JPS61281883A - Dry type thin film processing device - Google Patents

Dry type thin film processing device

Info

Publication number
JPS61281883A
JPS61281883A JP12386185A JP12386185A JPS61281883A JP S61281883 A JPS61281883 A JP S61281883A JP 12386185 A JP12386185 A JP 12386185A JP 12386185 A JP12386185 A JP 12386185A JP S61281883 A JPS61281883 A JP S61281883A
Authority
JP
Japan
Prior art keywords
metal container
waveguide
microwaves
thin film
central axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12386185A
Other languages
Japanese (ja)
Inventor
Yasuaki Nagao
長尾 泰明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP12386185A priority Critical patent/JPS61281883A/en
Publication of JPS61281883A publication Critical patent/JPS61281883A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To process a substrate having a large area at a uniform rate over the entire surface to be processed by introducing microwaves diagonally with the magnetic lines of force generated in a metallic vessel into said vessel and making uniform the density of the plasma generated by the resonance effect thereof. CONSTITUTION:About 2.45GHz microwaves are introduced through a waveguide 1 and a vacuum window 2 into the metallic vessel 3 and the magnetic lines of force are generated by a solenoid 6 disposed to the outside. Gas such as N2 supplied from a gas inlet 4 is electrolytically dissociated by the resonance effect of the microwaves and magnetic field by which the plasma is obtd. The plasma is forced through an aperture 3a into a reaction vessel 9 provided on the outside of the vessel 3 to activate the gaseous raw material such as SiH4 introduced therein through a gas inlet 12 to form the thin film on the substrate 11. A square waveguide 51 and a square tapered waveguide 52 are connected to the waveguide 1 of the dry type thin film processing device made into the above-mentioned constitution and the microwaves are injected therein diagonally with the central axis of the above-mentioned magnetic lines of force so as to be multiple-reflected in the vessel 3, by which the power density of the microwaves is uniformly distributed.

Description

【発明の詳細な説明】[Detailed description of the invention] 【発明の属する技術分野】[Technical field to which the invention pertains]

この発明はプラズマを用いて半導体薄膜を成長させ、ま
たは基板上の薄膜をエツチングする8@加工装置であっ
て、マイクロ波を発生する手段と、このマイクロ波を伝
達する手段と、このマイクロ波伝達手段と結合されると
ともにマイクロ波との共鳴効果によりガスをプラズマ化
して活性な原子。 分子またはイオンを生ぜしめる磁力線を発生する手段と
該磁力発生手段によって生ずる磁力線束の中心軸と軸線
がほぼ一致する開口を有する金属容器とを備え、前記金
属容器の開口から押し出される前記活性な原子1分子ま
たはイオンを用いて前記金属容器の外方に置かれた基板
表面に薄膜を生成しまたはエツチングを施す乾式薄膜加
工装置に関するものである。
The present invention is an 8@ processing apparatus for growing a semiconductor thin film or etching a thin film on a substrate using plasma, which comprises means for generating microwaves, means for transmitting the microwaves, and Active atoms that are combined with a means and turn gas into plasma due to the resonance effect with microwaves. The method comprises: means for generating magnetic lines of force that generate molecules or ions; and a metal container having an opening whose axis substantially coincides with the central axis of the magnetic flux generated by the magnetic force generating means, and the active atoms are pushed out from the opening of the metal container. The present invention relates to a dry thin film processing apparatus that uses one molecule or ion to form or etch a thin film on the surface of a substrate placed outside the metal container.

