JPS6128383A - Variant escherichia coli - Google Patents

Variant escherichia coli

Info

Publication number
JPS6128383A
JPS6128383A JP14863384A JP14863384A JPS6128383A JP S6128383 A JPS6128383 A JP S6128383A JP 14863384 A JP14863384 A JP 14863384A JP 14863384 A JP14863384 A JP 14863384A JP S6128383 A JPS6128383 A JP S6128383A
Authority
JP
Japan
Prior art keywords
amylase
escherichia coli
mold
plasmid
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14863384A
Other languages
Japanese (ja)
Inventor
Akira Soma
相馬 明
Kiyoshi Nakazawa
中沢 潔
Yasuo Oshima
泰郎 大島
Kunio Yamane
山根 國男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oji Corn Starch Co Ltd
Higeta Shoyu Co Ltd
Nissan Chemical Corp
Asahi Soft Drinks Co Ltd
Original Assignee
Calpis Food Industry Co Ltd
Oji Corn Starch Co Ltd
Higeta Shoyu Co Ltd
Nissan Chemical Corp
Calpis Shokuhin Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calpis Food Industry Co Ltd, Oji Corn Starch Co Ltd, Higeta Shoyu Co Ltd, Nissan Chemical Corp, Calpis Shokuhin Kogyo KK filed Critical Calpis Food Industry Co Ltd
Priority to JP14863384A priority Critical patent/JPS6128383A/en
Publication of JPS6128383A publication Critical patent/JPS6128383A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2408Glucanases acting on alpha -1,4-glucosidic bonds
    • C12N9/2411Amylases
    • C12N9/2414Alpha-amylase (3.2.1.1.)
    • C12N9/2417Alpha-amylase (3.2.1.1.) from microbiological source

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

PURPOSE:Variant Escherichia coli useful for producing industrially heat-resistant alpha-amylase, by cloning a heat-resistant alpha-amylase structural gene of Bacillus stearothermophilus in a mold of Escherichia coli, so that heat-resistant alpha- mylase can be produced. CONSTITUTION:Chromosome DNA is separated from a culture mold of (Bacillus stearothermophilus) A631, IAM11003, ATCC7954 which is middle thermophilic bacterium to secrete thermophilic-amylase out of the mold, it is partially decomposed with restriction enzyme Sau3A, and a fregment of chromosome is separated. Separately, plasmid pBR322 is scissored with restriction enzyme BamHI, it is blended with the fragment of chromosome, ligase T4DNA is added to them, they are connected, the treated solution is added to suspension of culture mold of Escherichia coli C600, which is transformed to give the aimed variant Escherichia coli having plasmid pTUE107.

Description

【発明の詳細な説明】 本発明は、耐熱性α−アミラーゼを生産する工。[Detailed description of the invention] The present invention is a method for producing thermostable α-amylase.

シエリヒア・コリ(大腸菌)に関するものである。It concerns Schierichia coli (E. coli).

更に詳細には、本発明は、バチラス・ステアロサーモフ
ィラスの耐熱性α−アミラーゼ構造遺伝子をエシェリヒ
ア・コリ菌体中でクローン化し、耐熱性α−アミラーゼ
を生産可能にされたエシェリヒア・コリに関するもので
める。
More specifically, the present invention relates to Escherichia coli which is made capable of producing thermostable α-amylase by cloning the structural gene of Bacillus stearothermophilus thermostable α-amylase into Escherichia coli cells. I can buy things.

一般に、エシェリヒア・コリは遺伝子操作関連菌として
古くから使用され、また、遺伝子操作画として実験室で
の使用がいち早く認可されたところから、多くの研兇が
なされ、各種有用物質の生産が試みられてきた。
In general, Escherichia coli has been used for a long time as a bacterium related to genetic manipulation, and since it was quickly approved for use in the laboratory as a genetic manipulation model, much research has been conducted and attempts have been made to produce various useful substances. It's here.

しかしながら、エシェリヒア・コリにおいては。However, in Escherichia coli.

