JPS61281975A - Measuring instrument for distribution of toner electric charge quantity - Google Patents

Measuring instrument for distribution of toner electric charge quantity

Info

Publication number
JPS61281975A
JPS61281975A JP12461485A JP12461485A JPS61281975A JP S61281975 A JPS61281975 A JP S61281975A JP 12461485 A JP12461485 A JP 12461485A JP 12461485 A JP12461485 A JP 12461485A JP S61281975 A JPS61281975 A JP S61281975A
Authority
JP
Japan
Prior art keywords
toner
particles
toner particles
particle size
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12461485A
Other languages
Japanese (ja)
Inventor
Nobuyuki Tanaka
信之 田中
Junichi Tashiro
順一 田代
Masayuki Hida
飛田 正行
Junzo Nakajima
淳三 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP12461485A priority Critical patent/JPS61281975A/en
Publication of JPS61281975A publication Critical patent/JPS61281975A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To measure the particle size distribution and the charge quantity distribution of toner particle units with a high precision by gathering toner particles of low natural drop speed onto the surface of a filter easily. CONSTITUTION:Electrodes 1 and 2 are provided in parallel with the Z direction, and air alminar streams in Y and X directions are formed in the electric field which is formed by applying a certain DC voltages to these electrodes. Charged toner particles 4 are dispersed in particle units and are dropped naturally from a toner drop tube 3 provided above the position between electrodes 1 and 2. Particles 4 are moved with a certain speed component in the X direction by air alminar streams and are gathered on a filter 7. Toner particles receive the force of the electric field in the Y direction and the gravity in the Z direction to move with components in individual directions while moving in the X direction. Displacements in Y and X directions of particles 4 are proportional to the square of the particle size and the charge quantity per unit particle size. Thus, the particle size and the charge quantity of particles 4 are obtained inversely in accordance with YZ coordinates of particles 4 gathered on the filter 7.

Description

【発明の詳細な説明】 (概要〕 トナー電荷量分布測定装置であって、トナー粒子は粒径
の違いにより、単位時間に自然落下する距離に差を生じ
ることと、トナー粒子の粒径と帯電量の違いによって電
界方向の単位時間の移動量に差が生じることを利用し、
空気層流の方向に対して垂直な平面としてフィルタを配
置することで、トナー粒子がフィルタに捕集されるまで
の時間を一定にでき、トナー粒子単位の帯電量分布と粒
径分布を同時にかつ簡易に測定することを可能としてい
る。
[Detailed Description of the Invention] (Summary) This is a toner charge amount distribution measuring device, which measures the difference in the distance that toner particles naturally fall per unit time due to the difference in particle size, and the particle size and charge of toner particles. Utilizing the fact that there is a difference in the amount of movement per unit time in the direction of the electric field due to the difference in the amount,
By arranging the filter in a plane perpendicular to the direction of the laminar air flow, the time it takes for toner particles to be collected by the filter can be made constant, and the charge amount distribution and particle size distribution of each toner particle can be adjusted at the same time. This allows for easy measurement.

〔産業上の利用分野〕[Industrial application field]

本発明はトナー電荷量分布測定装置に関し、特にトナー
粒子単位の電荷量測定の高精度化と装置の小型化が図れ
るように改良されたトナー電荷量分布測定装置に関する
ものである。
The present invention relates to a toner charge distribution measuring device, and more particularly to a toner charge distribution measuring device that has been improved so as to be able to measure the charge amount in units of toner particles with high accuracy and to make the device compact.

電子写真プロセスにおいて、現像工程の解析のため、ト
ナーの帯電量を知る必要があり、特に近年、トナー粒子
単位の帯電量を測定し、現像剤中のトナーの帯電量の分
布を求めることが強く要望されている。
In the electrophotographic process, it is necessary to know the amount of charge on the toner in order to analyze the development process.Especially in recent years, it has become increasingly important to measure the amount of charge on each toner particle and determine the distribution of the amount of charge on the toner in the developer. It is requested.

(従来の技術〕 従来、トナー粒子の帯電量を測定する装置として、特開
昭58−116542に代表される装置が提案されてい
る。
(Prior Art) Conventionally, as a device for measuring the amount of charge on toner particles, a device typified by Japanese Patent Application Laid-Open No. 116542/1983 has been proposed.