【従来技術とその問題点】[Prior art and its problems]

この発明の属する技術分野において、最近ECRプラズ
マを用いたプロセス技術が注目されている。ECRとは
Electron Cyclotron Re5ona
nce(電子サイクロトロン共鳴)の略号であり、磁場
とマイクロ波との共鳴効果を用いて電子を加速し、この
電子の運動エネルギを用いてガスを電離せしめプラズマ
を得るものである。マイクロ波に励振された電子は磁力
線のまわりを円運動し、その際、遠心力とローレンツ力
とがバランスする条件がECR条件と呼ばれる。遠心力
を−rω−ローレンツ力を−qr6JRで表わすと、こ
れらがバランスする条件はω/B=q/腸である。ここ
でωはマイクロ波の角速度、Bは磁束密度、q/−は電
子の比電荷である。マイクロ波周波数は工業用に認めら
れている2)45GH,が一般に用いられ、その場合0
.Q8?5Tが共鳴磁束密度である。 BCRプラズマを応用した薄膜加工装置として例えば第
4図に示す方法が知られている。この装置では金属容器
31反応槽9を真空排気しておき、ガス人口4からN重
ガスを金属容器3へ流したところへ、マイクロ波を導波
管1.真空窓2を介して金属容器3へ送り込む、金属容
器3の下部には中心に大口径の孔を持った金属板7が取
り付けられており、この金属板と金属容器3とで半開放
のマイクロ波共振器を構成している。この共振器の外部
にはソレノイド6が配置され、共振器内にECR条件を
満たす磁場が発生しているため、共振器内にECRプラ
ズマが発生する。このプラズマが反応槽9に押し出され
、試料台lOへ向かう空間内にガス人口12からシラン
ガス (SiHe)を送り込んで、このガスを上記プラ
ズマにより活性化すると、発生した活性種が基板11と
反応して基板11の表面に薄膜が形成される。 ガス人口4からN重ガスの代わりにエツチング用ガスを
流し込むことにより、この装置は基板のエツチング加工
用にも用いることが出来る。 マイクロ波用導波管としては、通常、矩形導波管が用い
られ、このときの伝送モードはTElとなる。このモー
ドは第5図に示す電磁界分布を有している。同図(al
は導波管の横断面を正面から見たときの電界E (実線
)と磁界H(破線)のそれぞれの方向を示す図である。 また同図1b)は(alのAA位置における長手方向の
断面を矢印方向に見た図であり、黒丸は紙面に垂直に紙
背へ向かう電界を、白丸は紙面手前側へ向かう電界を示
し、環状の破線はこの電界と交差する磁界を示す、マイ
クロ波入射の方向としては、第4図のごと(、マイクロ
波の電界、磁界ともにソレノイド6による磁力線と直交
するような方向が採用されてきた。しかし、このマイク
ロ波注入方法は以下のような欠点を存していた。 第4図において、金属容器3の内径は例えば20個程度
であって円筒形をなしており、他方周波数が2. as
cuz用の導波管の寸法は9.5csX2.7CMの矩
形が典型的な大きさであり、金属容器の内径に比してか
なり小さい、従って導波管から真空窓を通りで金属容器
3内に入射したマイクロ波は丁度導波管から自由空間に
放出された状態にちかく、そのエネルギの大部分は直進
して共振器内を素通りし、大口径金属板7の孔を遭遇し
て反応槽9内に滞留してのち熱エネルギとなって無駄に
消滅してしまう、従って、マイクロ波の金属容器3の内
部におけるパワ密度は、共振モードによってのみ支配さ
れず導波管1の断面の形状や大きさにも支配され、それ
によって生じるプラズマも金属容器内で複雑な分布をし
、その結果基板の加工速度に該基板面上の場所によるむ
ら (斑)を生じることがさけられなかった。 ECRプラズマを用いたエツチング装置として他に第6
図に示す方法が知られている。この方法では、マグネト
ロン41により発生したマイクロ波を導波管42.43
を介して石英管44の内部へ注入すを流しておく、ソレ
ノイド45により石英管44の内部にECR条件が成立
する磁束密度が得られたときガスがプラズマ化する。こ
のプラズマは石英管44の内部から反応槽47の内部へ
送り出され、試料台4日に置かれた基板49に到着し、
ここでプラズマ中の活性種が基板49の表面と反応し、
エツチングが進行する。必要に応じて試料台48の下に
永久磁石が置かれ、プラズマの基板への輸送を容易にさ
せる。 この方法では、導波管42は断面形状が矩形に、また導
波管43は円形に形成され、導波管路とじて矩形から円
筒形への変換がはかられているが、このような変換方式
では、矩形導波管における伝送モードTB+a (第5
図)が、第7図に示されるような円形導波管における伝
送モードTM。1に変換されてしまい、このため円筒の
中心軸上に電界強度ゼロの部分を生じ、従って、この方
法もまたプラズマ分布の著しい不均一を生じ、その結果
基板の加工速度に該基板面上の場所によるむらを生じる
欠点を有していた。
In the technical field to which this invention pertains, process technology using ECR plasma has recently attracted attention. What is ECR?Electron Cyclotron Re5ona
nce (electron cyclotron resonance), which accelerates electrons using the resonance effect of a magnetic field and microwaves, and uses the kinetic energy of these electrons to ionize gas to obtain plasma. Electrons excited by microwaves move circularly around magnetic lines of force, and the condition where centrifugal force and Lorentz force are balanced is called the ECR condition. When the centrifugal force is represented by -rω and the Lorentz force by -qr6JR, the condition for their balance is ω/B=q/intestinal. Here, ω is the angular velocity of the microwave, B is the magnetic flux density, and q/− is the specific charge of the electron. The microwave frequency generally used is 45 GH, which is approved for industrial use, and in that case 0
.. Q8?5T is the resonance magnetic flux density. For example, a method shown in FIG. 4 is known as a thin film processing apparatus applying BCR plasma. In this device, a metal container 31 and a reaction tank 9 are evacuated, and microwaves are passed through a waveguide 1 to a place where N heavy gas flows from a gas port 4 to a metal container 3. A metal plate 7 with a large-diameter hole in the center is attached to the lower part of the metal container 3, which is fed into the metal container 3 through the vacuum window 2, and this metal plate and the metal container 3 combine to form a semi-open micro It constitutes a wave resonator. A solenoid 6 is disposed outside the resonator, and a magnetic field that satisfies the ECR conditions is generated within the resonator, so that ECR plasma is generated within the resonator. This