遺伝子操作によって有用vIJ員の生産性が確認されて
も、菌体内に蓄積されるにとどまり、菌体外に各棟有用
物質を分泌することはなかった。菌体内に蓄積された有
用物質を分離するだめに、溶菌したり、菌体を磨砕した
りして有用物質を分離しようとすると、有用物質ととも
に細胞膜成分、菌体内成分が混在し、有用物質の分離、
精製を著しく困難なものとしていたのである。
Even if the productivity of useful vIJ members was confirmed through genetic manipulation, they were only accumulated within the bacterial body and no useful substances were secreted outside the bacterial body. If you attempt to separate useful substances accumulated in the bacterial cells by lysing the bacteria or grinding the bacterial cells, cell membrane components and intracellular components will be mixed together with the useful substances, and the useful substances will be separated. separation of,
This made refining extremely difficult.

本発明者らは、有用物質を菌体外に分泌するエシェリヒ
ア・コリを求めて鋭意研究したところ1、バチラス・ス
テアロサーモフィラスの耐熱性α−アミラーゼ構造遺伝
子をエシェリヒア・コリ菌体中でクローン化することに
よって、耐熱性α−アミラーゼを菌体外吟分泌させるこ
とに成功したものである。
The present inventors conducted intensive research in search of Escherichia coli that secretes useful substances outside the bacterial body. By cloning, we succeeded in secreting heat-stable α-amylase outside the bacterial cell.

本発明は、耐熱性α−アミラーゼを生産するエシェリヒ
ア・コリである。
The present invention is Escherichia coli that produces thermostable α-amylase.

本発明の耐熱性α−アミラーゼを生産するエシェリヒア
・コリは次のようにして創製することができるが、創製
された一変異株はエシェリヒア・コリ(Esheric
hia、 coli ) C600−pTUE 107
の名称でFERMIP−7670として微工研に寄託さ
れている。
Escherichia coli that produces the thermostable α-amylase of the present invention can be created as follows.
hia, coli) C600-pTUE 107
It has been deposited with the Institute of Fine Technology under the name FERMIP-7670.

バチシス・ステアロサーモフィラス(Bacillus
stearothermophilus ) A 63
1、IAM110D3、ATCC’7954は耐熱性α
−アミラーゼを菌体外に分泌する中等度好熱細菌として
知られている。
Bacillus stearothermophilus
stearothermophilus) A 63
1. IAM110D3, ATCC'7954 has heat resistance α
- Known as a moderately thermophilic bacterium that secretes amylase outside the bacterial body.

本菌株の培養菌体から染色体DNAを分離し、これを制
限酵素8au 3 Aで部分分解し、分解物をショ糖密
度勾配超遠心法により約2kb以上の染色体断片を分離
する。
Chromosomal DNA is isolated from the cultured cells of this strain, partially digested with restriction enzyme 8au 3 A, and the digested product is subjected to sucrose density gradient ultracentrifugation to separate chromosome fragments of approximately 2 kb or more.

別に、市販のプラスミツドpBR322(宝酒造社製品
)(第1図)を制限酵素BamHIで切断し、これに先
の染色体断片を混合し、更にTADNAリガーゼを添加
して、連結処理し、処理液はエシェリヒア・コ!jc6
00の培養菌体懸濁液に添加され、形質転換処理(Le
derberg、 E、 M、、 and S。
Separately, a commercially available plasmid pBR322 (Takara Shuzo Co., Ltd. product) (Fig. 1) was cut with the restriction enzyme BamHI, the previous chromosome fragments were mixed therein, TA DNA ligase was added, and ligation was carried out. ·Ko! jc6
Le
derberg, E. M., and S.

N、 Cohen (1974) J、 Bacter
iol、−υβ−91072−1074)される。
Cohen, N. (1974) Bacter, J.
iol, -υβ-91072-1074).

形質転換株はアンピシリン耐性で、かつ、α−アミラー
ゼを生産する菌株として分離される。この菌株を培養し
、培養菌体からプラスミドpTUE107を得る。プラ
スミドpTUE 107のフィジカルマツプ(制限酵素
切断地図)は第2図に示されるが、白ぬきの部分はベク
ターpBR322由来で、黒点の部分は染色体断片部分
であシ、このクローン化された断片の大きさは約7.6
kbである。
The transformed strain is isolated as a strain that is resistant to ampicillin and produces α-amylase. This strain is cultured, and plasmid pTUE107 is obtained from the cultured cells. The physical map (restriction enzyme cleavage map) of plasmid pTUE 107 is shown in Figure 2, where the white part is derived from vector pBR322, and the black dotted part is a chromosomal fragment, and the size of this cloned fragment is The length is about 7.6
It is kb.

ここに得られる形質転換体は耐熱性α−アミラーゼを菌
体外によく分泌するすぐれた変異大腸菌である。
The transformant obtained here is an excellent mutant E. coli that secretes heat-stable α-amylase well outside the cell.

