JPS6128178B2 - - Google Patents

Info

Publication number
JPS6128178B2
JPS6128178B2 JP51130882A JP13088276A JPS6128178B2 JP S6128178 B2 JPS6128178 B2 JP S6128178B2 JP 51130882 A JP51130882 A JP 51130882A JP 13088276 A JP13088276 A JP 13088276A JP S6128178 B2 JPS6128178 B2 JP S6128178B2
Authority
JP
Japan
Prior art keywords
labyrinth
magnetic storage
bearing
slit
particulate adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51130882A
Other languages
Japanese (ja)
Other versions
JPS5355106A (en
Inventor
Makoto Ogiwara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP13088276A priority Critical patent/JPS5355106A/en
Publication of JPS5355106A publication Critical patent/JPS5355106A/en
Publication of JPS6128178B2 publication Critical patent/JPS6128178B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B23/00Record carriers not specific to the method of recording or reproducing; Accessories, e.g. containers, specially adapted for co-operation with the recording or reproducing apparatus ; Intermediate mediums; Apparatus or processes specially adapted for their manufacture
    • G11B23/50Reconditioning of record carriers; Cleaning of record carriers ; Carrying-off electrostatic charges
    • G11B23/505Reconditioning of record carriers; Cleaning of record carriers ; Carrying-off electrostatic charges of disk carriers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings
    • F16C33/80Labyrinth sealings

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sealing Using Fluids, Sealing Without Contact, And Removal Of Oil (AREA)
  • Sealing Of Bearings (AREA)
  • Rotational Drive Of Disk (AREA)

Description

【発明の詳細な説明】 本発明は磁気記憶装置、ことに磁気記憶媒体、
磁気ヘツド等が密閉チヤンバ内の清浄な雰囲気中
に封入された磁気デイスク装置、磁気ドラム装置
等の磁気記憶装置における軸受封止機構に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magnetic storage device, particularly a magnetic storage medium,
The present invention relates to a bearing sealing mechanism in a magnetic storage device such as a magnetic disk device or a magnetic drum device in which a magnetic head or the like is enclosed in a clean atmosphere in a sealed chamber.

