JPS6128302B2 - - Google Patents

Info

Publication number
JPS6128302B2
JPS6128302B2 JP53142814A JP14281478A JPS6128302B2 JP S6128302 B2 JPS6128302 B2 JP S6128302B2 JP 53142814 A JP53142814 A JP 53142814A JP 14281478 A JP14281478 A JP 14281478A JP S6128302 B2 JPS6128302 B2 JP S6128302B2
Authority
JP
Japan
Prior art keywords
polymerization
gel
weight
parts
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53142814A
Other languages
Japanese (ja)
Other versions
JPS5569051A (en
Inventor
Makoto Honda
Koji Noguchi
Juzo Yanagihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP14281478A priority Critical patent/JPS5569051A/en
Publication of JPS5569051A publication Critical patent/JPS5569051A/en
Publication of JPS6128302B2 publication Critical patent/JPS6128302B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Polymerisation Methods In General (AREA)

Description

【発明の詳細な説明】 本発明はクロマトグラフイー用充填剤の製造方
法に関する。さらにくわしくは、有機オリゴマー
物質の分離性能のすぐれた高速液体クロマトグラ
フイー(以下HLCと略称する)用充填剤の製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a packing material for chromatography. More specifically, the present invention relates to a method for producing a packing material for high performance liquid chromatography (hereinafter abbreviated as HLC) that has excellent separation performance for organic oligomer substances.

近年、数百から数千の分子量を持ついわゆるオ
リゴマーの研究及び実用化の進展に伴ない、その
化学構造上の特徴は、赤外線吸収分析、柴外線吸
収分析、核磁気共鳴吸収、質量分析等により明ら
かにされつつあるが、オリゴマーを単一化学種
(分子)として単離するための満足できる方法が
確立していないため、単一化学種としてのオリゴ
マーの研究は十分進んでいない。
In recent years, with the progress of research and practical application of so-called oligomers with molecular weights ranging from several hundred to several thousand, their chemical structural characteristics have been characterized by infrared absorption analysis, plasma absorption analysis, nuclear magnetic resonance absorption, mass spectrometry, etc. However, research on oligomers as a single species (molecule) has not progressed sufficiently because no satisfactory method has been established to isolate oligomers as a single species (molecule).

オリゴマーを分離する方法として、従来蒸留に
よる方法、溶媒抽出法、結晶化法、分別沈殿法、
遠心分離法、液体クロマトグラフイー(以下LC
と略称する)法等が知られているが、適用できる
分子量範囲や化学的安定性に対する制約の少ない
こと、単一化学種毎の分離を可能にする点でLC
法がすぐれている。HLCの中では、特に分子量
の差によつて分離がおこるという点でゲルパーミ
エーシヨンクロマトグラフイー(以下GPCと略
称する)が適当である。GPCとは溶質分子がカ
ラム充填剤(以下ゲルと略称する)の細孔に保持
された溶媒に浸透するために展開速度が遅れる型
の液体クロマトグラフイーであつて、溶質分子の
大きさ、つまり分子量の差によつて各分子ごとの
分離が行なわれる。従つてオリゴマー分子はゲル
中に浸透しにくい高重合度のものから順次カラム
より分離、溶出し、しかもこれによつて得られる
クロマトグラムは溶出容量の小さい側ほどそのピ
ーク間隔が狭い。
Methods for separating oligomers include conventional distillation methods, solvent extraction methods, crystallization methods, fractional precipitation methods,
Centrifugal separation method, liquid chromatography (LC)
LC (abbreviated as LC) method is known, but LC has the advantage of having fewer restrictions on the applicable molecular weight range and chemical stability, and of being able to separate each single chemical species.
The law is excellent. Among HLC, gel permeation chromatography (hereinafter abbreviated as GPC) is particularly suitable because separation occurs based on differences in molecular weight. GPC is a type of liquid chromatography in which the development speed is delayed because the solute molecules permeate the solvent held in the pores of the column packing material (hereinafter referred to as gel). Separation of each molecule is performed based on the difference in molecular weight. Therefore, oligomer molecules are separated and eluted from the column in order from those with a high degree of polymerization that are difficult to penetrate into the gel, and in the chromatogram obtained thereby, the peak interval is narrower as the elution volume is smaller.

またGPCによつて分離された各分子の重合度
の対数と溶出容量とを縦軸と横軸にプロツトすれ
ば、負の勾配をも持つ直線を描く。従つて重合度
が高くなるに従いオリゴマーの各成分を単一化学
種毎に分離することが困難になる。
Furthermore, if the logarithm of the degree of polymerization of each molecule separated by GPC and the elution volume are plotted on the vertical and horizontal axes, a straight line with a negative slope will be drawn. Therefore, as the degree of polymerization increases, it becomes difficult to separate each component of the oligomer into single chemical species.

一方近年分析または分離についても高速化の要
求が強く、機械的強度の大きい硬質ゲルの関発、
及びHLC機器の普及と相まつてGPCにおいても
数十分で分析できる高速GPCが広く使われてい
る。重合度の高いオリゴマー各成分の高速GPSに
よる分離を可能にするため分離すべき溶質を繰り
返しカラムに通すリサイクル法など操作条件に工
夫がなされているが、目的とする分析ないし分離
に長時間要すること、高価な装置を必要とし、か
つ操作条件の設定に高度な経験が要求される等の
制約があつた。これはオリゴマー領域において高
速GPCに使用されるスチレン―ジビニルベンゼ
ン系のゲルを充填したカラムの分離性能が不充分
なためである。公知の技術では強度と分離性能を
同時に満足するゲルは得られていなかつた。
On the other hand, in recent years there has been a strong demand for faster analysis and separation, and hard gels with high mechanical strength are involved.
With the spread of HLC equipment, high-speed GPC, which can perform analysis in several tens of minutes, has become widely used. In order to enable high-speed GPS separation of each oligomer component with a high degree of polymerization, improvements have been made to the operating conditions, such as a recycling method in which the solute to be separated is repeatedly passed through the column, but it takes a long time for the desired analysis or separation. However, there were limitations such as requiring expensive equipment and requiring a high level of experience in setting operating conditions. This is because the separation performance of columns packed with styrene-divinylbenzene gel used in high-speed GPC in the oligomer region is insufficient. With known techniques, it has not been possible to obtain a gel that satisfies both strength and separation performance.