この変異大腸菌は耐熱性α−アミラーゼの生産性におい
て全く新規であり、耐熱性α−アミラーゼの工業生産上
きわめて有用である。
This mutant Escherichia coli is completely new in terms of productivity of thermostable α-amylase, and is extremely useful for industrial production of thermostable α-amylase.

この変異大腸菌はエシリヒア・コIJ C600−pT
UB 107と命名され、微工研にFFRM P −7
670と寄託されている。
This mutant Escherichia coli is Escherichia coli IJ C600-pT.
Named UB 107, FFRM P-7 was sent to the Microtech Institute.
It has been deposited as 670.

次に本発明の実施例及び製造例を示す。Next, examples and manufacturing examples of the present invention will be shown.

実施例 変異大腸菌の創製 バチラス・ステアロサーモフィラスA6!11゜IAM
 1100!l、ATCC7954をLG培地(バクト
ドリプトン1011%酵母エキス5.p、NaC15g
グルコース2yを11の水に溶解しpH75に調整)で
60℃で一夜培養し、遠心分離にて集菌、洗浄し、得ら
れた菌体から8aito+ Miuraの方法(5ai
to+ H,、and K、 Miura、(1964
)Biochim、 Biopys、 Acta、 7
2+ 619−629 )によって染色体DNAを分離
し、これをトリス塩酸・EDTA緩衝液に溶解し、制限
酵素8au 5 A(宝酒造社製品)を添加し、37℃
で分離し、分解物をショ糖密度勾配超遠心法でfJ2k
b以上の染色体断片を分離、取得した。
Example Creation of mutant Escherichia coli Bacillus stearothermophilus A6!11゜IAM
1100! l, ATCC7954 in LG medium (Bactodryptone 1011% yeast extract 5.p, NaC 15g
Glucose 2y was dissolved in 11 water and adjusted to pH 75) and cultured overnight at 60°C, collected by centrifugation, washed, and the resulting bacterial cells were cultured using the 8aito + Miura method (5ai
to + H,, and K, Miura, (1964
) Biochim, Biopys, Acta, 7
2+ 619-629) was used to separate the chromosomal DNA, dissolve it in Tris-HCl/EDTA buffer, add restriction enzyme 8au 5 A (Takara Shuzo Co., Ltd. product), and incubate at 37°C.
fJ2k and the degraded product was separated by sucrose density gradient ultracentrifugation.
Chromosome fragments larger than b were isolated and obtained.

市販のプラスミドpBR522(宝酒造社製品)の概略
開裂地図は第1図に示されたが、このプラスミドルBa
522は4.4kbで、アンピシリン耐性(Amp’ 
)とテトラサイクリン耐性(Tc’ )を有し、制限酵
素Bam HIによって1ケ所切断てれるものである。
A schematic cleavage map of the commercially available plasmid pBR522 (Takara Shuzo Co., Ltd. product) is shown in Figure 1;
522 is 4.4 kb and is ampicillin resistant (Amp'
) and tetracycline resistance (Tc'), and can be cleaved at one site by the restriction enzyme Bam HI.

BamHIで1ケ所切断したpBR322と前記のバチ
ラス・ステアロサーモフィラスA631から得た約2k
b以上の染色体断片を混合し、T4DN入りガーゼを添
加して連結処理した。 (Weia8+L+  5ab
lon、A、J−r LIVe+ T、几−+  Fa
reed、G。
pBR322 cut at one site with BamHI and about 2k obtained from the above Bacillus stearothermophilus A631
Chromosome fragments larger than b were mixed and ligated by adding T4DN-containing gauze. (Weia8+L+5ab
lon, A, J-r LIVe+ T, 几-+ Fa
reed, G.

C9,几1chardson、C,C−(1968)J
、Biol。
C9, 几1chardson, C, C- (1968) J
, Biol.

Chem、243.4545〜4555)処理iは、エ
シェリヒア・コリC600の菌体懸濁液に添加され、カ
ルシウム・低温処理法(Lederberg+ E、 
M、+and 8. N、 Cohen (1974)
 J、 Bacteriol、 119y1072−1
074)により当該プラスミドは導入された。
Chem.
M, +and 8. Cohen, N. (1974)
J, Bacteriol, 119y1072-1
The plasmid was introduced by 074).

