軸は従来例であるCu −44重量%CC
接接材料の耐電圧性能を基準とした際の本発明接点材料
の耐電圧性能を示している。
Further, as the electrical performance of the contact materials of the present invention in Example 2 and below, the withstand voltage performance was also measured in the same manner as the Cu-W contact material of Example 1. An example of the eighth factor is Cu-Cr-S
The withstand voltage performance of the i-contact material is shown. The horizontal axis represents the addition amount 2 of risi, and the vertical axis represents the conventional example Cu-44 wt%CC
It shows the withstand voltage performance of the contact material of the present invention based on the withstand voltage performance of the contact material.

図中19はCu−44重量%Cr−Si接点材料の耐電
圧性能を−表わし、図中20はCu−65重量%Cr−
Si接点材料の耐電圧性能を表わしている。
In the figure, 19 represents the withstand voltage performance of the Cu-44 wt% Cr-Si contact material, and 20 in the figure represents the Cu-65 wt% Cr-
It represents the voltage resistance performance of Si contact material.

第8図より、本発明接点材料が従来のものより優れた耐
電圧性能を有することが判り、Slの添加に伴い2重量
%まで性能が上昇し、それ以降、性能が低下する。但し
、今回の実験でI/iSi添加量が5重量%までであり
、この範囲内では従来品の性能を上回っている。この他
、Ti、Zr%A/等実施例で示した接点材料について
も耐電圧性能の測定を行った。この結果、全接点材料共
耐電圧性能がT1等の添加により向上することが判(7
)したが、第8図に示したCu −Cr−8i接点と同
様に1.5倍前後の性能を示したものはCu −Cr−
T i −8i接点材料だけで、他は1.2倍程度であ
った。
From FIG. 8, it can be seen that the contact material of the present invention has superior voltage resistance performance than the conventional one, and the performance increases up to 2% by weight with the addition of Sl, and thereafter the performance decreases. However, in this experiment, the amount of I/iSi added was up to 5% by weight, and within this range, the performance exceeded that of conventional products. In addition, the withstand voltage performance was also measured for the contact materials shown in the examples, such as Ti and Zr%A/. As a result, it was found that the withstand voltage performance of all contact materials was improved by adding T1, etc. (7
) However, similar to the Cu-Cr-8i contact shown in Fig. 8, the one that showed performance around 1.5 times was the Cu-Cr-
Only for the Ti-8i contact material, the other materials were about 1.2 times as large.

本発明接点材料が従来のものく比較してしゃ断性能が向
上した理由として考えられることは、T1等の添加物を
粉末混合時点で投入し、この混合粉を圧縮成型し、その
後嗣を浸入させたことにより、従来のように浸人材とし
て銅合金を用いなかったことで、出来上った接点材料中
で添加物が総て銅に溶けこまず、接点材料の電気伝導度
の低下を押えることになっている。T1等の添加物がし
ゃ断性能にどのような効果を及しているのかは現在の所
不明であるが、発明者らが行った同様の実験では、Co
 、 Fe 、 Ni 、AjF等はしゃ断性能に対す
る効果けみられなかった。
A possible reason for the improved breaking performance of the contact material of the present invention compared to conventional materials is that additives such as T1 are added at the time of powder mixing, this mixed powder is compression molded, and then the successor is infiltrated. As a result, by not using a copper alloy as an immersion material as in the past, all additives do not dissolve into the copper in the finished contact material, suppressing a decrease in the electrical conductivity of the contact material. It has become. It is currently unknown what effect additives such as T1 have on the barrier performance, but similar experiments conducted by the inventors have shown that Co
, Fe, Ni, AjF, etc., had no effect on the breaking performance.

一方、本発明接点材料が優れた耐電圧性能と示した理由
としては、従来から言われている圧粉体の焼結による、
焼結体の強度向上が完成した接点材料の強度等の性能を
上げるのに必要であるとされていたが、実際の真空しゃ
断器として電流の大切を行っていると、多孔質体が強固
なため、比較的融点の低いへが選択的に蒸発飛散し、接
点材料表面が多孔質体成分が豊富になり、熱電子を放出
しやすくなるが、本発明接点材料では実質的には接続さ
れた多孔質体を形成しておらず、その結果、電流入切の
際に山と他の成分がともに飛散するため接点材料表面の
成分変化が少なく、熱電子放出の割合が従来品に比べ少
ないことが考えられる。
On the other hand, the reason why the contact material of the present invention exhibits excellent withstand voltage performance is due to the sintering of the green compact, which has been conventionally said.
It was believed that improving the strength of the sintered body was necessary to improve the strength and other performance of the completed contact material, but when used as an actual vacuum breaker to handle electric current, the porous body became strong. Therefore, the material with a relatively low melting point selectively evaporates and scatters, and the surface of the contact material becomes rich in porous components, making it easier to emit thermoelectrons. It does not form a porous body, and as a result, when the current is turned on and off, the peaks and other components are scattered together, so there is little change in the composition on the surface of the contact material, and the proportion of thermionic emission is lower than that of conventional products. is possible.

