JPS61284507A - Production of cadmium powder for nickel-cadmium battery - Google Patents

Production of cadmium powder for nickel-cadmium battery

Info

Publication number
JPS61284507A
JPS61284507A JP12515285A JP12515285A JPS61284507A JP S61284507 A JPS61284507 A JP S61284507A JP 12515285 A JP12515285 A JP 12515285A JP 12515285 A JP12515285 A JP 12515285A JP S61284507 A JPS61284507 A JP S61284507A
Authority
JP
Japan
Prior art keywords
powder
cadmium
salt
soln
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12515285A
Other languages
Japanese (ja)
Inventor
Katsuhiko Yoshimaru
克彦 吉丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP12515285A priority Critical patent/JPS61284507A/en
Publication of JPS61284507A publication Critical patent/JPS61284507A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To improve overall powder shape and surface shape as well as the condition, etc. of Cd during charging and discharging by executing the deposition of Cd powder while an Ag salt or In salt is allowed to co-exist in an aq. Cd salt soln. CONSTITUTION:The Ag salt such as AgNO3 or In salt such as InCl3 is added to the aq. soln. of Cd salt such as CdSO4. A metallic Zn plate, etc. is immersed into such aq. soln. to effect the substn. reaction of Cd and Zn. A hydrophillic colloid such as glue is added to the aq. soln. to powder the deposited Cd. The Cd powder deposited by the above-mentioned method is fine and has the active shape; in addition, the oxidation of the Cd powder surface is suppressed. The Ag and In contributes to a decrease of the diffusion resistance of Cd<2+> in the intermediate product of Cd in the charging and discharging stage of a battery so that the overall improvement of the utilizing ratio of Cd is made possible.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は二、ケル−カドミウム電池用カドミウム粉末の
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to second, a method for producing cadmium powder for Kel-cadmium batteries.

〔従来の技術〕[Conventional technology]

ニッケル−カドミウム電池の陰極活物質として、カドミ
ウム粉末が利用されている。カドミウム粉末の製法とし
ては、金属カドミウムを中性もしくは還元雰囲気中で揮
発させ、凝縮・捕集させる乾式法と、カドミウム塩水溶
液中に亜鉛板や亜鉛粉末を加えて置換反応によりスポン
ジ状のカドミウムを回収する湿式法とがある。
Cadmium powder is used as a cathode active material in nickel-cadmium batteries. There are two methods for producing cadmium powder: a dry method in which metal cadmium is volatilized in a neutral or reducing atmosphere, condensed and collected, and a sponge-like cadmium is produced by adding a zinc plate or powder to a cadmium salt aqueous solution and performing a substitution reaction. There is a wet method for recovery.

このようにして得られる活物質に要求される性質に、微
細な粉末であり、反応性に富む活性な形状であること、
粉末表面が酸化しにくいことなどが挙げられ、電池充放
電の際に、Cdの利用率がよいことが挙げられる。
The properties required for the active material obtained in this way include that it is a fine powder and has an active form with high reactivity.
The powder surface is difficult to oxidize, and the Cd utilization rate is good during battery charging and discharging.

しかしながら、乾式法による活物質は、平均粒径が3〜
12μmの球形であり、このため、比表面積が小さく、
反応性つまり利用率が低い。
However, the active material produced by the dry method has an average particle size of 3 to 3.
It has a spherical shape of 12 μm, and therefore has a small specific surface area.
Reactivity, or utilization rate, is low.

また、湿式法によるスポンジ状のCdも利用率を高める
点において不利であった。
Furthermore, sponge-like Cd produced by the wet method is also disadvantageous in terms of increasing the utilization rate.

一方、Cdの利用率を高めるため、Ni等の添加金属が
、充放電中に生成されるCd (OH) 2の溶解、即
ち不働態化の防止に有効であることが確かめられており
、湿式法においてCdと共析させてスポンジを得る方法
などが見出されている。
On the other hand, in order to increase the utilization rate of Cd, it has been confirmed that additive metals such as Ni are effective in dissolving Cd (OH) 2 generated during charging and discharging, that is, preventing it from becoming passivated. A method has been discovered in which a sponge is obtained by eutectoiding Cd with Cd.

しかしながら、これまで、カドミウム粉末の形状及び表
面状態、並びに充放電に際するCdの状態などを総合的
に改良することのできるカドミウム粉末の製造方法が見
出されていなかった。
However, until now, no method for producing cadmium powder has been found that can comprehensively improve the shape and surface condition of cadmium powder, the condition of Cd during charging and discharging, and the like.