本発明者らは上記制約なしに重合度の高いオリ
ゴマーの分離を実現する方法を鋭意検討した結
果、他の性能を落さずにピーク間隔の広いゲルの
製造方法に到達し、本発明を完成した。
The inventors of the present invention have intensively studied methods for realizing the separation of oligomers with a high degree of polymerization without the above-mentioned restrictions, and as a result, have arrived at a method for producing a gel with a wide peak spacing without compromising other performance, and have completed the present invention. did.

従来、オリゴマーの分離に適するスチレン―ジ
ビニルベンゼン系の骨格をもつたゲルの製造方法
としては大別して次の二つの方法がある。
Conventionally, methods for producing gels having a styrene-divinylbenzene skeleton suitable for separating oligomers can be roughly divided into the following two methods.

(1) ジビニルベンジンの著しく少ない(例えば5
重量%以下)組成においてスチレン、ジビニル
ベンゼン及び重合開始剤より混合液を懸濁重合
し粒子を得る方法。
(1) Significantly less divinylbenzine (e.g. 5
A method of obtaining particles by suspension polymerizing a mixture of styrene, divinylbenzene, and a polymerization initiator in a composition (weight% or less).

(2) ジビニルベンゼンの量は(1)の場合より多く
し、スチレン、ジビニルベンゼンをゲルの膨潤
溶媒の共存下に懸濁重合を行ない重合後に粒子
から溶媒を除去する方法。
(2) A method in which the amount of divinylbenzene is larger than in the case of (1), suspension polymerization of styrene and divinylbenzene is carried out in the coexistence of a gel swelling solvent, and the solvent is removed from the particles after polymerization.

このうち(1)の方法でつくつたゲルは、ゲルを構
成する全単量体ユニツト中のジビニルベンゼンユ
ニツトの重量パーセント(以下Xで表わす)が低
いので、ゲルの機械強度が要求される高速GPC
には不適当である。また(2)の方法で合成すると拡
大網目型ゲルと呼ばれる一種の多孔性ゲルが得ら
れ、近年オリゴマー淵離に用いられている高速
GPC用ゲルはこの方法でつくられたものが多
い。しかしこの方法でつくられたゲルは架橋度が
高いので、機械的強度はすぐれているが、分離性
能が不充分であつた。
Among these, the gel produced by method (1) has a low weight percentage of divinylbenzene units (hereinafter expressed as
It is inappropriate for Furthermore, when synthesized using method (2), a type of porous gel called expanded network gel can be obtained, which is a type of porous gel that has been used in recent years for high-speed oligomer separation.
Many GPC gels are made using this method. However, the gel produced by this method has a high degree of crosslinking, so although it has excellent mechanical strength, its separation performance is insufficient.

ゲルを製造するための懸濁重合は、重合反応が
完全に終了するまで行なうのが一般的である。た
とえばUSP3326875においてはゲルを合成するた
めに重合開始剤としてベンゾイルパーオキサイド
を用い、75%で48時間、さらにその後120℃で48
時間加熱して懸濁重合を行なつており、重合を完
結させるために重合の後半は高温で長時間加熱し
ている。
Suspension polymerization for producing a gel is generally carried out until the polymerization reaction is completely completed. For example, in USP 3,326,875, benzoyl peroxide was used as a polymerization initiator to synthesize a gel.
Suspension polymerization is carried out by heating for a long time, and in the latter half of the polymerization, heating is performed at a high temperature for a long time to complete the polymerization.

しかるに本発明者らは、(2)の方法において、未
重合のモノマーを一部残したまま重合を停止する
ことにより、機械的強度を実質的に低下させるこ
となく分離性能のすぐれた高速GPC用ゲルを製
造することに成功した。
However, in method (2), the present inventors achieved a method for high-speed GPC with excellent separation performance without substantially reducing mechanical strength by stopping polymerization while leaving some unpolymerized monomers. The gel was successfully produced.

すなわち本発明は、少なくともモノビニル芳香
族モノマーの一種以上が65〜90重量部、ポリビニ
ル芳香族モノマーの一種以上が35〜10重量部から
なる合計量100重量部とポリスチレンを溶解する
溶媒の一種以上が30〜200重量部よりなる混合液
を水中に懸濁させラジカル重合を行なうに際し、
重合率が85〜98%の範囲に達したところで重合を
停止することを特徴とするクロマトグラフイー用
充填剤の製造法に関する。
That is, the present invention provides a total of 100 parts by weight of at least 65 to 90 parts by weight of one or more monovinyl aromatic monomers, 35 to 10 parts by weight of one or more polyvinyl aromatic monomers, and one or more solvents for dissolving polystyrene. When carrying out radical polymerization by suspending a liquid mixture consisting of 30 to 200 parts by weight in water,
The present invention relates to a method for producing a filler for chromatography, characterized in that polymerization is stopped when the polymerization rate reaches a range of 85 to 98%.

ここでモノビニル芳香族モノマーとしては、ス
チレン、ビニルトルエン、α―メチルスチレン、
エチルビニルベンゼン等の化合物の中から一種以
上が選ばれ、ポリビニル芳香族モノマーとして
は、ジビニルベンゼン及びトリビニルベンゼンの
中から一種以上が用いられる。
Here, monovinyl aromatic monomers include styrene, vinyltoluene, α-methylstyrene,
One or more types are selected from compounds such as ethylvinylbenzene, and one or more types from divinylbenzene and trivinylbenzene are used as the polyvinyl aromatic monomer.

モノビニル芳香族モノマーは65〜90重量部、好
ましくは65〜80重量部、ポリビニル芳香族モノマ
ーは35〜10重量部、好ましくは35〜20重量部の範
囲で用いられる。
The monovinyl aromatic monomer is used in an amount of 65 to 90 parts by weight, preferably 65 to 80 parts by weight, and the polyvinyl aromatic monomer is used in an amount of 35 to 10 parts by weight, preferably 35 to 20 parts by weight.