得られた形質転換処理菌体を選択培地である可溶性数#
1チ、アンピシリン50μ、97m1、寒天1.5チを
含むL培地(バクトドリプトン10g、酵母エキス5g
、Nづ1c15 、!9を11の水に溶解しpi17.
5に調整)に添加して、37℃で培養し、出現したアン
ピシリン耐性株にヨウ素液を噴霧して、ヨウ素反応を起
さなかった菌株をα−アミラーゼ分分泌色して分離する
ことができた。
The obtained transformed bacterial cells were used as a selective medium with soluble number #
L medium (10g Bactodrypton, 5g yeast extract)
, Nzu1c15 ,! Dissolve 9 in 11 water and make pi17.
5), cultured at 37°C, and sprayed an iodine solution onto the ampicillin-resistant strains that appeared. Strains that did not react with iodine could be isolated by secreting α-amylase. Ta.

得られたα−アミラーゼ生産菌株を単離し、これをアン
ピシリン100μi/ITLIを含むL培地で57℃で
一夜培養し、培養液を遠心分離して集醒し、洗浄挨、分
離菌体からアルカリ抽出法(Birnboirn+ H
,C,and J、 Doly (1979)Nucl
eic Ac1d Res、 7 r 1513 )に
よってプラスミドを分離、探索し、新規なプラスミドを
得た。
The resulting α-amylase producing strain was isolated and cultured overnight at 57°C in L medium containing 100μi ampicillin/ITLI, the culture solution was collected by centrifugation, washed, and the isolated bacterial bodies were extracted with alkali. Law (Birnboirn + H
, C. and J. Doly (1979) Nucl.
A novel plasmid was obtained by isolating and searching the plasmid using the following method (eic Acld Res, 7 r 1513).

このプラスミドをプラスミドpTUE 107と名ずけ
た。
This plasmid was named plasmid pTUE107.

プラスミドpTUE 107は12.Okbの太きてで
、そのフィジカルマツプ(制限酵素切断地図)は第2図
に示される。ここで白ぬきの部分はベクターpBR32
2由来で、黒点の部分は染色体断片部分であシ、各略記
号はすべて制限酵素である。
Plasmid pTUE 107 is 12. The physical map (restriction enzyme cleavage map) of Okb is shown in Figure 2. Here, the white part is vector pBR32
2, the black dotted part is a chromosome fragment, and each abbreviation is a restriction enzyme.

このプラスミドpTUE 107を32Fでラベルし、
バチラス・ステアロサーモフィラスA631株染色体D
NA、エシェリヒア・コリC600株染色体DNAおよ
びα−アミラーゼ高生産株バチラス・ズブチリス(Ba
cillus 5ubtilis ) N A 64染
色体DNAのそれぞれのEcoRI分解とサザンハイブ
リダイゼーションL 5outhern、 E、 M、
 (1975)J、 Mo1. Biol、、 9旦、
 503−517 )を行ったところ、エシェリヒア・
コリ、バチラス・ズブチリス染色体DNAとは全く・・
イブリダイズしなかったがバチラス・ステアロサーモフ
ィラスA661株の染色体DNAとは6ケ所で特異的に
ハイブリダイズしておシ、クローン化した遺伝子はバチ
ラス・ステアロサーモンイラスA661由来であること
が確かめられた。
This plasmid pTUE 107 was labeled with 32F,
Bacillus stearothermophilus A631 strain chromosome D
NA, Escherichia coli strain C600 chromosomal DNA and α-amylase high producing strain Bacillus subtilis (Ba
cillus 5ubtilis) NA EcoRI digestion and Southern hybridization of each of the 64 chromosomal DNAs L 5outhern, E, M,
(1975) J, Mo1. Biol,, 9th,
503-517), Escherichia
What is Bacillus subtilis chromosomal DNA?
Although it did not hybridize, it specifically hybridized with the chromosomal DNA of Bacillus stearothermophilus A661 strain at 6 locations, confirming that the cloned gene was derived from Bacillus stearothermophilus A661. It was done.

更に得られたプラスミドpTUB 、107をエシェリ
ヒア・コIJ C600の菌体懸濁液に添加しカルシウ
ム低温処理法(Lederberg、E、 M、+ a
nd S、N、 Cohen (1974) J、 B
acteriol、 1ユ9゜1072−1074)に
より菌体内に導入した。
Furthermore, the obtained plasmid pTUB, 107 was added to a bacterial cell suspension of Escherichia co.
nd S, N, Cohen (1974) J, B
acteriol (1 unit 9° 1072-1074) was introduced into the bacterial cells.