plasma is pushed out into the reaction tank 9, and when silane gas (SiHe) is sent from the gas population 12 into the space toward the sample stage 10 and activated by the plasma, the generated active species react with the substrate 11. A thin film is then formed on the surface of the substrate 11. This apparatus can also be used for etching substrates by flowing an etching gas from gas number 4 instead of N heavy gas. A rectangular waveguide is usually used as a microwave waveguide, and the transmission mode at this time is TEl. This mode has the electromagnetic field distribution shown in FIG. The same figure (al
1 is a diagram showing the respective directions of the electric field E (solid line) and the magnetic field H (broken line) when the cross section of the waveguide is viewed from the front. Figure 1b) is a longitudinal cross-section at the AA position of (al) viewed in the direction of the arrow.The black circles represent the electric field perpendicular to the paper and towards the spine of the paper, and the white circles represent the electric field towards the front of the paper. The dashed line indicates the magnetic field that intersects this electric field.The direction of the microwave incidence has been adopted as shown in Figure 4 (a direction in which both the electric and magnetic fields of the microwave are orthogonal to the lines of magnetic force generated by the solenoid 6). However, this microwave injection method had the following drawbacks: In FIG.
The typical size of the waveguide for cuz is a rectangle of 9.5cs x 2.7CM, which is quite small compared to the inner diameter of the metal container. The incident microwave is just about to be emitted from the waveguide into free space, and most of its energy goes straight through the resonator, encounters the hole in the large-diameter metal plate 7, and enters the reaction tank. Therefore, the power density of the microwave inside the metal container 3 is not controlled only by the resonance mode but also by the shape of the cross section of the waveguide 1 and the power density inside the metal container 3. The plasma generated thereby also has a complicated distribution within the metal container, and as a result, it is inevitable that the processing speed of the substrate will be uneven depending on the location on the substrate surface. There is also a sixth etching device using ECR plasma.
The method shown in the figure is known. In this method, microwaves generated by a magnetron 41 are transferred to waveguides 42 and 43.
Gas is injected into the quartz tube 44 through the solenoid 45, and when a magnetic flux density that satisfies the ECR condition is obtained inside the quartz tube 44, the gas is turned into plasma. This plasma is sent out from the inside of the quartz tube 44 to the inside of the reaction tank 47, and reaches the substrate 49 placed on the sample stage 4th.
Here, active species in the plasma react with the surface of the substrate 49,
Etching progresses. If necessary, a permanent magnet is placed under the sample stage 48 to facilitate transport of the plasma to the substrate. In this method, the waveguide 42 is formed to have a rectangular cross-sectional shape, and the waveguide 43 is formed to have a circular cross-sectional shape, and the waveguide path is converted from a rectangular shape to a cylindrical shape. In the conversion method, the transmission mode TB+a (5th
Figure) is the transmission mode TM in a circular waveguide as shown in Figure 7. 1, thus creating a region of zero electric field strength on the central axis of the cylinder, and therefore this method also results in significant non-uniformity of the plasma distribution, resulting in an increase in the processing speed of the substrate depending on the surface of the substrate. This had the disadvantage of causing unevenness depending on location.