尚、モノビニル芳香族モノマーとポリビニル芳
香族モノマーの量は両者の合計量が100重量部に
なるように選ばれる。一般に市販品として入手で
きるジビニルベンゼンは40重量%以上のエチルビ
ニルベンゼンを含むが、市販ジビニルベンゼンを
用いるときは純ジビニルベンゼンと、残りのエチ
ルビニルベンゼンを中心とするモノマー成分をそ
れぞれポリビニル芳香族モノマー、モノビニル芳
香族モノマーとして計算するものとする。
The amounts of the monovinyl aromatic monomer and the polyvinyl aromatic monomer are selected so that the total amount of both is 100 parts by weight. Generally, commercially available divinylbenzene contains 40% by weight or more of ethylvinylbenzene, but when using commercially available divinylbenzene, pure divinylbenzene and the remaining monomer components, mainly ethylvinylbenzene, are mixed into polyvinyl aromatic monomers. , shall be calculated as monovinyl aromatic monomer.

モノビニル芳香族モノマーが上記の範囲より多
いとゲルの機械的強度が低下して高速GPCには
不適当なゲルになり、少ないと分離性能が悪くな
る。
If the amount of the monovinyl aromatic monomer exceeds the above range, the mechanical strength of the gel will decrease, making the gel unsuitable for high-speed GPC, while if it is less, the separation performance will deteriorate.

さらにこれらのモノマーと共重合可能な他のモ
ノマー、たとえばアクリル酸、、アクリル酸エス
テル、メタクリル酸、メタクリル酸エステル、ア
クリロニトリル、、メタクリロニトリル、ビニル
ピリジンビニルイミダゾール、ビニルピロリドル
等のモノマーを生成する粒状架橋共重合体の物性
を実質的に変えない範囲で添加しても良い。
Furthermore, other monomers copolymerizable with these monomers are produced, such as acrylic acid, acrylic ester, methacrylic acid, methacrylic ester, acrylonitrile, methacrylonitrile, vinylpyridine vinylimidazole, and vinylpyrrolidol. It may be added to the extent that the physical properties of the particulate crosslinked copolymer are not substantially changed.

ポリスチレンを溶解する溶媒とは平均分子量
104〜106の直鎖のポリスチレンを常温において1
重量%以上溶解する溶媒のことで、芳香族炭化水
素類、ケトン類、エステル類、ニトリル類、ハロ
ゲン化炭化水素類、の中から選ばれ、具体的には
ベンゼン、トルエン、キシレン、シクロヘキサノ
ン、メチルベンゾエート、ベンゾニトリル、n―
ブチルアセテート等が良く、中でも取り扱い易
さ、価格等の点からトルエンが好ましい。
The average molecular weight of the solvent that dissolves polystyrene
10 4 to 10 6 linear polystyrene at room temperature
A solvent that dissolves at least % by weight and is selected from aromatic hydrocarbons, ketones, esters, nitriles, and halogenated hydrocarbons, specifically benzene, toluene, xylene, cyclohexanone, and methyl. Benzoate, benzonitrile, n-
Butyl acetate and the like are preferred, and toluene is particularly preferred from the viewpoint of ease of handling and price.

溶媒の量はモノビニル芳香族モノマーとポリビ
ニル芳香族モノマーの合計量100重量部に対して
30〜200重量部、の範囲で用いられる。溶媒量が
この範囲より少ないとオリゴマーの分離に適する
孔径の微細孔が少なくなつて分離性能が低下し、
多いとゲルの機械的強度が低下し、高速GPCに
は不適当なゲルになる。溶媒の量は実用上からは
80〜150の重量部の範囲にあることが好ましい。
The amount of solvent is based on 100 parts by weight of the total amount of monovinyl aromatic monomer and polyvinyl aromatic monomer.
It is used in a range of 30 to 200 parts by weight. If the amount of solvent is less than this range, the number of micropores with a pore size suitable for separating oligomers will decrease, resulting in a decrease in separation performance.
If the amount is too large, the mechanical strength of the gel decreases, making the gel unsuitable for high-speed GPC. From a practical point of view, the amount of solvent is
A range of 80 to 150 parts by weight is preferred.

重合開始剤は、2,2′―アゾビス―(1―メト
キシー2,4―ジメチルバレロニトリル),2,
2′―アゾビス―(2,4―ジメチルバレロニトリ
ル)、2,2′―アゾビスイソブチロニトリル,
1,1′―アゾビスシクロヘキサン―1―カルボニ
トリル等のアゾ系開始剤、あるいはイソブチリル
パーオキサイド、ジイソプロピルパーオキシジカ
ーボネート、ジ―2―エチルヘキシルジカーボネ
ート、2,4―ジクロロベンゾイルパーオキサイ
ド、t―ブチルパーオキシピバレート、3,5,
5―トリメチルヘキサノイルパーオキサイド、オ
クタノイルパーオキサイド、デカノイルパーオキ
サイド、ラウロイルパーオキサイド、ステアロイ
ルパ―オキサイド、プロピオニルパーオキサイ
ド、アセチルパーオキサイド、t―ブチルパーオ
キシ―2―エチルヘキサノエート、ベンゾイルパ
ーオキサイド等の有機過酸化物系の開始剤の一種
以上が用いられる。開始剤は全モノマー100重量
部に対して0.1〜5.0重量部の範囲で用いられる。
The polymerization initiator is 2,2′-azobis-(1-methoxy2,4-dimethylvaleronitrile), 2,
2'-azobis-(2,4-dimethylvaleronitrile), 2,2'-azobisisobutyronitrile,
Azo initiators such as 1,1'-azobiscyclohexane-1-carbonitrile, or isobutyryl peroxide, diisopropyl peroxydicarbonate, di-2-ethylhexyl dicarbonate, 2,4-dichlorobenzoyl peroxide, t -Butyl peroxypivalate, 3,5,
5-trimethylhexanoyl peroxide, octanoyl peroxide, decanoyl peroxide, lauroyl peroxide, stearoyl peroxide, propionyl peroxide, acetyl peroxide, t-butylperoxy-2-ethylhexanoate, benzoyl peroxide One or more types of organic peroxide-based initiators such as oxides are used. The initiator is used in an amount of 0.1 to 5.0 parts by weight based on 100 parts by weight of all monomers.