この装置は第4図の模式図に示すように、重力方向(Z
方向)に平行に配設された2枚の平行な電極板1および
2の間に、一定の直流電圧を印加し、電極1.2間に一
様な電界を形成している。
As shown in the schematic diagram of Figure 4, this device operates in the direction of gravity (Z
A constant DC voltage is applied between two parallel electrode plates 1 and 2 that are arranged parallel to each other in the direction (direction) to form a uniform electric field between the electrodes 1 and 2.

また、2枚の電極板1,2に平行であって重力方向に垂
直な方向(X方向)に空気層流を生じさせ、この2枚の
電極1.2の間の上方に設けられたトナー落下管3より
、帯電したトナー粒子4を重力方向に垂直に置かれた測
定板5上に自然落下させる。
In addition, a laminar air flow is generated in a direction (X direction) parallel to the two electrode plates 1 and 2 and perpendicular to the direction of gravity, and the toner disposed above between the two electrode plates 1 and 2 is Charged toner particles 4 are allowed to naturally fall from a drop tube 3 onto a measurement plate 5 placed perpendicular to the direction of gravity.

トナー落下管3より落下したトナー粒子4は、粒子径の
大小に応じた落下速度の差と、粒子の帯電量の大小に応
じた電気力の差とにより、X方向。
The toner particles 4 falling from the toner drop tube 3 are moved in the X direction due to the difference in falling speed depending on the size of the particles and the difference in electric force depending on the amount of charge on the particles.

Y方向に変位をもって測定板5上に落下する。It falls onto the measurement plate 5 with a displacement in the Y direction.

従って、測定板5上のトナーのX、Y座標よりトナー粒
子の粒径および帯電量分布を求めることが可能となる。
Therefore, it is possible to determine the particle size and charge amount distribution of the toner particles from the X and Y coordinates of the toner on the measurement plate 5.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

一般に用いられているトナー粒子は密度が1.0g/ 
cff13前後1粒径がlOμ隅前後前後り、空気中に
おける自然落下速度はストークスの定理に基づき計算す
ると約0.3 cIl/Secときわめて小さい。
Generally used toner particles have a density of 1.0g/
The particle diameter is around lOμ corner around cff13, and the natural falling speed in the air is extremely small at about 0.3 cIl/Sec when calculated based on Stokes' theorem.

従って従来の装置により粒子単位に分離されたトナーを
捕集して測定するには、2方向のトナー落下距離を小さ
くするか、空気流の速度を微小にするか、あるいは装置
のX方向の測定可能な範囲を長くする必要があり、測定
精度の劣化または装置の大型化を招く。
Therefore, in order to collect and measure toner separated into particles using conventional equipment, it is necessary to reduce the toner falling distance in two directions, to minimize the speed of the air flow, or to measure the toner in the X direction of the equipment. It is necessary to lengthen the possible range, leading to deterioration in measurement accuracy or an increase in the size of the device.

よって、この装置においては実質的には、トナー粒子数
が数十〜数百以上の凝集毎の平均帯電量分布と、落下さ
せたトナーの凝集度の分布を測定することしかできず、
トナー粒子単位の帯電量分布1粒径分布を測定すること
は困難であった。
Therefore, in practice, this device can only measure the average charge amount distribution for each aggregation of several tens to hundreds of toner particles and the distribution of the degree of aggregation of dropped toner.
It was difficult to measure the charge amount distribution and particle size distribution of each toner particle.

本発明はこのような点に鑑みて創作されたもので、簡易
な構成でトナー粒子単位の帯電量分布と粒径分布を同時
に、かつ、簡易に測定することができるトナー電荷量分
布測定装置を提供することを目的としている。
The present invention was created in view of these points, and provides a toner charge amount distribution measuring device that can simultaneously and easily measure the charge amount distribution and particle size distribution of each toner particle with a simple configuration. is intended to provide.

〔問題点を解決するための手段〕[Means for solving problems]

第1図は本発明のトナー電荷量分布測定装置の断面図を
示す。
FIG. 1 shows a sectional view of the toner charge amount distribution measuring device of the present invention.