〔発明の解決すべき問題点〕[Problems to be solved by the invention]

′ 本発明は、前述の様な問題点を解決し、カドミウム
粉末の形状、表面状態並びに充放電の際のCdの状態な
どを総合的に改良してCdの利用率を高めることのでき
る二、ケル−カドミウム電池用カドミウム陰極の製造方
法を提供すべくなされたものである。
'The present invention solves the above-mentioned problems and comprehensively improves the shape and surface condition of cadmium powder as well as the state of Cd during charging and discharging, thereby increasing the utilization rate of Cd. This invention was made to provide a method for manufacturing a cadmium cathode for a Kel-cadmium battery.

〔問題点を解決するための手段及び効果〕即ち、上記問
題点は、カドミウム塩の水溶液より亜鉛との置換反応に
より活物質用のカドミウム粉末を析出せしめる工程を含
む二、ケル−カドミウム電池用カドミウム陰極の製造方
法において、前記カドミウム塩の水溶液に銀塩又は/及
びインジウム塩を共存させてカドミウム粉末の析出を行
なうことを特徴とする本発明のニッケル−カドミウム電
池用カドミウム粉末の製造方法によって解決される。
[Means and Effects for Solving the Problems] That is, the above problems involve the step of precipitating cadmium powder for the active material from an aqueous solution of cadmium salt through a substitution reaction with zinc. The problem is solved by the method for producing a cadmium powder for a nickel-cadmium battery of the present invention, which is characterized in that, in the method for producing a cathode, cadmium powder is precipitated by coexisting a silver salt or/and an indium salt in the aqueous solution of the cadmium salt. Ru.

本発明によれば、析出されるカドミウム粉末が微細で非
常に活性な形状を有し、且つカドミウム粉末表面の酸化
が抑制される。またAgやInは、電池充放電に際する
Cd中間生成物中のCd  の拡散抵抗を下げ、総合的
にCdの利用率を高めることができる。
According to the present invention, the precipitated cadmium powder has a fine and highly active shape, and oxidation of the cadmium powder surface is suppressed. Furthermore, Ag and In can lower the diffusion resistance of Cd in the Cd intermediate product during battery charging and discharging, and can increase the overall utilization rate of Cd.

〔発明の詳細な説明及び実施例〕[Detailed description and examples of the invention]

本発明方法を実施するとき、カドミウム塩として例えば
CdSO4の水溶液を用い、これに例えば金属Zn板を
浸漬してCdとZnとの置換反応を行なわせる。この際
、水溶液中に例えば親水コロイドであるニカワ等を添加
することにより、析出するカドミウムを粉末化すること
ができる。
When carrying out the method of the present invention, for example, an aqueous solution of CdSO4 is used as the cadmium salt, and a metal Zn plate, for example, is immersed in the solution to cause a substitution reaction between Cd and Zn. At this time, the precipitated cadmium can be powdered by adding, for example, glue, which is a hydrophilic colloid, to the aqueous solution.

置換液、即ちCdSO4水溶液は−=5程度に調整する
。この理由は、−が低いと、Cd” 、 Ag” rI
n3+などの電解質存在下で、親水コロイドであるニカ
ワが懸濁、凝集し、乳化して、疎水化するためである。
The replacement liquid, ie, the CdSO4 aqueous solution, is adjusted to about -=5. The reason for this is that when - is low, Cd'', Ag'' rI
This is because glue, which is a hydrophilic colloid, is suspended, aggregated, emulsified, and becomes hydrophobic in the presence of an electrolyte such as n3+.

従って−が低いと、ニカワの効果が薄れ、粉末状ではな
く、ス2ンジ状のCdが得られることとなる。
Therefore, if - is low, the effect of glue will be weakened, and Cd will be obtained in the form of a thread rather than a powder.

銀塩は、Cd50 水溶液中へ例えばAgNO3水溶液
の形で添加することができる。工業的にはAgを少量の
HNO3で加熱溶解し、蒸発乾固させ、純水で再溶解さ
せたものを用いると良い。この理由はフリーなHNO3
が存在すると析出したCd粉末が再溶解するためで、H
NO3は、完全に除去する必要がある。
The silver salt can be added to the Cd50 aqueous solution, for example in the form of an AgNO3 aqueous solution. Industrially, it is preferable to use Ag dissolved by heating with a small amount of HNO3, evaporated to dryness, and redissolved in pure water. The reason for this is free HNO3
This is because the precipitated Cd powder is redissolved when H is present.
NO3 needs to be completely removed.