ここに得られた形質転換体を上述の選別培地に添加し、
67℃で培養し、生gした菌株からα−アミラーゼカ価
の高い菌株を選別した。
Add the transformant obtained here to the above-mentioned selection medium,
The strain was cultured at 67°C, and a strain with a high α-amylase value was selected from the bacterial strains produced.

製造例 耐熱性α−アミラーゼの生産 エシェリヒア・コリC600=’pTUE107、FE
BM P −7670をアンピシリン100μV1rL
lを含むL培地を用い、soomz容の坂ロフラスコに
1001rL1分注し、37℃で48時間振盪培養した
Production example Production of thermostable α-amylase Escherichia coli C600='pTUE107, FE
BMP-7670 with ampicillin 100μV 1rL
Using L medium containing 1001 rL, 1001 rL was dispensed into a soomz volume Sakaro flask, and cultured with shaking at 37°C for 48 hours.

その間培養物を1dずつ採取して、浸透圧ショック法C
Chan、 S、 J、+ J、 ’%’i’eiss
、 M、 Konrad、 T。
During that time, the culture was collected for 1 d each, and the osmotic shock method C.
Chan, S, J, + J, '%'i'eiss
, M., Konrad, T.

荊百e、 C,Babl、 S、 −D、 Tu+ D
、 Marks+ and D。
荊百e, C, Babl, S, -D, Tu+ D
, Marks+ and D.

F、 8teiner (1981) Proc、 N
atl、 Acad、 Sci。
F, 8teener (1981) Proc, N
atl, acad, sci.

U、 S、 A、ム且 5401−5405)によシ菌
体外フラクション(Extrdcellular fr
ac、tion )、ペリプラズムフラクション(Pe
riplasmic fraction)、凶体内フラ
クション(Intracellular fracti
on)に分別し、α−アミラーゼの活性を測定した。ま
た、同時にペリプラズムに局在する酵素の代表としてア
ルカリホスファターゼ()J’ase )活性も同様に
測定した。
U, S, A, Mu 5401-5405) and extracellular fraction (Extrdcellular fr
ac, tion), periplasmic fraction (Pe
riplasmic fraction, intracellular fraction
on) and the activity of α-amylase was measured. At the same time, alkaline phosphatase (J'ase) activity, which is a representative enzyme localized in the periplasm, was similarly measured.

第3図は、α−アミラーゼ活性、APage、生育の経
時的変化を示すものである。ここでAはExtrace
llular fraction、  BはPerip
lasmicfraction、 CはIntrace
llular fraction、 Gは生育を示して
いる。
FIG. 3 shows changes over time in α-amylase activity, APage, and growth. Here A is Extra
lular fraction, B is Perip
lasmic fraction, C is Intrace
lular fraction, G indicates growth.

第6図から明らかなように、α−アミラーゼ活性はIn
tracellular fractionに最初に認
められた。その後はぼ一定の活性を示した。次に現われ
たのはPeriplasmic fractionであ
った。対数増殖後期に急激に活性が増加したが、その後
しだいに活性が減少していた。やや遅れてExtrac
e目ularfractionに活性が現われ、その後
の培養でもコンスタントに活性の増加が認められた。4
8時間培養した時点では全アミラーゼ活性中 Extracellular fractionに存在
した活性は70チにも達していた。対照としてAPas
e活性を調べたところPeriplasmic fra
ctionに活性の大部分が測定されそのPeripl
asmic fractionでのAPase活性の推
移の傾向はα−アミラーゼの場合に類似したものであっ
た。しかし、Extracel Iularfract
ionにも活性が存在しており、APaseの一部分は
菌体外にもれ出ていると考えられた。但し、APa s
 eの大部分はPeriplasmic fracti
on に存在するのに対しα−アミラーゼの大部分(約
70%)はExtracellular fracti
onに存在している。
As is clear from Figure 6, α-amylase activity is
It was first recognized in tracelular fraction. After that, it showed almost constant activity. What appeared next was Periplasmic fraction. The activity increased rapidly in the late phase of logarithmic growth, but the activity gradually decreased thereafter. Extrac a little late
Activity appeared in the ularfraction, and a constant increase in activity was observed in subsequent cultures. 4
At the time of 8 hours of culture, the extracellular fraction of the total amylase activity had reached 70%. APas as a control
When the e activity was investigated, Periplasmic fra
Most of the activity was measured in the
The trend of APase activity over asmic fraction was similar to that of α-amylase. However, Extracel Iularfract
ion also had activity, and it was thought that a portion of APase leaked out of the bacterial cells. However, APas
The majority of e is Periplasmic fracti
On the other hand, the majority (about 70%) of α-amylase is present in the Extracellular fraction.
exists on.