第1図において、装置は測定部Aと、整流部Bと気流発
生部Cとよりなる風洞となっている。
In FIG. 1, the apparatus is a wind tunnel consisting of a measuring section A, a rectifying section B, and an airflow generating section C.

測定部Aは、トナー粒子4を落下するトナー落下管3と
、第2図の模式図に示すように、重力方向に垂直な一様
電界を形成する電極1.2と、空気層流の方向Xに対し
て垂直な平面として配置され、前記空気層流に導入され
たトナー粒子4を捕集するフィルタ7とより構成されて
いる。
The measurement section A includes a toner drop tube 3 that drops toner particles 4, an electrode 1.2 that forms a uniform electric field perpendicular to the direction of gravity, and a direction of laminar air flow, as shown in the schematic diagram of FIG. The filter 7 is disposed in a plane perpendicular to the direction X and collects the toner particles 4 introduced into the laminar air flow.

気流発生部Cは、装置後方から空気を吸引する吸引部9
と、吸引部9の吸引空気量を調整する調整器8とより構
成されている。
The airflow generating section C is a suction section 9 that sucks air from the rear of the device.
and a regulator 8 that adjusts the amount of air sucked into the suction unit 9.

整流部Bは風洞内の空気層流を水平方向(X方向)に形
成する格子状整流板6で構成され、測定部Aの両側に設
けられている。
The rectifying section B is composed of a grid-like rectifying plate 6 that forms a laminar air flow in the wind tunnel in the horizontal direction (X direction), and is provided on both sides of the measuring section A.

〔作用〕[Effect]

気流発生部Cの調整器8により風洞内を流れる空気量を
最適値に調整するとともに、整流部Bの格子整流板6に
より水平方向の空気層流を形成してトナー粒子4をX方
向の速度成分一定で移動し、空気層流の方向Xに対して
垂直な平面として配置されたフィルタ7でトナー粒子4
を捕集するようにしている。
The regulator 8 in the airflow generation section C adjusts the amount of air flowing in the wind tunnel to an optimal value, and the lattice rectifier plate 6 in the rectification section B forms a horizontal laminar air flow to increase the velocity of the toner particles 4 in the X direction. The toner particles 4 are moved by a filter 7 whose composition is constant and which is arranged in a plane perpendicular to the direction X of the laminar air flow.
I am trying to collect the following.

本発明は、トナー粒子がフィルタに捕集されるまでの時
間を一定にでき、トナー粒子単位の帯電量分布と粒径分
布を同時にかつ簡易に測定することを可能としている。
The present invention makes it possible to make the time required for toner particles to be collected by a filter constant, and to simultaneously and easily measure the charge amount distribution and particle size distribution of each toner particle.

〔実施例〕〔Example〕

第1図は本発明の一実施例のトナー電荷量分布測定装置
の断面図である。
FIG. 1 is a sectional view of a toner charge amount distribution measuring device according to an embodiment of the present invention.

第1図において、装置は測定部Aと、整流部Bと気流発
生部Cとより構成され、吸引部9により装置後方から空
気を吸引し、調整器(バルブ)8の調整によって所定の
流量、流速を得、格子状に配置された整流板6によって
水平方向(X方向)の空気層流を形成する一種の風洞で
ある。
In FIG. 1, the device is composed of a measuring section A, a rectifying section B, and an airflow generating section C. Air is sucked from the rear of the device by a suction section 9, and a predetermined flow rate is adjusted by adjusting a regulator (valve) 8. It is a type of wind tunnel that obtains a flow velocity and forms a laminar air flow in the horizontal direction (X direction) using rectifier plates 6 arranged in a grid pattern.

第2図は本装置の測定部の構造を模式化した図である。FIG. 2 is a diagram schematically showing the structure of the measuring section of the present device.

第2図において、重力方向(2方向)に平行に2枚の平
行な電極板1.2が設置され、この2枚の電極板に一定
な直流電圧を印加して形成される電界内に、前記気流発
生部Cと整流部Bによって電界方向(Y方向)とは垂直
かつ重力方向と垂直な方向(X方向)の空気流を形成す
る。
In Fig. 2, two parallel electrode plates 1.2 are installed parallel to the direction of gravity (two directions), and in the electric field formed by applying a constant DC voltage to these two electrode plates, The airflow generation section C and the rectification section B form an airflow in a direction perpendicular to the direction of the electric field (Y direction) and perpendicular to the direction of gravity (X direction).