【発明の目的】[Purpose of the invention]

この発明は上記従来装置のもつ、導波管と共振器との不
自然な結合に起因する共振器内のマイクロ波のパワ密度
の不合理な分布を解消し、プラズマの密度分布を均一に
することにより、大面積の基板を基板の加工面全面にわ
たり均一な速度で加工しうる乾式薄膜加工装置を提供す
ることを目的とする。
This invention eliminates the unreasonable distribution of microwave power density within the resonator caused by the unnatural coupling between the waveguide and the resonator, which is caused by the unnatural coupling between the waveguide and the resonator, and makes the plasma density distribution uniform. Accordingly, it is an object of the present invention to provide a dry thin film processing apparatus capable of processing a large-area substrate at a uniform speed over the entire processing surface of the substrate.

【発明の要点】[Key points of the invention]

マイクロ波は電波であるが、波長が短いため強い指向性
を有するのは周知のとうりである0本発明ではこの指向
性に注目し、導波管から金属容器へのマイクロ波の入射
方向を、金属容器内に生じている磁力線に対して斜めと
し、容器壁面を多重反射させて金属容器内のマイクロ波
パワ密度を密にし、プラズマの密度分布の均一化を図ろ
うとするものである。
Microwaves are radio waves, but it is well known that they have strong directivity due to their short wavelength.The present invention focuses on this directivity, and calculates the direction of incidence of microwaves from a waveguide to a metal container. This is intended to make the microwave power density within the metal container denser by making it oblique to the lines of magnetic force occurring inside the metal container, causing multiple reflections on the wall surface of the container, and thereby making the density distribution of plasma more uniform.

【発明の実施例】[Embodiments of the invention]