懸濁安定剤はポリビニルアルコールやメチルセ
ルロース等の通常知られている有機高分子系の安
定剤の中から選ばれる。
The suspension stabilizer is selected from commonly known organic polymer stabilizers such as polyvinyl alcohol and methylcellulose.

重合時の有機相と水相の容積比または重量比は
特に限定されず、通常懸濁重合を行なう際に選ぶ
範囲の値で良い。
The volume ratio or weight ratio of the organic phase to the aqueous phase during polymerization is not particularly limited, and may be within a range normally selected when carrying out suspension polymerization.

重合は次にようにして行なわれる。モノビニル
芳香族モノマー、ポリビニル芳香族モノマー、重
合開始剤、及びポリスチレンを溶解する溶媒を所
定の量はかりとり、混合して均一にした液を懸濁
安定剤を溶解した水に加え、デイスパーザーある
いはホモジナイザー等の名称で呼ばれているせん
断力の大きい撹拌機で撹拌混合する。
Polymerization is carried out as follows. Weigh out a predetermined amount of the monovinyl aromatic monomer, polyvinyl aromatic monomer, polymerization initiator, and solvent for dissolving polystyrene, mix to make a homogeneous solution, add it to the water in which the suspension stabilizer has been dissolved, and add it to the water using a disperser or homogenizer. Stir and mix using a stirrer with high shearing force called .

撹拌によつて液温が上昇し、モノマーを含む油
滴が目標の粒径にならないうちに重合が始まるの
を防止するために場合によつては容器を外側から
冷却する。油適の径を調整するときの温度は、油
適中に含まれる重合開始剤あるいは禁止剤の量や
種類によつて異なるが、通常20℃以下に保つのが
良い。油適が所定の大きさになつたのち、撹拌を
続けながら加熱して所定の温度に設定し重合反応
を行なう。このとき撹拌は系内の組成及び温度を
均一に保つ程度に行なえば良い。重合温度は通常
懸濁重合を行なう際に設定される温度範囲で良
く、特に限定されない。重合は重合率が85〜98%
の範囲に達したところで停止される。重合率がこ
の範囲より低いとゲルの機械的強度が小さくな
り、この範囲より高いとゲルの分離性能が悪くな
る。重合率は実用上からは90〜96%の範囲にある
ことが好ましい。
Stirring raises the temperature of the liquid, and in some cases the container is cooled from the outside to prevent polymerization from starting before the monomer-containing oil droplets reach the target particle size. The temperature when adjusting the diameter of the oil droplet varies depending on the amount and type of polymerization initiator or inhibitor contained in the oil droplet, but it is usually best to keep it below 20°C. After the oil has reached a predetermined size, it is heated while stirring to a predetermined temperature to carry out a polymerization reaction. At this time, stirring may be performed to the extent that the composition and temperature within the system are kept uniform. The polymerization temperature is not particularly limited and may be within the temperature range normally set when carrying out suspension polymerization. Polymerization has a polymerization rate of 85-98%
It will stop when it reaches this range. If the polymerization rate is lower than this range, the mechanical strength of the gel will be low, and if it is higher than this range, the separation performance of the gel will be poor. From a practical standpoint, the polymerization rate is preferably in the range of 90 to 96%.

重合の停止は重合禁止剤を添加する方法や重合
液を冷却する方法等の通常知られている方法によ
つて行なわれ特に限定されないが、実用上からは
所定の時間重合したのち直ちに得られた粒子をろ
別し水洗して冷却するのが良い。
Termination of polymerization is carried out by commonly known methods such as adding a polymerization inhibitor or cooling the polymerization solution, and is not particularly limited. It is best to filter out particles, wash with water, and cool.

得られた粒子を別し、水、熱水、アセトン等
で充分洗浄して粒子に同伴している懸濁安定剤、
溶媒、残存モノマー等を除去する。さらに必要に
より粒子を分級することにより高速GPC用ゲル
として用いることが可能となる。
The obtained particles are separated and thoroughly washed with water, hot water, acetone, etc. to remove the suspension stabilizer that accompanies the particles.
Remove solvent, residual monomer, etc. Furthermore, by classifying the particles if necessary, it becomes possible to use them as a gel for high-speed GPC.

本発明における重合率とは、重合前の全モノマ
ー量に対する重合開始後のある時期の残存モノマ
ー量のパーセントを100から引いた値として表わ
され、粒状架橋共重合体、懸濁液等よりなる重合
液を重合液中に含まれる成分と異なる有機溶媒で
抽出し、抽出液中のモノマー成分をガスクロマト
グラフイーで分析することによつて求められる。
重合停止の時期は事前に重合時間と重合率の関係
を求めておけば容易に設定できる。
In the present invention, the polymerization rate is expressed as a value obtained by subtracting from 100 the percentage of the amount of monomer remaining at a certain time after the start of polymerization relative to the total amount of monomers before polymerization, and is a value obtained by subtracting from 100 the percentage of the amount of monomer remaining at a certain time after the start of polymerization with respect to the amount of total monomer before polymerization. It is determined by extracting the polymerization liquid with an organic solvent different from the components contained in the polymerization liquid and analyzing the monomer components in the extract using gas chromatography.
The timing of polymerization termination can be easily determined by determining the relationship between polymerization time and polymerization rate in advance.

本発明によつて得られたゲルがGPCにおいて
充分な分離性能を示すためにはゲルの体積平均粒
径が2〜50μm好ましくは5〜30μmの範囲にあ
るのがよい。
In order for the gel obtained according to the present invention to exhibit sufficient separation performance in GPC, the volume average particle size of the gel is preferably in the range of 2 to 50 μm, preferably 5 to 30 μm.

ゲルの粒径は体積平均粒径として求められる
が、本発明における体積平均粒径とは、横軸に粒
径、縦軸に一定粒径までの粒子体積の累計をプロ
ツトした積分曲線において体積累計が50%のとこ
ろの粒径を表わした値で、コールターカウンター
(米国、コールターエレクトロニクス社)等の装
置を用いて求められる。
The particle size of a gel is determined as a volume average particle size, and in the present invention, the volume average particle size refers to the cumulative volume of an integral curve in which the horizontal axis is the particle size and the vertical axis is the cumulative volume of particles up to a certain particle size. This value represents the particle size at 50% of the particle size, and is determined using a device such as a Coulter Counter (Coulter Electronics, Inc., USA).