次に2枚の電極1,2間の上方に設けられたトナー落下
管3より帯電したトナー粒子4を粒子単位に分散させて
自由落下させる。
Next, the charged toner particles 4 are dispersed in particle units and allowed to fall freely from the toner drop tube 3 provided above between the two electrodes 1 and 2.

ここで、トナー落下管3の落下口3−1を原点とし、x
、 y、  z座標系におけるトナーの運動を考える。
Here, the origin is the drop port 3-1 of the toner drop tube 3, and x
, y, z coordinate system.

トナー粒子4は空気層流によりX方向の速度成分一定で
移動し、フィルタ7上に捕集される。フィルタ7は通気
性が良好でトナー粒子を保持しうる程度の粗さの表面形
状を持った濾紙を使用する。
The toner particles 4 move with a constant velocity component in the X direction due to the laminar air flow, and are collected on the filter 7. The filter 7 uses filter paper that has good air permeability and a surface rough enough to retain toner particles.

トナー落下管3の落下口3−1から落下開始したトナー
粒子4がフィルタ7面に到達するまでの時間Tは、トナ
ー落下管3の落下口3−1からフィルタ7面迄の距離E
、空気層流の速度Vxとすれば、 T−1/Vx  ・・・・・・・・(1)である。
The time T until the toner particles 4 that have started falling from the drop port 3-1 of the toner drop tube 3 reach the filter 7 surface is determined by the distance E from the drop port 3-1 of the toner drop tube 3 to the filter 7 surface.
, the velocity of the laminar air flow is Vx, then T-1/Vx (1).

また、トナーはX方向に移動しながら、Y方向に電界の
力、2方向に重力を受けてそれぞれの方向の成分をもっ
て移動する。
Further, while moving in the X direction, the toner is subjected to the force of an electric field in the Y direction and gravity in two directions, and moves with components in each direction.

トナー粒子を密度p、直径dの球と仮定し、時間T内に
移動するY方向、Z方向の変位をy、zとすれば、スト
ークスの定理より高次の微少量を省略して次式で表わさ
れる。
Assuming that the toner particles are spheres with density p and diameter d, and the displacements in the Y and Z directions within time T are y and z, the following equation is obtained by omitting the higher-order minute quantities from Stokes' theorem: It is expressed as

y=(ρg/18y)xTxd  −−−−−(2)Z
 −(E/ 3 ff W) XTX (q/d)  
−−(3)ここで、gは重力加速度、ηは空気の粘性係
数。
y=(ρg/18y)xTxd ------(2) Z
-(E/ 3 ff W) XTX (q/d)
--(3) where g is the gravitational acceleration and η is the viscosity coefficient of air.

Eは電界強度、qとトナー粒子の持つ電荷量である。E is the electric field strength, q and the amount of charge held by the toner particles.

式(2)、(3)はすなわち、トナー粒子のY方向、X
方向の変位がそれぞれ粒径dの2乗、単位粒径当りの電
荷量、q/dに比例することを示す、したがって、フィ
ルタフに捕集したトナー粒子のYZ座標から逆にトナー
粒子の粒径及び帯電量を求めることができる。
Equations (2) and (3) are, in other words, the Y direction of the toner particles, the
This shows that the displacement in the direction is proportional to the square of the particle size d, the amount of charge per unit particle size, and q/d, respectively. Therefore, from the YZ coordinates of the toner particles collected on the filter, the particle size of the toner particles can be calculated in reverse. and the amount of charge can be determined.

第3図は式(2)、 (3)に基づいて求めた、フィル
タ上に捕集されたトナー粒子の等粒径線9等帯電量線の
例である。
FIG. 3 is an example of equal particle diameter lines 9 equal charge amount lines of toner particles collected on the filter obtained based on equations (2) and (3).