第1図はこの発明に基づいて構成された乾式薄膜加工装
置の一実施例を示す、導波管lから真空窓2を介して注
入されたマイクロ波は、矩形導波管51.矩形テーパ導
波管52を通過して金属容器3内へ、該金属容器の回転
中心軸に対して斜め方向に入射する。ここで、矩形導波
管および矩形テーパ導波管はその断面の短い方の辺が金
属容器3の回転中心軸に対して直角方向となるように配
置する。このような構成においては、入射したマイクロ
波は金属容器3の壁面を多重反射し、金属容器の作る共
振器内部にくまなく行きわたり、この結果、この共振器
内部の電磁界はマクスウェル電磁方程式を金属容器内壁
に導体が存在するとした境界条件を用いて解いたものと
一致し、断面が矩形の導波管内のパワ密度分布の影響を
とり除くことができ、共振器内に円形基板の加工に適し
たパワ密度分布を得ることができる。 以上のように装置を構成し、反応槽9.金属容器3.矩
形テーパ導波管52.矩形導波管51のそれぞれ内部を
真空排気し、ガス入口からガスを流入させると、従来装
置と同じ原理でプラズマが発生し、基板11の加工が行
われるが、このときのプラズマ密度の金属容器3内の均
一度および基板の加工速度の基板面上の場所による均一
度は、さらに、金属容器の内部寸法の設計を最適化する
ことによって理想的な状態に近づけることが可能となる
。 なお、この実施例では矩形テーパ導波管方式を採用して
いるため、管内に発生しうるプラズマが磁力線に沿って
開口3a側へ移動する際に、導波管の管壁と衝突するこ
となく金属容器3内へ流出しうるため、管内のプラズマ
の滞留や、管壁のスパッタによる真空室の汚損の発生を
防止することができる。さらに、この実施例では、矩形
導波管51が磁力線を横切る配置としたため、プラズマ
は真空窓まで到達出来ず、真空窓材料たとえばセラミッ
クスやクォーツなどの熱歪みによる損傷が生じない利点
も存している。第2図はこの発明の他の実施例を示した
ものであり、マイクロ波の金属容器3への導入部は必ず
しも矩形テーパ導波管である必要はなく、矩形導波管の
みでも多重反射により同様の効果が得られること、およ
び導波管53が必ずしもソレノイドにはさまれる構成で
なくても、導波管を磁力線を横切るように配置すること
ができ、真空窓の損傷を防止することができることを示
すためのものである。 第3′図はこの発明のもう一つの実施例を示したもので
あって、マイクロ波の金属容器3への導入系統が複数で
ある場合の図である。マイクロ波をいろいろな方向から
複数注入することによりマイクロ波パワ密度の金属容器
3内での分布を一層均一にすることが可能である。 なお、以上の実施例においては、導波管の断面形状を矩
形とし、矩形の短辺すなわちマイクロ波の振動電界の方
向が、金属容器内に生じている磁力線束の中心軸方向と
直角となるように導波管と金属容器とを結合させている
が、マイクロ波の振動電界方向の、磁力線束中心軸方向
と直角の方向からのずれがさほど大きくなければ、プラ
ズマ化の効率をさほど低下させることなく、金属容器内
におけるマイクロ波パワ密度の分布を均一にすることが
可能である。 また、断面が矩形の導波管の代わりに円形の導波管を用
い、中心軸上に電界ゼロの部分が生じたとしても、マイ
クロ波を前記磁力線束の中心軸方向に対して斜めに注入
すれば、金属容器内の多重反射により、マイクロ波パワ
密度の分布を著しく改善することが可能である。
FIG. 1 shows an embodiment of a dry thin film processing apparatus constructed in accordance with the present invention. Microwaves injected from a waveguide 1 through a vacuum window 2 are transmitted through a rectangular waveguide 51. The light passes through the rectangular tapered waveguide 52 and enters the metal container 3 in a direction oblique to the rotation center axis of the metal container. Here, the rectangular waveguide and the rectangular tapered waveguide are arranged so that the shorter side of their cross section is perpendicular to the rotation center axis of the metal container 3. In such a configuration, the incident microwave is multiple-reflected from the wall surface of the metal container 3 and spreads throughout the resonator formed by the metal container, and as a result, the electromagnetic field inside this resonator satisfies Maxwell's electromagnetic equations. This is consistent with the boundary condition that assumes that a conductor exists on the inner wall of the metal container, and the influence of the power density distribution in a waveguide with a rectangular cross section can be removed, making it suitable for processing a circular substrate inside a resonator. It is possible to obtain a power density distribution. The apparatus is configured as described above, and reaction tank 9. Metal container 3. Rectangular tapered waveguide 52. When the inside of each rectangular waveguide 51 is evacuated and gas is introduced from the gas inlet, plasma is generated and the substrate 11 is processed using the same principle as the conventional device. Further, the uniformity within the substrate 3 and the uniformity of the processing speed of the substrate depending on the location on the substrate surface can be brought closer to ideal conditions by optimizing the design of the internal dimensions of the metal container. In addition, since this embodiment employs a rectangular tapered waveguide system, when the plasma that may be generated inside the tube moves toward the opening 3a along the lines of magnetic force, it can be prevented from colliding with the wall of the waveguide. Since the plasma can flow out into the metal container 3, it is possible to prevent the accumulation of plasma in the tube and the contamination of the vacuum chamber due to spatter on the tube wall. Furthermore, in this embodiment, since the rectangular waveguide 51 is arranged to cross the magnetic field lines, the plasma cannot reach the vacuum window, and there is an advantage that the vacuum window material, such as ceramics or quartz, is not damaged by thermal distortion. There is. FIG. 2 shows another embodiment of the present invention, in which the introduction part of the microwave into the metal container 3 does not necessarily have to be a rectangular tapered waveguide, and even a rectangular waveguide alone can cause multiple reflections. Similar effects can be obtained, and even if the waveguide 53 is not necessarily sandwiched between the solenoids, the waveguide can be placed across the lines of magnetic force, and damage to the vacuum window can be prevented. This is to show what is possible. FIG. 3' shows another embodiment of the present invention, in which there are a plurality of systems for introducing microwaves into the metal container 3. By injecting multiple microwaves from various directions, it is possible to make the distribution of microwave power density within the metal container 3 more uniform. In the above embodiments, the cross-sectional shape of the waveguide is rectangular, and the short side of the rectangle, that is, the direction of the oscillating electric field of the microwave, is perpendicular to the central axis direction of the magnetic flux generated in the metal container. Although the waveguide and the metal container are coupled together in this way, if the deviation of the direction of the microwave's oscillating electric field from the direction perpendicular to the central axis of the magnetic flux is not very large, the efficiency of plasma generation will be significantly reduced. It is possible to make the distribution of microwave power density uniform within the metal container without causing any damage. In addition, by using a circular waveguide instead of a waveguide with a rectangular cross section, even if there is a part where the electric field is zero on the central axis, the microwave is injected obliquely to the central axis direction of the magnetic flux. Then, the distribution of microwave power density can be significantly improved due to multiple reflections within the metal container.