本発明の方法によつて得られたゲルの物性測定
のためGPC分析を行ない較正曲線を求めたが、
そのときの測定条件は次の通りである。
In order to measure the physical properties of the gel obtained by the method of the present invention, GPC analysis was performed and a calibration curve was obtained.
The measurement conditions at that time were as follows.

カラム ステンレス製 内径7〜8mm、長さ
50cm 溶 媒 クロロホルム サンプル ポリスチレン 0.5%―クロロホル
ム液20μl 流 量 0.1〜2.0ml/min 温 度 室温 検出方法 UV254nm なおゲルのカラムへの充填はクロロホルム溶媒
中で上昇流によつて行なつた。
Column made of stainless steel, inner diameter 7-8 mm, length
50cm Solvent Chloroform Sample Polystyrene 0.5%-Chloroform solution 20μl Flow rate 0.1-2.0ml/min Temperature Room temperature Detection method UV254nm The gel was charged into the column by upward flow in the chloroform solvent.

GPCにおける較正曲線とは一般に被分離物質
の分子量とクロマトグラムにおける溶出容量の関
係を表わすのであるが、本発明では、第1図のよ
うに縦軸にポリマーまたはオリゴマー各成分の分
子量(M)の対数を、横軸に溶出容量(Ve)を
カラム空塔容積(Vt)で割つた値(Ve/Vt)を
目盛つたグラフ上にプロツトして得られる線を指
すものとする。
A calibration curve in GPC generally represents the relationship between the molecular weight of a substance to be separated and the elution volume in a chromatogram, but in the present invention, as shown in Figure 1, the vertical axis represents the molecular weight (M) of each component of a polymer or oligomer. The logarithm refers to the line obtained by plotting the value (Ve/Vt) obtained by dividing the elution volume (Ve) by the column volume (Vt) on the horizontal axis.

第1図において傾斜した直線の延長と縦軸に平
行な線の延長が交わる点の縦軸の値は、排除限界
分子量(以下Mlimと表わす)と呼ばれ、本発明
はMlimが500〜20000、好ましくは1000〜15000、
さらに好ましくは1500〜12000の範囲にあるゲル
を得るのに適している。
In FIG. 1, the value on the vertical axis at the point where the extension of the inclined straight line intersects the extension of the line parallel to the vertical axis is called the exclusion limit molecular weight (hereinafter referred to as Mlim). Preferably 1000-15000,
More preferably, it is suitable for obtaining a gel in the range of 1500 to 12000.

本発明の方法によつて得られたゲルをスチレン
オリゴマーのGPC分離に使用して得られたクロ
マトグラムの例(第2,3,4図)と従来法の対
応例(第5,6,7図)を比較するとそれぞれ前
者の方が重合度の高いオリゴマーまで分離されて
おりよりすぐれた分離性能を示している。このよ
うに重合が完結する少し前に重合を停止すること
により他の物性をほとんど変えることなく分離性
能の良いゲルを得ることができる。第2,3,4
図はそれぞれ第5,6,7図にくらべて分離され
たオリゴマーの数が多くなつているが、さらに詳
細に見ると分離された各成分のピークの間隔が広
がつている。ピーク間隔が広いことは、較正曲線
の傾斜した直線の傾きがゆるやかなことを示して
おり、本発明によつて得られたゲルの分離性能が
すぐれている理由は次式で定義される較正曲線の
勾配の絶対値(以下αと表わす)が小さいことに
基づくと考えられる。
Examples of chromatograms obtained by using the gel obtained by the method of the present invention for GPC separation of styrene oligomers (Figures 2, 3, and 4) and corresponding examples of the conventional method (Figures 5, 6, and 7) Comparing the two methods shown in Figure), the former shows better separation performance as oligomers with a higher degree of polymerization are separated. In this way, by stopping the polymerization a little before the polymerization is completed, a gel with good separation performance can be obtained with almost no change in other physical properties. 2nd, 3rd, 4th
The number of separated oligomers in each figure is larger than in Figures 5, 6, and 7, but when looked at in more detail, the intervals between the peaks of the separated components are wider. The wide peak interval indicates that the slope of the straight line of the calibration curve is gentle, and the reason why the gel obtained by the present invention has excellent separation performance is that the calibration curve defined by the following equation This is considered to be based on the fact that the absolute value of the gradient (hereinafter referred to as α) is small.

α=|△logM/△(Ve/Vt)| 本発明の方法によつてαの低い分離性能の良い
ゲルが得られる理由は必らずしも明らかではない
が、未重合モノマーを一部残して重合を停止する
ため、骨格や微細孔構造に変化構造に変化がおこ
り特異な粒子構造のゲルができたものと考えられ
る。
α=|△logM/△(Ve/Vt)| Although it is not necessarily clear why a gel with a low α and good separation performance can be obtained by the method of the present invention, some unpolymerized monomers remain It is thought that this process caused changes in the skeleton and micropore structure to stop polymerization, resulting in a gel with a unique particle structure.

本発明者らの研究によると、重合時に共存させ
る溶媒の量のみを変えて、重合率100%まで重合
したゲルの物性を比較すると、本発明の未重合モ
ノマーの量に相当する程度の溶媒が増えても、
Mlimは多少大きくなるが、αはほとんど変わら
ない。したがつて本発明においてαが低いゲルが
得られる理由は未重合モノマーが単に溶媒として
働いているためではない。
According to the research of the present inventors, when comparing the physical properties of gels polymerized to a polymerization rate of 100% by changing only the amount of solvent coexisting during polymerization, it was found that the amount of solvent equivalent to the amount of unpolymerized monomer of the present invention was compared. Even if it increases,
Although Mlim increases somewhat, α remains almost unchanged. Therefore, the reason why a gel with a low α can be obtained in the present invention is not because the unpolymerized monomer simply functions as a solvent.

本発明の方法によつて得られたクロマトグラフ
イー用充填剤はGPC用の充填剤としてばかりで
なく、吸着や分配の作用に基づくHLC用の充填
剤として用いることもできる。
The packing material for chromatography obtained by the method of the present invention can be used not only as a packing material for GPC but also as a packing material for HLC based on adsorption and distribution effects.