また、インジウム塩を用いる場合、銀塩を用いる場合に
準じ、例えばI nCJ sの形でカドミウム塩水溶液
中に加えることができる。
Furthermore, when using an indium salt, it can be added to the aqueous cadmium salt solution in the form of, for example, I nCJ s, in the same manner as when using a silver salt.

なお、かくして析出回収されるカドミウム粉末には、不
純物としてZnが残存するが、これを除去するため、従
来、例えば希硫酸洗浄を行なっていたが、本発明方法に
おいては、かかる酸洗浄とアルカリ(例えばNaOH水
溶液)洗浄とを組合せて、カドミウム粉末中のZn含量
を0.01〜0.3 wt%程度にまで下げることがで
きる。
Note that Zn remains as an impurity in the cadmium powder precipitated and recovered in this way, and in order to remove this, conventionally, for example, washing with dilute sulfuric acid has been performed, but in the method of the present invention, such acid washing and alkali ( For example, the Zn content in the cadmium powder can be lowered to about 0.01 to 0.3 wt% by combining washing with (for example, NaOH aqueous solution).

以下、具体的実施例により、本発明を更に詳しく説明す
る。
Hereinafter, the present invention will be explained in more detail with reference to specific examples.

実施例1゜ CdOを希硫酸で浸出し、CdSO4の水溶液をCd2
+として401/lで調製した。Ag はAgN0.で
加えた。Ag+濃度は、それぞれ0(Blank)、0
.25.0.50.1.00,2.OOg/ノとした。
Example 1 CdO was leached with dilute sulfuric acid, and an aqueous solution of CdSO4 was leached with Cd2
It was prepared at 401/l as +. Ag is AgN0. I added it. Ag+ concentration is 0 (Blank) and 0, respectively.
.. 25.0.50.1.00,2. It was set as OOg/no.

ニカワ濃度はすべて0.1 fl/lとして、5種類の
置換液をそれぞれ21準備した。置換液のp)(ば5.
0とし、温度は常温(液温として12〜14℃)の条件
で、100+a+X 50wX 15WサイズのZn板
を各2枚浸漬し、24時間反応させた。置換液調整時は
すべて純水を使用した。置換終了後の声は、それぞれ6
.0であった。
Glue concentrations were all set to 0.1 fl/l, and 21 of each of the five types of substitution liquids were prepared. p) of the substitution liquid (b5.
0, and the temperature was room temperature (12 to 14° C. as liquid temperature), and two Zn plates each having a size of 100+a+X 50wX 15W were immersed and reacted for 24 hours. Pure water was used in all preparations of the replacement liquid. The voices after the replacement are 6 each.
.. It was 0.

置換終了後、得られたスラリー粉は、水洗後101/l
の希硫酸で1時間洗浄後、さらに水洗し次K 1001
1/13のNaOH水溶液で1時間洗浄した。
After completion of substitution, the obtained slurry powder is 101/l after washing with water.
After washing with dilute sulfuric acid for 1 hour, further washing with water and then K 1001
Washed with 1/13 NaOH aqueous solution for 1 hour.

それから水洗し、メチルアルコールで脱水した後、60
〜70℃の温度で乾燥後325メツシユで分級して、金
属Cd粉末を得た。
Then, after washing with water and dehydrating with methyl alcohol,
After drying at a temperature of ~70°C, it was classified using a 325 mesh to obtain metal Cd powder.

上記操作によって得られた金属Cd粉末の組成及び特性
を第1表に示す。更に第1図に置換液中のAg+濃度と
カドミウム粉末の比表面積(曲線1)及び平均粒径(曲
線2)の関係を示した。また、第2図にAg 濃度とカ
ドミウム粉末中のAgetの関係を示した。Agの酸化
物は存在せず、AgはAgCd 、 AgCd5の合金
相であった。
Table 1 shows the composition and properties of the metal Cd powder obtained by the above operation. Further, FIG. 1 shows the relationship between the Ag+ concentration in the replacement liquid and the specific surface area (curve 1) and average particle diameter (curve 2) of the cadmium powder. Furthermore, FIG. 2 shows the relationship between the Ag concentration and Aget in the cadmium powder. No Ag oxide was present, and Ag was an alloy phase of AgCd and AgCd5.