【発明の効果】【Effect of the invention】

以上に述べたように、本発明によれば、金属容器と結合
されたマイクロ波伝達手段を、この金属容器内に生じて
いる磁力線束の中心軸に対してマイクロ波が斜めに注入
されるように結合したので、注入されたマイクロ波が金
属容器内で多重反射し、金属容器内のマイクロ波パワ密
度が均一となるため、従来のように、磁力線束の中心軸
方向とマイクロ波の注入方向とが一致する薄膜加工装置
に比して、基板表面上においてはるかに均一な加工速度
を持つ薄膜加工装置を得ることができる。
As described above, according to the present invention, the microwave transmission means coupled to the metal container is configured such that microwaves are injected obliquely to the central axis of the magnetic flux generated within the metal container. Since the injected microwave is multiple-reflected within the metal container, the microwave power density within the metal container becomes uniform, and as in the conventional case, the direction of the central axis of the magnetic flux and the injection direction of the microwave It is possible to obtain a thin film processing apparatus that has a much more uniform processing speed on the substrate surface than a thin film processing apparatus that has a uniform processing speed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に基づいて構成された乾式薄膜加工装置
の要部の実施例を示す説明断面図、第2図は第1図の実
施例の変形例を示す説明断面図、第3図は第2図の変形
例をさらに変形させた実施例を示す説明断面図、第4図
は従来の乾式薄膜加工装置の要部の構成例を示す説明断
面図、第5図は方形導波管におけるマイクロ波の伝送モ
ードを示すマイクロ波の振動電界、磁界の分布図、第6
図は従来の乾式薄膜加工装置の要部の構成例を示す説明
断面図、第7図は円形導波管におけるマイクロ波の伝送
モードを示すマイクロ波の振動電界。 磁界の分布図である。 1:導波管、3:金属容器、3a:開口、6:ソレノイ
ド、11:基板、41:マグネトロン、42.43:導
波管、44a;開口、45;ソレノイド、49:基板、
51.53,55,56,58 :矩形導波管、52:
矩形テーパ導波管、61:導波管。 二ン・55 、   ゛、  、′ ンbi1人ノ4−.ニー・ 山 口   μパ゛パパ′
↓ 真空基 ↓ 真空基 第3図
FIG. 1 is an explanatory cross-sectional view showing an embodiment of the main part of a dry thin film processing apparatus constructed based on the present invention, FIG. 2 is an explanatory cross-sectional view showing a modification of the embodiment of FIG. 1, and FIG. 2 is an explanatory cross-sectional view showing an embodiment that is a further modification of the modification shown in FIG. 2, FIG. 4 is an explanatory cross-sectional view showing an example of the configuration of the main parts of a conventional dry thin film processing apparatus, and FIG. 5 is a rectangular waveguide. Microwave oscillating electric field and magnetic field distribution diagram showing the transmission mode of microwaves, Part 6
The figure is an explanatory cross-sectional view showing an example of the configuration of the main parts of a conventional dry thin film processing apparatus, and FIG. 7 is an oscillating electric field of microwaves showing the transmission mode of microwaves in a circular waveguide. It is a distribution map of a magnetic field. 1: Waveguide, 3: Metal container, 3a: Opening, 6: Solenoid, 11: Substrate, 41: Magnetron, 42.43: Waveguide, 44a: Opening, 45: Solenoid, 49: Substrate,
51.53,55,56,58: Rectangular waveguide, 52:
Rectangular taper waveguide, 61: Waveguide. 2.55, ゛, ,' Nbi 1 person no 4-. Nie Yamaguchi μpapa'
↓ Vacuum base ↓ Vacuum base Figure 3

Claims (1)

【特許請求の範囲】 1)マイクロ波を発生する手段と、このマイクロ波を伝
達する手段と、このマイクロ波伝達手段と結合されると
ともにマイクロ波との共鳴効果によりガスをプラズマ化
して活性な原子、分子またはイオンを生ぜしめる磁力線
を発生する手段と該磁力線発生手段によって生ずる磁力
線束の中心軸と軸線がほぼ一致する開口を有する金属容
器とを備え、前記金属容器の開口から押し出される前記
活性な原子、分子またはイオンを用いて前記金属容器の
外方に置かれた基板表面に薄膜を生成しまたはエッチン