以下の実施例によつて本発明をさらに詳細に説
明する。
The invention will be explained in further detail by the following examples.

実施例 1 1フラスコにポリビニルアルコール4.2gを
入れた水700mlを入れ、スチレン36.4g、ジビニ
ルベンゼン(純度56%)36.4g、トルエン69.8g
および2,2′―アゾビスイソブチロニトリル2g
よりなる均一混合液を加えた。フラスコを氷水浴
に入れ、充分冷却して内温を20℃以下に保ちなが
ら、フラスコ内の重合液をラボデイスパーザーで
高速で撹拌した。次に60℃に保つた水浴にフラス
コを入れ、舟型翼付撹拌棒でフラスコ内の温度を
均一に保つ程度に撹拌しながら60℃で6時間、加
熱して重合を行なつた。重合終了時点における重
合率を残存モノマーのガスクロ分析によつて求め
たところ91%であつた。得られた重合体粒子を
別し、水、アセトンの順で充分したのち、アセト
ン中に分散させて沈降速度の差を利用して簡単な
分級を行なつた。このようにして得られた粒子の
体積平均粒径をコールターカランターZB型(米
国、コールターエレクトロニクス社)を用い1%
食塩水溶液中で測定したところ9.2μmであつ
た。このゲルを用いて明細書に述べた条件で求め
た較正曲線よりα=5・5,Mlim=5200の値を
得た。この充填カラムを用いベンゼンを溶質とし
て理論段数(以下NBと表わす)を測定したとこ
ろ11200段であつた。またこの充填カラムを用い
て4量体を中心とするスチレンオリゴマーのクロ
ロホルム溶液を溶媒の流速1ml/minでGPC分析
し、6量体まで分離したチヤート(第2図)が得
られた。
Example 1 1 Put 700 ml of water containing 4.2 g of polyvinyl alcohol into a flask, add 36.4 g of styrene, 36.4 g of divinylbenzene (purity 56%), and 69.8 g of toluene.
and 2 g of 2,2'-azobisisobutyronitrile
A homogeneous mixture consisting of the following was added. The flask was placed in an ice-water bath, and the polymerization liquid in the flask was stirred at high speed using a laboratory disperser while sufficiently cooling the flask and keeping the internal temperature below 20°C. Next, the flask was placed in a water bath kept at 60°C, and polymerization was carried out by heating at 60°C for 6 hours while stirring with a boat-shaped bladed stirring bar to maintain a uniform temperature inside the flask. The polymerization rate at the end of the polymerization was determined to be 91% by gas chromatography analysis of the remaining monomer. The obtained polymer particles were separated, and after sufficient water and acetone were added in that order, they were dispersed in acetone and simple classification was performed using the difference in sedimentation rate. The volume average particle size of the particles thus obtained was adjusted to 1% using a Coulter Calanter ZB type (Coulter Electronics, Inc., USA).
When measured in a saline solution, it was 9.2 μm. Using this gel, values of α=5.5 and Mlim=5200 were obtained from a calibration curve obtained under the conditions described in the specification. Using this packed column and using benzene as the solute, the number of theoretical plates (hereinafter referred to as N B ) was measured and found to be 11,200 plates. Furthermore, using this packed column, a chloroform solution of styrene oligomers mainly consisting of tetramers was analyzed by GPC at a solvent flow rate of 1 ml/min, and a chart (Fig. 2) separated into hexamers was obtained.

実施例 2 実施例1において重合液としてスチレン33.8
g、ジビニルベンゼン(純度56%)39.0g、トル
エン94.5gおよび2,2′―アゾビス―(2,4―
ジメチルバレロニトリル)1gからなる混合液を
用い60℃で7時間重合した以外は実施例1と同様
にゲルを調整した。重合終了時点における重合率
を残存モノマーのガスクロ分析によつて求めたと
ころ95%であつた。得られたゲルは体積平均粒径
は9.5μmでこのゲルを充填したカラムを用いた
測定よりα=4.7、Mlim=10000NB=12500段の値
を得た。この充填カラムを用いて実施例1と同様
にして4量体を中心とするスチレンオリゴマー分
析したところ7量体まで分離したチヤート(第3
図)が得られた。
Example 2 In Example 1, styrene 33.8 was used as the polymerization liquid.
g, divinylbenzene (purity 56%) 39.0 g, toluene 94.5 g and 2,2′-azobis-(2,4-
A gel was prepared in the same manner as in Example 1, except that a mixture containing 1 g of dimethylvaleronitrile was used and polymerized at 60° C. for 7 hours. The polymerization rate at the end of the polymerization was determined to be 95% by gas chromatography analysis of the remaining monomer. The volume average particle diameter of the obtained gel was 9.5 μm, and values of α=4.7 and Mlim=10000N B =12500 plates were obtained by measurement using a column packed with this gel. Using this packed column, styrene oligomers mainly consisting of tetramers were analyzed in the same manner as in Example 1. Charts (tertiary
Figure) was obtained.

実施例 3 実施例1において重合液としてスチレン41.6
g、ジビニルベンゼン(純度56%)31.2g、トル
エン69.8gおよびベンゾイルパーオキサイド1g
からなる混合液を用い75℃で7時間重合した以外
は実施例1と同様にゲルを調整した。重合終了時
点における重合率を残存モノマーのガスクロ分析
によつて求めたところ93%であつた。得られたゲ
ルの体積平均粒径は9.7μm、このゲルを充填し
たカラムを用いた測定よりα=4.3、Mlim=
3800、NB=7200段の値を得た。この充填カラム
を用いて実施例1と同様にして4量体を中心とす
るスチレンオリゴマーを分析したところ量体まで
分離したチヤート(第4図)が得られた。
Example 3 In Example 1, styrene 41.6 was used as the polymerization liquid.
g, divinylbenzene (purity 56%) 31.2 g, toluene 69.8 g and benzoyl peroxide 1 g
A gel was prepared in the same manner as in Example 1, except that the mixture was polymerized at 75°C for 7 hours. The polymerization rate at the end of the polymerization was determined to be 93% by gas chromatography analysis of the remaining monomer. The volume average particle diameter of the obtained gel was 9.7 μm, α = 4.3, Mlim = from measurements using a column packed with this gel.
Values of 3800 and N B =7200 stages were obtained. When styrene oligomers, mainly tetramers, were analyzed using this packed column in the same manner as in Example 1, a chart (FIG. 4) in which the oligomers were separated was obtained.