さらに菌体内開存酵素β−ガラクトシダーゼの活性につ
いて°調べたところ、やはシ若干Extracellu
lar fractionに活性が認められ菌の一部が
溶菌していることを示唆する結果であった。
Furthermore, when we investigated the activity of intracellular enzyme β-galactosidase, we found that some
Activity was observed in the lar fraction, suggesting that some of the bacteria were lysed.

しかし、菌体の濁雇の減少が小さい事より、溶繭はほん
のごく一部でのみ起っているものと考えられた。
However, since the decrease in bacterial cell production was small, it was thought that cocoon dissolution occurred only in a small portion.

試験例 耐熱性α−アミラーゼの酵素学的検討エシェリ
ヒア・コリC600−’pTUE107、FgRM P
 −7670を製造例におけると同様にして培養し、得
られたα−アミラーゼの#索学的性質を検討した。
Test example Enzymological study of thermostable α-amylase Escherichia coli C600-'pTUE107, FgRM P
-7670 was cultured in the same manner as in the production example, and the chemical properties of the obtained α-amylase were examined.

対照としてバチラス・ステアロサーモフィラスA661
、IAM11003、ATCC7953及びバチラス・
ズブチリスNA64の生産した各α−アミラーゼを用い
た。
Bacillus stearothermophilus A661 as a control.
, IAM11003, ATCC7953 and Bacillus
Each α-amylase produced by S. subtilis NA64 was used.

まず、作用至適温度を不破の方法(Fuwa、 H−(
1954) J、 Biochem、旦、 583−6
05 〕により測定し、第4図に示した。ここでDはエ
シェリヒア・コリC600−pTUE 107、FER
MP−7670の生産したα−アミラーゼ、Eはバチラ
ス・ステアロサーモフィラスA631、IAM1100
3、ATCC7954の生産した耐熱性α−アミラーゼ
、Fはバチラス・ズブチリスNA64の生産したα−ア
ミラーゼを示す。第4図からエシェリヒア・コリC60
0−p’rUE 107、F’ERMF’−7670の
生産したα−アミラーゼとバチラス・ステアロサーモフ
ィラスA661、IAMl 1003、ATCC795
4の耐熱性α−アミラーゼが同一の作用至適温度を有し
ていること、かつバチラス・ズブチリスNA64のα−
アミラーゼと異っていることが明らかである。
First, the optimum temperature for action was determined using Fuwa's method (Fuwa, H-(
1954) J, Biochem, Dan, 583-6
05] and is shown in FIG. Here, D is Escherichia coli C600-pTUE 107, FER
α-amylase produced by MP-7670, E is Bacillus stearothermophilus A631, IAM1100
3. Thermostable α-amylase produced by ATCC7954, F indicates α-amylase produced by Bacillus subtilis NA64. From Figure 4 Escherichia coli C60
α-amylase produced by 0-p'rUE 107, F'ERMF'-7670 and Bacillus stearothermophilus A661, IAMl 1003, ATCC795
The thermostable α-amylase of No. 4 has the same optimal temperature of action, and the α-amylase of Bacillus subtilis NA64
It is clear that it is different from amylase.

次にこれら酵素標品を各温度にて10分間熱処理した後
バチラス・ズブチリスNA64のα−アミラーゼFは4
0℃にて、耐熱性α−アミラーゼD、Eは60℃にて酵
素反応を行わせ残存活性を求めた。その結果を第5図に
示す。ここでD 、 E。
Next, after heat-treating these enzyme preparations at each temperature for 10 minutes, the α-amylase F of Bacillus subtilis NA64 was 4.
At 0°C, thermostable α-amylases D and E were subjected to enzymatic reaction at 60°C, and residual activity was determined. The results are shown in FIG. Here D, E.