グを施す乾式薄膜加工装置において、前記金属容器と結
合されたマイクロ波伝達手段が、前記磁力線発生手段に
よって前記金属容器内に生ぜしめられている磁力線束の
中心軸に対して斜めにマイクロ波を注入するように結合
されていることを特徴とする乾式薄膜加工装置。 2)特許請求の範囲第1項記載の装置において、金属容
器と結合されるマイクロ波伝達手段が1個または複数個
の矩形導波管からなるとともにそれぞれの矩形導波管の
矩形の短辺が該金属容器内の磁力線束の中心軸に対して
直角方向にかつ導波管の軸線が該磁力線束の中心軸に対
して斜め方向となるように該金属容器とそれぞれ結合さ
れていることを特徴とする乾式薄膜加工装置。 3)特許請求の範囲第1項記載の装置において、金属容
器と結合されるマイクロ波伝達手段が、断面が矩形に形
成され軸線方向に長辺の長さを増す矩形テーパ導波管と
して形成され該矩形の短辺が金属容器内の磁力線束の中
心軸に対して直角方向にかつ該導波管の軸線がこの中心
軸に対して斜めの方向となるように前記金属容器と結合
されるとともにこの結合位置に形成されるマイクロ波注
入口の前記矩形短辺と直角方向の長さが前記金属容器の
内径に等しいことを特徴とする乾式薄膜加工装置。
[Scope of Claims] 1) A means for generating microwaves, a means for transmitting the microwaves, and a means for generating active atoms by combining with the microwave transmitting means and turning gas into plasma by the resonance effect with the microwaves. , comprising means for generating magnetic lines of force that generate molecules or ions, and a metal container having an opening whose axis substantially coincides with the central axis of the flux of magnetic lines of force generated by the line of magnetic force generating means; In a dry thin film processing apparatus that uses atoms, molecules, or ions to generate or etch a thin film on the surface of a substrate placed outside the metal container, a microwave transmission means coupled to the metal container is configured to transmit the magnetic field lines. A dry thin film processing apparatus characterized in that the apparatus is coupled so as to inject microwaves obliquely to the central axis of the magnetic flux generated in the metal container by the generating means. 2) In the device according to claim 1, the microwave transmission means coupled to the metal container is composed of one or more rectangular waveguides, and the rectangular short side of each rectangular waveguide is Each waveguide is coupled to the metal container in a direction perpendicular to the central axis of the magnetic flux in the metal container, and the axis of the waveguide is oblique to the central axis of the magnetic flux. Dry thin film processing equipment. 3) In the device according to claim 1, the microwave transmission means coupled to the metal container is formed as a rectangular tapered waveguide whose cross section is rectangular and whose long sides increase in length in the axial direction. The rectangular shape is coupled to the metal container such that the short side thereof is perpendicular to the central axis of the magnetic flux within the metal container, and the axis of the waveguide is oblique to the central axis. A dry thin film processing apparatus characterized in that the length of the microwave inlet formed at the coupling position in the direction perpendicular to the short side of the rectangle is equal to the inner diameter of the metal container.
JP12386185A 1985-06-07 1985-06-07 Dry type thin film processing device Pending JPS61281883A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12386185A JPS61281883A (en) 1985-06-07 1985-06-07 Dry type thin film processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12386185A JPS61281883A (en) 1985-06-07 1985-06-07 Dry type thin film processing device