第1図により比表面積はAg+濃度がOg/1(Bla
n)c)より、1.0 OI/11付近まで、はぼ直線
的に増加し、2〜3m2/gの値を示す。また平均粒径
はほぼ直線的に減少し、1.0μm以下とする事も可能
である。
According to Figure 1, the specific surface area is Og/1 (Bla
n) From c), it increases almost linearly until around 1.0 OI/11, and shows a value of 2 to 3 m2/g. Moreover, the average particle size decreases almost linearly, and it is also possible to make it 1.0 μm or less.

また、カドミウム粉末を走査型電子顕微鏡により観察す
ると、10〜20μmのアンドライト状であるが、詳し
く観察すると第3図に示す如く、デンドライトの表面は
、非常に微細な粒子が付着している。
Further, when the cadmium powder is observed with a scanning electron microscope, it appears to be in the form of andrites with a diameter of 10 to 20 μm, but when observed in detail, as shown in FIG. 3, very fine particles are attached to the surface of the dendrites.

また、Agの析出形態は、X線回折法により固定すると
、(AgCd)2Hと(ca、Ag)40の合金相であ
った。
Further, the precipitation form of Ag was determined by X-ray diffraction to be an alloy phase of (AgCd)2H and (ca,Ag)40.

(AgCd)2Hは、AgCdの相でtwo of a
toms parunit cell and hex
agonal、(Cdμg)40はCd、Ag相でfo
ur of atom+s per unit cel
l and primitiveorthorhomb
ic  である。しかも、これらの合金相は、Ag  
濃度の低下に対しても明確にそのピークが認められた。
(AgCd)2H is two of a phase of AgCd.
toms parunit cell and hex
agonal, (Cd μg) 40 is fo in Cd, Ag phase
ur of atom+s per unit cell
l and primitiveorthorhomb
It is ic. Moreover, these alloy phases are Ag
A clear peak was also observed as the concentration decreased.

第4図にこのことを明確にするために、Cdのthir
d peakを1に規格化した場合の(Cd3Ag)2
H(図中A)と(Agca)4o (図中B)のそれぞ
れの5econd peakの相対強度を示した。これ
らのピークを利用したのはCd 、 (AgCd)40
 。
To make this clear in Figure 4, the Cd
(Cd3Ag)2 when d peak is normalized to 1
The relative intensities of the 5-econd peaks of H (A in the figure) and (Agca)4o (B in the figure) are shown. These peaks were used for Cd, (AgCd)40
.

(Cd3Ag)2Hのメインピークがそれぞれ回折角2
θで接近しておシ、各ピークの分離が困難であるためで
ある。これらの合金相は、電子材料の接点材料として用
いら、れておシCd粉末の利用率に対して、良い影響を
及ぼすと思われる。
The main peaks of (Cd3Ag)2H each have a diffraction angle of 2
This is because it is difficult to separate the peaks because they are close to each other at θ. These alloy phases are used as contact materials in electronic materials and are believed to have a positive influence on the utilization rate of Cd powder.

実施例2 実施例1においてカドミウム粉末の洗浄方法について詳
しく説明する。CdSO4水溶液をZn板で置換してい
るため水溶液中のzn2+イオンの増加による、不純物
としてのZnが問題となる。しかも本発明により得られ
た金属Cd粉末は、表面形状がポーラスで、このZn 
 をかなりまき込んでおり、その後の水洗浄過程で、加
水分解を起こし、Zn(OH)2の不純物として残る。
Example 2 In Example 1, a method for cleaning cadmium powder will be explained in detail. Since the CdSO4 aqueous solution is replaced with a Zn plate, Zn as an impurity becomes a problem due to an increase in Zn2+ ions in the aqueous solution. Moreover, the metal Cd powder obtained by the present invention has a porous surface shape, and this Zn
In the subsequent water washing process, hydrolysis occurs and remains as an impurity of Zn(OH)2.

しかも、従来の希硫酸で洗浄すると、金属Cd粉末は、
凝集融合し易く、表面のポーラスな部分に、znが残存
し、効果的な除去はできない。そこで、まず酸洗により
ある程度Znを除去し、次にNaOH水溶液で金属Cd
粉末表面のポーラスな部分に残存しているZn f効率
良く除去する。
Moreover, when washed with conventional dilute sulfuric acid, the metal Cd powder becomes
Zn tends to aggregate and fuse, and Zn remains in the porous portion of the surface, making it impossible to remove it effectively. Therefore, first, a certain amount of Zn was removed by pickling, and then the metal Cd was removed with an NaOH aqueous solution.
To efficiently remove Znf remaining on the porous part of the powder surface.