また、多孔質体が強固に形成されていないため、溶着を
起こしても、簡単に多孔質体が分離する、ま ため、従来のものに比べ、溶着力はすし力かi程度まで
低下する利点も確認した。
In addition, since the porous body is not strongly formed, even if welding occurs, the porous body easily separates.This also has the advantage that the welding force is reduced to about the same strength as the conventional one. Also confirmed.

一方、製造面でも、焼結の工程が省かれ製造時面及コス
トが大巾に低下する。また多孔質体寸法が圧粉体成型時
とiIn浸入後でほとんど変化がなく、従来のものの様
に焼結工程で多孔質体の収細か起こり、空孔率が変化す
ることに帰因する製造条件把握の困難さといった点も省
略出来る利点も合せ持っている。
On the other hand, in terms of manufacturing, the sintering process is omitted, significantly reducing manufacturing time and costs. In addition, there is almost no change in the dimensions of the porous body during green compact molding and after iIn infiltration, and unlike conventional products, the porous body shrinks during the sintering process, resulting in a change in porosity. It also has the advantage of eliminating the difficulty of understanding conditions.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば真空しゃ断器用接点材
料を単一もしくは複数の銅の融点以上の融点をもつ金属
粉末又は金属間化合物粉末を所望する多孔質体の成分比
に合わせて秤量し、混合した後、所望の空孔率になるよ
うに、金型に充填し所定の圧力でプレスすることで多孔
質体を得、この多孔質体に銅を浸入させることで得たの
で、しゃ断性能、耐電圧性能に優れた真空しゃ断器用接
点材料が得られる効果がある。
As described above, according to the present invention, a contact material for a vacuum breaker is prepared by weighing one or more metal powders or intermetallic compound powders having a melting point higher than the melting point of copper in accordance with the desired component ratio of the porous body. After mixing, a porous body was obtained by filling a mold and pressing at a predetermined pressure so that the desired porosity was obtained, and by infiltrating copper into this porous body. This has the effect of providing a contact material for a vacuum breaker with excellent performance and withstand voltage performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例により製作したへ−W接点
材料の耐電圧性能を示すグラフ、wjZ図は同じく電気
的寿命を示すグラフ、第3図はこの発明の他の実施例に
より製作したCu−Ti接点材料のしゃ断性能を示すグ
ラフ、第4図はこの発明の他の実施例により製作したC
u−Cr−Zr接点材料のしゃ断性能を示すグラフ、第
5図はこの発明の池の実施例により製作したCu−0r
−AI接点材料のしゃ断性能を示すグラフ、第6図はこ
の発明の厘の実施例によ°り製作されたCu−CrSi
接点材料のしゃ断性能を示すグラフ、第7図はこの発明
の池の実施例により製作したCu Cr−Ti Si接
点材料のしゃ断性能を示すグラフ、第8図は第6図に示
したCu −Cr −81接点材料の耐電圧性能分示す
グラフである。
Fig. 1 is a graph showing the withstand voltage performance of the he-W contact material manufactured according to one embodiment of the present invention, wjZ diagram is a graph similarly showing the electrical life, and Fig. 3 is a graph showing the electrical lifespan of the he-W contact material manufactured according to another embodiment of the present invention. Figure 4 is a graph showing the breaking performance of the Cu-Ti contact material made according to another embodiment of the present invention.
A graph showing the breaking performance of u-Cr-Zr contact material, FIG.
- A graph showing the breaking performance of AI contact material, Figure 6 shows the Cu-CrSi fabricated according to the embodiment of the present invention.
A graph showing the breaking performance of the contact material, FIG. 7 is a graph showing the breaking performance of the Cu-Cr-Ti Si contact material manufactured according to the embodiment of the pond of the present invention, and FIG. 8 is a graph showing the breaking performance of the Cu-Cr-Ti Si contact material shown in FIG. 6. It is a graph showing the withstand voltage performance of -81 contact material.