Publications (1)

Publication Number Publication Date
JPS61281883A true JPS61281883A (en) 1986-12-12

Family

ID=14871201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12386185A Pending JPS61281883A (en) 1985-06-07 1985-06-07 Dry type thin film processing device

Country Status (1)

Country Link
JP (1) JPS61281883A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63302938A (en) * 1987-06-03 1988-12-09 Denki Kogyo Kk Processing equipment by high frequency plasma

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63302938A (en) * 1987-06-03 1988-12-09 Denki Kogyo Kk Processing equipment by high frequency plasma

Similar Documents

Publication Publication Date Title
US4831963A (en) Plasma processing apparatus
JP3233575B2 (en) Plasma processing equipment
US4960073A (en) Microwave plasma treatment apparatus
WO1992022085A1 (en) Window for microwave plasma processing device
JPS629976B2 (en)
US5173641A (en) Plasma generating apparatus
JP2581255B2 (en) Plasma processing method
JP2570090B2 (en) Dry etching equipment
JP4173679B2 (en) ECR plasma source and ECR plasma apparatus
JPS63142636A (en) Vacuum apparatus
US6225592B1 (en) Method and apparatus for launching microwave energy into a plasma processing chamber
KR930005012B1 (en) Microwave plasma etching method and apparatus
JPS61281883A (en) Dry type thin film processing device
JPH0660414B2 (en) ECR plasma CVD equipment
JPH05182785A (en) Microwave discharge reaction device and electrode device
JPH05290995A (en) Plasma generator
JP3364064B2 (en) Sheet plasma generator
JPH0680640B2 (en) Plasma equipment
JPH09270234A (en) Chamber inserted ecr low energy ion gun
JP2721856B2 (en) Plasma generator
JPH06299357A (en) Chemical vapor deposition device by electron cyclotron resonance plasma
JP3199273B2 (en) Microwave discharge reactor
JPH0536640A (en) Semiconductor manufacturing equipment
JPH07211488A (en) Device and method for plasma processing
JP2006032272A (en) Plasma treatment device