次に具体的な方法を述べる。希硫酸洗浄の濃度は10φ
、NaOH水溶液濃度は1001/lとし、それぞれ1
時間攪拌した。またそれぞれの洗浄の前後は、水により
洗浄した。第2表に従来の希硫酸のみの場合と、本発明
による酸洗+アルカリ洗の場合の比較を示した。
Next, a specific method will be described. The concentration of dilute sulfuric acid cleaning is 10φ
, NaOH aqueous solution concentration is 1001/l, each 1
Stir for hours. Also, before and after each washing, washing was performed with water. Table 2 shows a comparison between the conventional case of using only dilute sulfuric acid and the case of pickling and alkaline washing according to the present invention.

第  2  表 実施例3 金属Cd粉末の活物質としての利用率に関して、Agと
同様の効果を示すInを添加した金属Cd粉末を実施例
1に準じて調製した。その具体的方法について述べる。
Table 2 Example 3 Metal Cd powder added with In, which exhibits the same effect as Ag regarding the utilization rate of metal Cd powder as an active material, was prepared according to Example 1. The specific method will be described below.

CdSO4水溶液ヲcd  濃しトI、テ409/1.
P)!=5.0に調整し、In  はInCl2として
HClを除去して加えた。In  濃度は2.0i/l
、ニカワ濃度は0、11/lとした。置換液の液量は2
1、温度は常温(液温として20〜22℃)で、Zn板
(100wX 50 wmX l 5 m ) 2枚金
浸漬し、反応時間は24時間とした。置換終了後の−は
6.0であった。置換後得られたスラリー粉は、実施例
2と同じ方法で洗浄した。
CdSO4 aqueous solution cd Concentration I, Te 409/1.
P)! = 5.0, and In was added as InCl2 after removing HCl. In concentration is 2.0i/l
The glue concentration was 0.11/l. The amount of replacement liquid is 2
1. Two Zn plates (100 w x 50 wm x l 5 m) were immersed in gold at room temperature (20 to 22°C as liquid temperature), and the reaction time was 24 hours. - after the substitution was completed was 6.0. The slurry powder obtained after the substitution was washed in the same manner as in Example 2.

得られた金属Cd粉末は非常に多孔質であり、組成は総
量Cd = 92.47 wtチ、金属粉Cd = 8
9.43wt% 、総量In = 5.56 wt%、
総量Zn = 0.01 wt*S04は痕跡量、比表
面積は3.16m/lilと高く活性であシ、平均粒径
はIn  を添加しない場合より小さく1.47μmで
h−vだ。また、析出したInの形態は金属Inであっ
た。
The obtained metal Cd powder is very porous, with a composition of total amount Cd = 92.47 wt, metal powder Cd = 8
9.43 wt%, total amount In = 5.56 wt%,
The total amount of Zn = 0.01 wt*S04 is a trace amount, the specific surface area is as high as 3.16 m/lil, and it is highly active, and the average particle size is 1.47 μm, h-v, which is smaller than when In is not added. Further, the form of the precipitated In was metal In.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明方法の実施に際しカドミウム塩水溶液
中のAg+濃度と析出カドミウム粉末の比弄面積及び平
均粒径の関係を示した曲線図、第2図は前記Ag  濃
度と析出カドミウム粉末中のAg含量の関係を示した曲
線図である。 第3図は、本発明方法により得られるカドミウム粉末の
粒子形態を示す電子顕微鏡写真、第4図はこの粉末のX
線回折図である。 代理人 弁理士  山 下 積 平 AQ糺、f(wt%) え表面積(m2/Q)
Figure 1 is a curve diagram showing the relationship between the Ag+ concentration in the cadmium salt aqueous solution and the specific area and average particle size of the precipitated cadmium powder when carrying out the method of the present invention, and Figure 2 is a curve diagram showing the relationship between the Ag concentration and the precipitated cadmium powder. FIG. 2 is a curve diagram showing the relationship between the Ag content of Figure 3 is an electron micrograph showing the particle morphology of cadmium powder obtained by the method of the present invention, and Figure 4 is an X-ray image of this powder.
It is a line diffraction diagram. Agent Patent Attorney Seki Yamashita Flat AQ, f (wt%) Surface area (m2/Q)

Claims (2)