Fは上記と同じ酵素を示す。第5図からFのα−アミラ
ーゼは40℃すぎより失活し始め、70℃すぎには完全
に失活しているのに対しり、Eのα−アミラーゼは85
℃位まで安定であるのが分る。
F indicates the same enzyme as above. Figure 5 shows that the α-amylase of F starts to be inactivated after 40°C and is completely inactivated after 70°C, whereas the α-amylase of E is 85°C.
It is found that it is stable up to about ℃.

このことからもエシェリヒア・コリC60D−pTUE
 107、FBRMP −7670の生産したα−アミ
ラーゼとバチラス・ステアロサーモフィラスA631、
IAM11003、ATCC7954の耐熱性α−アミ
ラーゼは同一の耐熱性の性質を有していることがわかる
From this, Escherichia coli C60D-pTUE
107, α-amylase produced by FBRMP-7670 and Bacillus stearothermophilus A631,
It can be seen that the thermostable α-amylases of IAM11003 and ATCC7954 have the same thermostable properties.

次にこの両射熱性α−アミラーゼ標品の熱安定性に対す
る金属イオンの影響を調べた。両酵素標品をそれぞれ9
0℃にて第6図及び第7図に示した時間、各イオン存在
下で熱処理し、その残存活性を求めた。NaClは10
0 mM、  CaClは2mMで使用した。
Next, the influence of metal ions on the thermal stability of this amphithermic α-amylase preparation was investigated. 9 each of both enzyme preparations
Heat treatment was performed in the presence of each ion at 0° C. for the time shown in FIGS. 6 and 7, and the residual activity was determined. NaCl is 10
CaCl was used at 2 mM.

Na+が共存した場合、両者とも同じりCa++単独あ
るいは何も存在しない場合と比較して明らかに熱安定性
が向上しているのがわかる。ここでD及びEは上記と同
じ酵素を示す。次にNa+とCa″存在下で再び枯草菌
α−アミラーゼ(幻と両針熱性α−アミラーゼ(C及び
D)の熱安定性を比較したところ、第8図で示す様にバ
チラス・ズブチリスNA64のα−アミラーゼは90’
C13分程度で全て失活してしまうのに対し両針熱性α
−アミラーゼは60分間の90℃熱処理で約50%、6
0分間処理でも約30%の残存活性を示した。第8図で
り、E、4”は上記と同じ酵素を示す。
It can be seen that when Na+ coexists, the thermal stability is clearly improved compared to when both are the same, when Ca++ is present alone, or when nothing is present. Here, D and E represent the same enzymes as above. Next, we again compared the thermostability of B. subtilis α-amylase (phantom and double-needle fever α-amylase (C and D) in the presence of Na+ and Ca″, and found that Bacillus subtilis NA64 α-amylase is 90'
C All inactivation occurs in about 13 minutes, whereas double-needle fever α
-Amylase is reduced by about 50% by heat treatment at 90℃ for 60 minutes, 6
Even after treatment for 0 minutes, residual activity of about 30% was shown. In FIG. 8, E, 4'' indicates the same enzyme as above.

以上?まとめると、今回クローン化きれた耐熱性α−ア
ミラーゼ遺伝子埋物であるα−アミラーゼは原菌である
バチラス・ステアロサーモフィラスA631、TAM1
1005、A’rCC7955白米の耐熱性α−アミラ
ーゼと同様に、バチラス・ズブチリスNA64のα−ア
ミラーゼと比べ著しく高い熱安定性を示し、さらにこの
安定性はNa’−によってさらに増加した。
that's all? In summary, α-amylase, which is the heat-stable α-amylase gene that has been successfully cloned, is derived from the progenitor bacteria Bacillus stearothermophilus A631 and TAM1.
Similar to the thermostable α-amylase of 1005, A'rCC7955 white rice, it showed significantly higher thermostability than the α-amylase of Bacillus subtilis NA64, and this stability was further increased by Na'-.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はプラスミドpBR322のフィジカルマツプ(
制限酵素切断地図)を示し、第2図はプラスミツドpT
UB I D 7のフィジカルマツプを示す。 第6図は製造例においてα−アミラーゼ活性、APa 
s e活性、生げの経時的変化を示す図で、第4図は各
酵素の作用至適温度を示す図で、第5図は同じく加熱処
理後の残存活性を示す図で、第6図及び第7図は各イオ
ン存在下における各酵素の加熱残存活性を示す図で、第
8図は各酵素のNa+とCa++の存在下90℃の加熱
後の残存活性を示す図である。 代理人 升理士 戸 1)観 男 算 3 聞 左昔養時間c峙) 埠4図 第5 l
Figure 1 shows the physical map of plasmid pBR322 (
Figure 2 shows the plasmid pT.
The physical map of UB ID 7 is shown. Figure 6 shows α-amylase activity, APa
Figure 4 shows the optimal temperature for each enzyme's action, Figure 5 shows the residual activity after heat treatment, and Figure 6 shows the changes in s e activity and growth over time. 7 is a diagram showing the residual activity of each enzyme in the presence of each ion after heating, and FIG. 8 is a diagram showing the residual activity of each enzyme after heating at 90° C. in the presence of Na+ and Ca++. Agent Masurishi Door 1) Kan Male Calculation 3 Monza Mukashi Yoji Time C Section) Bu 4 Figure 5 l