第3図に示すように、yz座標の原点は粒径、帯電量と
もに零の点であることがら、原点0の近傍に落下速度の
微小なトナー粒子を捕えることができ、粒子単位の分布
測定を確実に行うことができる。また、等粒径線は水平
な直線群2等帯電量線は等粒径線に直交する直線群とな
るため、フィルタ面へのトナー付着量を見れば、トナー
の粒径分布、帯電量分布をきわめて簡便に知ることがで
きる。
As shown in Figure 3, since the origin of the yz coordinate is the point where both the particle size and the amount of charge are zero, toner particles with a small falling velocity can be captured near the origin 0, and the distribution of each particle can be measured. can be done reliably. In addition, the equal particle diameter line is a horizontal straight line, and the second equal charge amount line is a group of straight lines perpendicular to the equal particle diameter line. can be known very easily.

本実施例では帯電量としてトナー粒子の単位粒径当たり
の電荷量、q/dを扱ったが、トナー粒子光たりの電荷
量qを求めることも可能である。
In this embodiment, the charge amount per unit particle diameter of the toner particle, q/d, is used as the charge amount, but it is also possible to determine the charge amount q per toner particle light.

また、調整部8によって空気量を調整し、流速を最適値
とするとともに、格子状の整流板6にょって水平方向の
一様な空気層流を形成したことにより、フィルタ上に精
度の高いトナー粒子分布を得ている。
In addition, the adjustment unit 8 adjusts the air volume to optimize the flow velocity, and the lattice-shaped rectifier plate 6 forms a uniform laminar air flow in the horizontal direction. Obtaining toner particle distribution.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、自然落下速度の小
さいトナー粒子を容易にフィルタ面上に捕集することが
できるので、トナー粒子単位の粒径分布と帯電量分布を
高精度に測定することができるとともに、装置の大きさ
が小型化できるといった効果がある。
As explained above, according to the present invention, toner particles having a low natural falling speed can be easily collected on the filter surface, so that the particle size distribution and charge amount distribution of each toner particle can be measured with high precision. This has the effect that the size of the device can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のトナー電荷量分布測定装置の断面図、 第2図は本発明の測定部の模式図、 第3図は等粒径線および等帯電量線の一例図、第4図は
従来のトナー電荷量分布測定装置の測定部の模式図であ
る。 図において、1,2は電極、3はトナー落下管、3−1
は落下口、4はトナー粒子、5は測定板、6は格子状整
流板、7はフィルタ、8は調整器、9は吸引部をそれぞ
れ示している。 季発明訃T−オ萄1功秀眉定装置禮訝自酊第1因 i必中1に郡4硬我閏 @2m
FIG. 1 is a cross-sectional view of the toner charge amount distribution measuring device of the present invention, FIG. 2 is a schematic diagram of the measuring section of the present invention, FIG. 3 is an example of equal particle diameter lines and equal charge amount lines, and FIG. 4 1 is a schematic diagram of a measuring section of a conventional toner charge amount distribution measuring device. In the figure, 1 and 2 are electrodes, 3 is a toner drop tube, and 3-1
Reference numeral 4 indicates a falling port, 4 indicates a toner particle, 5 indicates a measuring plate, 6 indicates a grid rectifying plate, 7 indicates a filter, 8 indicates a regulator, and 9 indicates a suction section. Ji invention fan T-O 萄 1 meritorious eyebrow setting device 禮訝 柝斊 FIRST CAUSE i Shot 1 to Gun 4 Hard Ga jump @ 2m

Claims (1)

【特許請求の範囲】[Claims] 水平な空気層流と、前記空気層流方向と直交する水平方
向の一様な直流電界とを形成した空間内に、トナー粒子
(4)を落下させ、該トナー粒子(4)の粒径分布およ
び帯電量分布を平面上に捕集したトナー粒子の偏向変位
より測定するトナー電荷量分布測定装置において、前記
トナー粒子を捕集する平面を前記空気層流に対して垂直
なフィルタ(7)面とすることを特徴とするトナー電荷
量分布測定装置、
Toner particles (4) are dropped into a space in which a horizontal laminar air flow and a uniform DC electric field in a horizontal direction perpendicular to the direction of the laminar air flow are formed, and the particle size distribution of the toner particles (4) is determined. and a toner charge amount distribution measuring device that measures the charge amount distribution from the deflection displacement of toner particles collected on a plane, with the plane for collecting the toner particles being perpendicular to the filter (7) surface with respect to the laminar air flow. A toner charge amount distribution measuring device, characterized in that:
JP12461485A 1985-06-07 1985-06-07 Measuring instrument for distribution of toner electric charge quantity Pending JPS61281975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12461485A JPS61281975A (en) 1985-06-07 1985-06-07 Measuring instrument for distribution of toner electric charge quantity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12461485A JPS61281975A (en) 1985-06-07 1985-06-07 Measuring instrument for distribution of toner electric charge quantity