Claims (1)

【特許請求の範囲】 1)単一もしくは複数の銅の融点以上の融点をもつ金属
粉末又は金属間化合物粉末を混合した後、所定の圧力で
プレスすることで多孔質体を得る工程と、非酸化性もし
くは還元性雰囲気中で銅の融点以上かつ多孔質体の焼結
が比較的進まない温度以下で銅を浸入させる工程から成
ることを特徴とする真空しや断器用接点材料の製造方法
。 2)多孔質体の成分としてタングステンを用いたことを
特徴とする特許請求の範囲第1項に記載の真空しや断器
用接点材料の製造方法。 3)多孔質体が主成分としてクロム、添加物としてチタ
ン、ジルコニウム、アルミニウム、シリコンの中から少
くとも一種を含有することを特徴とする特許請求の範囲
第1項記載の真空しや断器用接点材料の製造方法 4)多孔質体が主成分としてクロム、添加物として少量
の銅を含み、その他の添加物としてチタン、ジルコニウ
ム、アルミニウム、シリコンの中から少くとも一種を含
有することを特徴とする特許請求の範囲第1項に記載の
真空しや断器用接点材料の製造方法。 5)接点材料中チタニウム、ジルコニウム、アルミニウ
ム、シリコンが各々5重量%以下含有させたことを特徴
とする特許請求の範囲第1項第3項又は第4項のいずれ
かに記載の真空しや断器用接点材料の製造方法 6)接点材料中、クロムを44重量%以上65重量%以
下含有させたことを特徴とする特許請求の範囲第1項第
3項第4項又は第5項のいずれかに記載の真空しや断器
用接点材料の製造方法。
[Claims] 1) A step of mixing one or more metal powders or intermetallic compound powders having a melting point higher than the melting point of copper and then pressing at a predetermined pressure to obtain a porous body; A method for producing a contact material for a vacuum shield or disconnector, comprising the step of infiltrating copper in an oxidizing or reducing atmosphere at a temperature above the melting point of copper and below a temperature at which sintering of a porous body is relatively slow. 2) The method for manufacturing a contact material for a vacuum shield or disconnector according to claim 1, characterized in that tungsten is used as a component of the porous body. 3) A contact for a vacuum shield breaker according to claim 1, wherein the porous body contains chromium as a main component and at least one of titanium, zirconium, aluminum, and silicon as an additive. Material manufacturing method 4) The porous body is characterized in that it contains chromium as a main component, a small amount of copper as an additive, and at least one of titanium, zirconium, aluminum, and silicon as other additives. A method for manufacturing a contact material for a vacuum shield breaker according to claim 1. 5) The vacuum chamber according to claim 1, item 3 or 4, characterized in that the contact material contains titanium, zirconium, aluminum, and silicon in an amount of 5% by weight or less each. Method for manufacturing dexterous contact material 6) Any one of claims 1, 3, 4 or 5, characterized in that the contact material contains 44% by weight or more and 65% by weight or less of chromium. A method for producing a contact material for a vacuum shield and disconnector as described in .
JP60127677A 1985-06-11 1985-06-11 Production of contact point material for vacuum circuit breaker Pending JPS61284540A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60127677A JPS61284540A (en) 1985-06-11 1985-06-11 Production of contact point material for vacuum circuit breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60127677A JPS61284540A (en) 1985-06-11 1985-06-11 Production of contact point material for vacuum circuit breaker

Publications (1)

Publication Number Publication Date
JPS61284540A true JPS61284540A (en) 1986-12-15

Family

ID=14965979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60127677A Pending JPS61284540A (en) 1985-06-11 1985-06-11 Production of contact point material for vacuum circuit breaker

Country Status (1)

Country Link
JP (1) JPS61284540A (en)

Similar Documents

Publication Publication Date Title
US4162160A (en) Electrical contact material and method for making the same
US2983996A (en) Copper-tungsten-molybdenum contact materials
US5422065A (en) Silver-based contact material for use in power-engineering switchgear, and a method of manufacturing contacts made of this material
JP2766441B2 (en) Contact material for vacuum valve
JPS6359217B2 (en)
EP0460680B1 (en) Contact for a vacuum interrupter
JPS61284540A (en) Production of contact point material for vacuum circuit breaker
JP2002088437A (en) Contact material for vacuum valve and its production method
US4784829A (en) Contact material for vacuum circuit breaker
JP2001351451A (en) Contact element material and contact element
JP2889344B2 (en) Contact for vacuum valve
JP2003077375A (en) Contact material for vacuum valve and vacuum valve
JP2006032036A (en) Contact material for vacuum valve
JP4619821B2 (en) Contact material and vacuum valve
JPH0193018A (en) Contact material for vacuum bulb
KR0171607B1 (en) Vacuum circuit breaker and contact
JP2004076141A (en) Vacuum valve used for vacuum interrupter, and manufacturing method of electric contact
JP3443516B2 (en) Manufacturing method of contact material for vacuum valve
JP2777479B2 (en) Electrode material for vacuum circuit breaker and vacuum circuit breaker
JP2007123053A (en) Contact material for vacuum valve, manufacturing method thereof, and vacuum valve
JPH10241511A (en) Vacuum circuit breaker electrode material and vacuum circuit breaker
JPS5823119A (en) Method of producing electric contact material
JPS59197539A (en) Electric contact material for sealing
JPH0791612B2 (en) Sintered alloy for vacuum contacts and breaker contacts
JP2001222933A (en) Contact material for vacuum valve and method of manufacturing the same