比較例 1 実施例1において重合を60℃で6時間、さらに
その後80℃で4時間行なつた以外は実施例1とま
つたく同様に行なつた。
Comparative Example 1 The same procedure as in Example 1 was carried out except that the polymerization was carried out at 60°C for 6 hours and then at 80°C for 4 hours.

重合終了点における重合率を残存モノマーのガ
スクロ分析によつて求めたところ100%であつ
た。
The polymerization rate at the polymerization end point was determined to be 100% by gas chromatography analysis of the remaining monomer.

得られたゲルの体積平均粒径は9.1μmで、こ
のゲルを用いて実施例1と同様にGPC分析を行
なつたところα=6.5、Mlim=7000、NB=93000
で、4量体を中心とするスチレンオリゴマーの分
析チヤートは第5図の通りであつた。実施例1に
おいて得られたチヤート(第2図)と比較例1の
ゲルは5量体までしか分離されていないのに対
し、実施例1のゲルは6量体まで分離されてお
り、本発明のゲルがいかに分離性能が良いかわか
る。
The volume average particle diameter of the obtained gel was 9.1 μm, and when GPC analysis was performed using this gel in the same manner as in Example 1, α = 6.5, Mlim = 7000, N B = 93000.
The analysis chart of styrene oligomers mainly consisting of tetramers was as shown in Figure 5. The chart obtained in Example 1 (Fig. 2) and the gel of Comparative Example 1 were separated only up to the pentamer, whereas the gel of Example 1 was separated up to the hexamer, and the present invention You can see how good the separation performance of this gel is.

比較例 2 実施例2において重合を60℃で10時間、さらに
その後80℃で10時間行なつた以外は実施例2と同
様にゲルを調整した。重合終了時点における重合
率を残存モノマーのガスクロ分析によつて求めた
ところ99%であつた。得られたゲルの体積平均粒
径は9.3μmでこのゲルを充填したカラムを用い
た測定よりα=5.8、Mlim=11000、NB=13000
段の値を得た。また実施例2と同様にして行なつ
た4量体を中心とするスチレンオリゴマーの分析
の結果、6量体までしか分離されなかつた。(第
6図) 比較例 3 実施例3において重合を7.5℃で10時間、さら
にその後85℃で10時間行なつた以外は実施例3と
同様にゲルを調整した。重合終了時点における重
合率は100%であつた。得られたゲルの体積平均
粒径は9.8μmでこのゲルを充填したカラムを用
いた測定よりα=5.3、Mlim=4200NB=9000段の
値を得た。また実施例3と同様にして行なつた4
量体を中心とするスチレンオリゴマーの分析の結
果、6量体までしか分離されなかつた。(第7
図) 比較例 4 スチレンとジビニルベンゼン純度56%の使用量
をそれぞれ20.8g、52gとした以外実施例1と同
様にして重合体粒子を得た。重合終了時点の重合
率は93%であつた。この粒子を分級して平均粒径
8.9μmのゲルを得た。このゲルを用いて明細書
に述べた条件で求めた較正曲線から、α=8.5、
Mlim約30000の値を得た。これらの値からこのゲ
ルはオリゴマーの分離に必らずしかも適していな
いと考えられたが、実際にスチレンオリゴマーを
分析すると4量体までしか分離できなかつた。
Comparative Example 2 A gel was prepared in the same manner as in Example 2, except that the polymerization was carried out at 60°C for 10 hours and then at 80°C for 10 hours. The polymerization rate at the end of the polymerization was determined to be 99% by gas chromatography analysis of the remaining monomer. The volume average particle diameter of the obtained gel was 9.3 μm, and from measurements using a column packed with this gel, α = 5.8, Mlim = 11000, N B = 13000.
I got the value of the stage. Furthermore, as a result of analysis of styrene oligomers mainly consisting of tetramers, which was carried out in the same manner as in Example 2, only hexamers were separated. (Figure 6) Comparative Example 3 A gel was prepared in the same manner as in Example 3, except that the polymerization was carried out at 7.5°C for 10 hours and then at 85°C for 10 hours. The polymerization rate at the end of polymerization was 100%. The volume average particle diameter of the obtained gel was 9.8 μm, and values of α=5.3 and Mlim=4200N B =9000 plates were obtained by measurement using a column packed with this gel. In addition, it was carried out in the same manner as in Example 3.
As a result of analysis of styrene oligomers mainly composed of hexamers, only hexamers were separated. (7th
(Figure) Comparative Example 4 Polymer particles were obtained in the same manner as in Example 1 except that the amounts of styrene and divinylbenzene with a purity of 56% were changed to 20.8 g and 52 g, respectively. The polymerization rate at the end of polymerization was 93%. The particles are classified to determine the average particle size.
A gel of 8.9 μm was obtained. From the calibration curve obtained using this gel under the conditions stated in the specification, α = 8.5,
Mlim got a value of about 30000. From these values, it was thought that this gel was not necessarily suitable for separating oligomers, but when styrene oligomers were actually analyzed, only tetramers could be separated.

比較例 5 スチレンとジビニルベンゼン(純度56%)の使
用量をそれぞれ66.3g、6.5gとした以外実施例
1と同様にして重合体粒子を得た。重合終了時点
の重合率は92%であつた。この粒子を分級して平
均粒径8.8μmのゲルを得た。このゲルをカラム
を充填して性能の測定を試みたがゲルの強度が低
いため溶媒の流速を1ml/mmまで上げられなかつ
た。
Comparative Example 5 Polymer particles were obtained in the same manner as in Example 1 except that the amounts of styrene and divinylbenzene (purity 56%) were changed to 66.3 g and 6.5 g, respectively. The polymerization rate at the end of polymerization was 92%. The particles were classified to obtain a gel with an average particle size of 8.8 μm. An attempt was made to measure the performance by filling a column with this gel, but due to the low strength of the gel, it was not possible to increase the solvent flow rate to 1 ml/mm.