Claims (1)

【特許請求の範囲】[Claims] 耐熱性α−アミラーゼを生産するエシエリヒア・コリEscherichia coli produces thermostable α-amylase
JP14863384A 1984-07-19 1984-07-19 Variant escherichia coli Pending JPS6128383A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14863384A JPS6128383A (en) 1984-07-19 1984-07-19 Variant escherichia coli

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14863384A JPS6128383A (en) 1984-07-19 1984-07-19 Variant escherichia coli

Publications (1)

Publication Number Publication Date
JPS6128383A true JPS6128383A (en) 1986-02-08

Family

ID=15457152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14863384A Pending JPS6128383A (en) 1984-07-19 1984-07-19 Variant escherichia coli

Country Status (1)

Country Link
JP (1) JPS6128383A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110423737A (en) * 2019-09-10 2019-11-08 白银赛诺生物科技有限公司 From the heat resistant type alpha-amylase of Geobacillus stearothermophilus and its application

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110423737A (en) * 2019-09-10 2019-11-08 白银赛诺生物科技有限公司 From the heat resistant type alpha-amylase of Geobacillus stearothermophilus and its application

Similar Documents

Publication Publication Date Title
JP3025627B2 (en) Liquefied alkaline α-amylase gene
US4469791A (en) Genetically engineered microorganisms for massive production of amylolytic enzymes and process for preparing same
JPH0829091B2 (en) Method for producing hybrid PMA sequence and vector used in the method
JPH04507346A (en) Alkaline proteolytic enzyme and its production method
EP1199356B2 (en) Highly productive alpha-amylases
JP2001506496A (en) Proteins with improved stability
US4695546A (en) Transforming Bacillus stearothermophilus with plasmid vector pTB 19
EP0057976A2 (en) A process for cloning the gene coding for a thermostable alpha-amylase into escherichia coli and bacillus subtilis
JP2004500815A (en) Methods for obtaining proteins with improved functional properties
NO159863B (en) PROCEDURE FOR THE PREPARATION AND SELECTION OF A RECOMBINANT BACTERY PHAG, CONTAINING A GENETIC FRAGMENT AND CODES FOR ALFA AMYLASE, SUITABLE FOR USE IN HETEROLOGICAL TRANSFORMATION OF A BACILLUS HOST MICROORGANISM.
JP3025625B2 (en) Alkaline pullulanase gene having alkaline α-amylase activity
JPS6128383A (en) Variant escherichia coli
Yebra et al. Expression and secretion of Bacillus polymyxa neopullulanase in Saccharomyces cerevisiae
JPH0276587A (en) Plasmid for producing alpha amylase
Diderichsen et al. Cloning and expression of an amylase gene from Bacillus stearothermophilus
Yoshimoto et al. Nucleotide sequence of the neutral protease gene from Bacillus subtilis var. amylosacchariticus
JPH0156756B2 (en)
JP2814177B2 (en) DNA fragment containing alkaline pullulanase gene, vector incorporating the DNA fragment, and microorganism having the vector
Sicard et al. Toward a new generation of glucose isomerases through genetic engineering
JP2681634B2 (en) New bacterial strain with enhanced thermostable liquefied amylase production capacity
JP2655148B2 (en) A recombinant plasmid having a novel thermostable amylase gene
JP3036002B2 (en) DNA fragment containing ADE1 gene derived from Candida utilis
Cho et al. Catabolite Repression of the Bacillus stearothermophilus $\beta $-Xylosidase Gene (xylA) in Bacillus subtilis
JPH07213287A (en) Heat-resistant branching enzyme gene, recombined plasmid containing the same and heat-resistant branching enzyme
JPS61132178A (en) Mutant of bacillus subtilis