Publications (1)

Publication Number Publication Date
JPS61281975A true JPS61281975A (en) 1986-12-12

Family

ID=14889779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12461485A Pending JPS61281975A (en) 1985-06-07 1985-06-07 Measuring instrument for distribution of toner electric charge quantity

Country Status (1)

Country Link
JP (1) JPS61281975A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6553849B1 (en) * 1998-10-28 2003-04-29 Dillon F. Scofield Electrodynamic particle size analyzer
JP2019207336A (en) * 2018-05-29 2019-12-05 京セラドキュメントソリューションズ株式会社 Toner charge amount measuring device, toner charge amount measuring method, and image forming apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58116542A (en) * 1981-12-29 1983-07-11 Kao Corp Method and device for measuring toner particle characteristic
JPS608759A (en) * 1983-06-29 1985-01-17 Konishiroku Photo Ind Co Ltd Measuring device of electric charge distribution of toner particle
JPS6067867A (en) * 1983-09-22 1985-04-18 Konishiroku Photo Ind Co Ltd Electric field forming apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58116542A (en) * 1981-12-29 1983-07-11 Kao Corp Method and device for measuring toner particle characteristic
JPS608759A (en) * 1983-06-29 1985-01-17 Konishiroku Photo Ind Co Ltd Measuring device of electric charge distribution of toner particle
JPS6067867A (en) * 1983-09-22 1985-04-18 Konishiroku Photo Ind Co Ltd Electric field forming apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6553849B1 (en) * 1998-10-28 2003-04-29 Dillon F. Scofield Electrodynamic particle size analyzer
JP2019207336A (en) * 2018-05-29 2019-12-05 京セラドキュメントソリューションズ株式会社 Toner charge amount measuring device, toner charge amount measuring method, and image forming apparatus

Similar Documents

Publication Publication Date Title
Rader et al. Effect of ultra-Stokesian drag and particle interception on impaction characteristics
US20070194775A1 (en) Apparatus for measuring numbers of particles and method thereof
CN106940282A (en) Sample producing device and film of nanoparticles film formation device that particle concentration is evenly distributed
CN104170190A (en) Apparatus and process for producing acknowledged air flow and the use of such apparatus in measuring particle concentration in acknowledged air flow
Mclean Cohesion of precipitated dust layer in electrostatic precipitators
Sinclair et al. Experimental verification of diffusion battery theory
JPS61281975A (en) Measuring instrument for distribution of toner electric charge quantity
Horton et al. The calibration of a California Measurements PC-2 quartz crystal cascade impactor (QCM)
US11047788B2 (en) Particulate matter sensing device
US5958111A (en) Method for sampling aerosols
Liu et al. Electrical aerosol analyzer: history, principle, and data reduction
Huang et al. Property of the PVC dust collecting plate used in wet membrane electrostatic precipitator
Chua et al. Electrical mobility separation of airborne particles using integrated microfabricated corona ionizer and separator electrodes
US4555933A (en) Dust assessment apparatus and method
JPH0424432Y2 (en)
CN103143440B (en) A kind of control method of dust coalescence particle string process and device
Peters et al. Methodology for measuring PM2. 5 separator characteristics using an aerosizer
Wei Development of a method for measuring surface area concentration of ultrafine particles
Smith et al. Development of a large particle aerosol distribution system for testing manikin-mounted samplers
CN104380078B (en) Sample producing device that classifying fine particles determinator, particle concentration are evenly distributed and film of nanoparticles film formation device
JP2020060475A (en) Fine particle classification measuring device
Tardos et al. Electrical charge measurements on fine airborne particles
MK E-SPART analyzer: Its performance and applications to powder and particle technology processes
SU883709A1 (en) Particle dispersion analysis method
JPH0143627Y2 (en)