比較例 6 トルエンの使用量を10gとした以外は実施例1
と同様にして重合体粒子を得た。重合率は94%で
あつた。この粒子を分級して8.5μmのゲルを得
た。このゲルを用いて明細書に述べた条件で求め
た較正曲線からα=7.0 Mlim500の値を得た。こ
のゲルを充填したカラムを用いてスチレンオリゴ
マーを分析すると二重体までしか分離しなかつ
た。
Comparative example 6 Example 1 except that the amount of toluene used was 10 g
Polymer particles were obtained in the same manner as above. The polymerization rate was 94%. The particles were classified to obtain a gel of 8.5 μm. A value of α=7.0 Mlim500 was obtained from a calibration curve obtained using this gel under the conditions described in the specification. When styrene oligomers were analyzed using a column packed with this gel, only double bodies were separated.

比較例 7 トルエンの使用量を182gとした以外は実施例
1と同様にして重合体粒子を得た。重合率は89%
であつた。この粒子を分級して得た平均粒径9.0
μmのゲルをカラムに充填して性能の測定を試み
たが、ゲルの強度が低く溶媒の流速を1ml/mmま
で上げられなかつた。
Comparative Example 7 Polymer particles were obtained in the same manner as in Example 1 except that the amount of toluene used was 182 g. Polymerization rate is 89%
It was hot. The average particle size obtained by classifying these particles is 9.0
An attempt was made to measure the performance by filling a column with a μm gel, but the strength of the gel was so low that it was not possible to increase the solvent flow rate to 1 ml/mm.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はクロマトグラムにおける被分離物質の
分子量(M)と溶出容量/カラム空塔容積比
(Ve/Vt)の関係を表わす較正曲線を示し、また
第2図〜第7図はそれぞれ実施例1〜3、比較例
1〜3で得られたゲルを充填したカラムを用いて
GPC分析して得られたチヤートを示す。
Figure 1 shows a calibration curve representing the relationship between the molecular weight (M) of the substance to be separated and the elution volume/column volume ratio (Ve/Vt) in the chromatogram, and Figures 2 to 7 are examples of examples, respectively. 1 to 3, using a column filled with the gel obtained in Comparative Examples 1 to 3.
A chart obtained by GPC analysis is shown.

Claims (1)

【特許請求の範囲】[Claims] 1 少なくともモノビニル芳香族モノマーの一種
以上が65〜90重量部、ポリビニル芳香族モノマー
の一種以上が35〜10重量部からなる合計量100重
量部とポリスチレンを溶解する溶媒の一種以上が
30〜200重量部よりなる混合液を水中に懸濁させ
てラジカル重合を行なうに際し、重合率が85〜98
%の範囲に達したところで重合を停止することを
特徴とするクロマトグラフイー用充填剤の製造
法。
1 A total of 100 parts by weight of at least 65 to 90 parts by weight of one or more monovinyl aromatic monomers, 35 to 10 parts by weight of one or more polyvinyl aromatic monomers, and one or more solvents for dissolving polystyrene.
When radical polymerization is carried out by suspending a liquid mixture consisting of 30 to 200 parts by weight in water, the polymerization rate is 85 to 98.
A method for producing a packing material for chromatography, characterized in that polymerization is stopped when the polymerization reaches a range of %.
JP14281478A 1978-11-21 1978-11-21 Manufacture of filler for chromatography Granted JPS5569051A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14281478A JPS5569051A (en) 1978-11-21 1978-11-21 Manufacture of filler for chromatography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14281478A JPS5569051A (en) 1978-11-21 1978-11-21 Manufacture of filler for chromatography

Publications (2)

Publication Number Publication Date
JPS5569051A JPS5569051A (en) 1980-05-24
JPS6128302B2 true JPS6128302B2 (en) 1986-06-30

Family

ID=15324239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14281478A Granted JPS5569051A (en) 1978-11-21 1978-11-21 Manufacture of filler for chromatography

Country Status (1)

Country Link
JP (1) JPS5569051A (en)

Also Published As

Publication number Publication date
JPS5569051A (en) 1980-05-24

Similar Documents

Publication Publication Date Title
Hosoya et al. Influence of the seed polymer on the chromatographic properties of size monodisperse polymeric separation media prepared by a multi‐step swelling and polymerization method
Svec et al. Kinetic control of pore formation in macroporous polymers. Formation of" molded" porous materials with high flow characteristics for separations or catalysis
US5728457A (en) Porous polymeric material with gradients
Mead et al. Viscosities of solutions of polyvinyl chloride
US4093570A (en) Production of porous polymers
EP0982326B1 (en) A polymer packing material for liquid chromatography and a producing method thereof
Rein et al. New developments in synthesis of star polymers with poly (ethylene oxide) arms
JP3158186B2 (en) Alkyl group-containing porous resin, production method thereof and use thereof
US4338404A (en) Gel permeation chromatographic packing and process for producing same utilizing suspension polymerization
US4238569A (en) Preparation of hydrophilic material for gel chromatography
AU740718B2 (en) Polynucleotide separations on nonporous polymer beads
JPS6128302B2 (en)
Poinescu et al. On the structure of macroreticular styrene‐divinylbenzene copolymers
JPH0373848A (en) Packing material for liquid chromatography and production thereof
JPH02269718A (en) Manufacture of polyphenylene ether/ polystyrene beads, and beads therery produced
JPS5817526B2 (en) Method for producing packing material for chromatography
US4184020A (en) Preparation of hydrophilic material for gel chromatography
JPH0125021B2 (en)
Erbay et al. Macroporous styrene-divinylbenzene copolymers: Formation of stable porous structures during the copolymerization
Makan et al. Field Flow Fractionation for the Size, Molar Mass, and Gel Content Analysis of Emulsion Polymers for Water‐Based Coatings
JPS5930224B2 (en) Packing material for high performance liquid chromatography consisting of a new granular cross-linked copolymer
Ober et al. Partitioning of monomer during dispersion polymerisation
JPS61153563A (en) Packing material for liquid chromatography and its production
Louie et al. Optimization of batch polymerization processes—narrowing the MWD. II. Experimental study
JPH06262071A (en) New resin for separation and its preparation