【特許請求の範囲】[Claims] (1)カドミウム塩の水溶液より亜鉛との置換反応によ
り、活物質用のカドミウム粉末を析出せしめる工程を含
むニッケル−カドミウム電池用カドミウム粉末の製造方
法において、前記カドミウム塩の水溶液に銀塩又は/及
びインジウム塩を共存させてカドミウム粉末の析出を行
なうことを特徴とするニッケル−カドミウム電池用カド
ミウム粉末の製造方法。
(1) A method for producing cadmium powder for a nickel-cadmium battery, which includes a step of precipitating cadmium powder for an active material by a substitution reaction with zinc from an aqueous solution of a cadmium salt, in which a silver salt or/and A method for producing cadmium powder for a nickel-cadmium battery, which comprises precipitating cadmium powder in the presence of an indium salt.
(2)析出工程により得られるカドミウム粉末に、酸に
よる洗浄及びアルカリによる洗浄を施して、不純物亜鉛
を除去する特許請求の範囲第(1)項記載のニッケル−
カドミウム電池用カドミウム粉末の製造方法。
(2) The nickel powder according to claim (1), wherein the cadmium powder obtained in the precipitation step is subjected to acid washing and alkali washing to remove impurity zinc.
A method for producing cadmium powder for cadmium batteries.
JP12515285A 1985-06-11 1985-06-11 Production of cadmium powder for nickel-cadmium battery Pending JPS61284507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12515285A JPS61284507A (en) 1985-06-11 1985-06-11 Production of cadmium powder for nickel-cadmium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12515285A JPS61284507A (en) 1985-06-11 1985-06-11 Production of cadmium powder for nickel-cadmium battery

Publications (1)

Publication Number Publication Date
JPS61284507A true JPS61284507A (en) 1986-12-15

Family

ID=14903157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12515285A Pending JPS61284507A (en) 1985-06-11 1985-06-11 Production of cadmium powder for nickel-cadmium battery

Country Status (1)

Country Link
JP (1) JPS61284507A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01312017A (en) * 1988-06-10 1989-12-15 Toho Aen Kk Production of cadmium powder
WO1993024262A1 (en) * 1992-05-29 1993-12-09 Mitsui Mining & Smelting Co., Ltd. Production method for metal cadmium powder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01312017A (en) * 1988-06-10 1989-12-15 Toho Aen Kk Production of cadmium powder
WO1993024262A1 (en) * 1992-05-29 1993-12-09 Mitsui Mining & Smelting Co., Ltd. Production method for metal cadmium powder

Similar Documents

Publication Publication Date Title
JP2011511429A5 (en)
CN106887581B (en) Zinc electrode material and preparation and application thereof
CN105375023A (en) Method for removing copper and aluminum from an electrode material, and process for recycling electrode material from waste lithium-ion batteries
JP3570591B2 (en) Production method of copper powder
JP3337189B2 (en) Surface treatment method for hydrogen storage alloy material, activation method for hydrogen storage alloy electrode, activation solution, and hydrogen storage alloy electrode with excellent initial activity
WO1995023435A1 (en) Hydrogen absorbing electrode and production method thereof
JP3835993B2 (en) Electrode alloy powder and method for producing the same
JPS61284507A (en) Production of cadmium powder for nickel-cadmium battery
JPS5825083A (en) Zinc powder cathode not amalgamed for battery having alkaline electrolyte and method of producing same
JP6114873B2 (en) Formation of oxide shells on inorganic substrates via precipitation of oxidized polyoxoanion salts
JPH0963581A (en) Surface treatment method for hydrogen storage alloy powder and alkaline secondary battery obtained by applying this method
CN106654156A (en) Preparation method of lithium ion cell negative electrode piece
JPH044698B2 (en)
JPH0415984B2 (en)
JP4829483B2 (en) Method for producing electroless plating
JP3456092B2 (en) Hydrogen storage alloy and method for producing the same
CN113182525B (en) Preparation method of nano porous silver powder
JP3954808B2 (en) Method for producing hydrogen storage alloy particles for electrode, hydrogen storage alloy electrode and alkaline storage battery
CN114038688B (en) Micro-nano structure silver or silver/silver oxide electrode for super capacitor or battery and preparation method
JP3561577B2 (en) Method for producing hydrogen storage alloy for alkaline storage battery
JP3136963B2 (en) Method of treating hydrogen storage alloy for batteries
WO2024077829A1 (en) Zinc-silver battery and high specific capacity ago positive electrode material thereof
KR100926770B1 (en) Platinum-gold alloy thin film having a mesoporous structure by electrochemical deposition and platinum-gold alloy thin film manufactured using the same
JP3239743B2 (en) Method for producing positive electrode for alkaline storage battery
JP3454612B2 (en) Manufacturing method of hydrogen storage alloy electrode