磁気デイスク装置をはじめとする磁気記憶装置
の性能が向上し、気体潤滑の原理に基く浮動磁気
ヘツドの浮揚量がますます微小なものとなるに伴
い、磁気記憶媒体および磁気ヘツドの雰囲気の清
浄度に対して一層細心の注意を払う必要性が生じ
てきている。このために、最近では、磁気記憶媒
体および磁気ヘツド等を収容するチヤンバは外部
環境に対して密閉構造をとり塵埃その他の異物や
有害無用なガス、蒸気等の侵入を防止する一方、
回転駆動軸の軸受からチヤンバ内へ飛散して混入
する潤滑油脂(潤滑油またはグリース)の飛沫粒
子をラビリンス・パツキンもしくはそれに類した
封止機構によつて防止する手段をとる装置が多く
見られるようになつた。ところが、最近の高性能
装置においては、このような手段を講じてもなお
防止しきれないもの、すなわちチヤンバ内におい
て発生する液体微粒子の存在による問題が顕在化
しつゝある。液体微粒子発生の主因は次のような
ものであるとされている。浮揚量が微小となるに
したがつて、浮揚隙間に発生する圧力分布として
は最高圧力を示す点が浮動スライダの後縁近傍に
移動し、圧力はその点から後縁までのごく短い距
離の領域において急激に周囲圧力にまで低下し、
その領域では断熱膨張現象が支配的となり、浮動
スライダの潤滑気体の温度が急激に低下する。潤
滑気体は通常空気であり、時に窒素等の不活性ガ
スが用いられる場合もあるが、その中にもし水蒸
気がその他の物質の蒸気が含まれていると、これ
が急激な温度低下その他状態量の急変により結露
し液体状の微粒子となる。各々の蒸気の分圧がそ
れぞれの飽和蒸気圧に対しある程度以上の比率に
なると、この液体微粒子の発生量がその蒸発量に
優越し、潤滑気体中に浮遊しつゝ磁気記憶媒体の
回転に伴つてチヤンバ内を回動する。そしてその
一部は磁気記憶媒体の表面や浮動スライダに付着
した上、一部が蒸発して粘度を増す。従つてこの
ような液体微粒子ないしその付着物は、浮動スラ
イダの浮揚安定性を劣化せしめ、極端な場合には
ヘツド・クラツシユ事故の原因ともなる。またコ
ンタクト・スタート・ストツプ方式の磁気ヘツド
においては、これに加えて、磁気記憶媒体が停止
し浮動スライダと接触している時に両者が密着し
て起動トルクの異常な増大を招く原因にもなる。
このような磁気記憶媒体と磁気ヘツドとの機械的
インターフエースにとつて望ましからざる液体微
粒子の主成分は水と油脂であると考えられる。水
分に関しては、密閉チヤンバ内にシリカゲル等の
吸湿剤を封入することで除去が可能であつて、公
知の技術としてすでに実用に供せられている。油
脂は、チヤンバ内に密封された潤滑気体中に当初
から混入していたもの、チヤンバ内に露出してい
る機構部品に付着した油脂の蒸気に基くもの、お
よび軸受の潤滑油脂の蒸気に基くもの、の3種類
が考えられるが、前2者に関しては密閉チヤンバ
組立時あるいは潤滑気体封入時における油脂分除
去処理により殆どが抑制ないし除去でき、なおか
つ出願人がさきに特願昭50−115119および特願昭
50−115121に開示したごとき、活性炭等の微粒子
吸着剤を密閉チヤンバ内に吸湿剤と共に封入する
方法を用いれば、除去の効果を増大することがで
きる。しかしながら、たとえば気体軸受や磁気軸
受のごとき全く異つた他の方式の軸受を用いるな
らば話は別であるが、通常のころがり軸受ないし
すべり軸受を用いる場合には、潤滑油脂がそれ自
体軸受の機能にとつて不可欠であり、かつ軸受を
密閉チヤンバに対して気密に保つような構造をと
ることも不可能に近いから、密閉チヤンバ内の気
体に対する潤滑油脂の蒸発を抑止することは困難
を極める。換言すれば、密閉チヤンバ内に微粒子
吸着剤を封入して潤滑油脂の蒸気をいかに捕捉し
ても、もともとの潤滑油脂から次々に蒸発が行わ
れるので、密閉チヤンバ内の油脂の蒸気圧はある
程度以下には降下せしめることができない。
As the performance of magnetic storage devices such as magnetic disk devices improves, and as the floating amount of floating magnetic heads based on the principle of gas lubrication becomes smaller and smaller, the cleanliness of the atmosphere of magnetic storage media and magnetic heads has improved. There is a growing need to pay even more careful attention to For this reason, in recent years, chambers that house magnetic storage media, magnetic heads, etc. have been designed to be sealed from the outside environment to prevent the intrusion of dust, other foreign substances, harmful and unnecessary gases, vapors, etc.
Many devices are seen that use a labyrinth seal or similar sealing mechanism to prevent splashing particles of lubricating oil (lubricating oil or grease) from flying into the chamber from the bearing of the rotary drive shaft. It became. However, in recent high-performance devices, problems that cannot be prevented even with such measures, namely, the presence of liquid particles generated within the chamber, are becoming apparent. The main causes of liquid particle generation are said to be as follows. As the amount of levitation becomes minute, the point showing the highest pressure in the pressure distribution generated in the levitation gap moves to the vicinity of the trailing edge of the floating slider, and the pressure is distributed over a very short distance from that point to the trailing edge. The pressure suddenly drops to ambient pressure at
In that region, the adiabatic expansion phenomenon becomes dominant, and the temperature of the lubricating gas of the floating slider drops rapidly. The lubricating gas is usually air, and sometimes an inert gas such as nitrogen is used, but if the water vapor contains vapor of other substances, this may cause a rapid temperature drop or other changes in state quantities. Due to the sudden change, dew condenses and becomes liquid particles. When the partial pressure of each vapor reaches a certain ratio to its saturated vapor pressure, the amount of liquid particles generated exceeds the amount of evaporation, and they float in the lubricating gas as the magnetic storage medium rotates. It rotates inside the chamber. Part of it adheres to the surface of the magnetic storage medium and the floating slider, and part of it evaporates, increasing its viscosity. Therefore, such liquid particles or their deposits deteriorate the floating stability of the floating slider, and in extreme cases may cause a head crash accident. In addition, in a contact start/stop type magnetic head, when the magnetic storage medium is stopped and in contact with the floating slider, the two come into close contact, causing an abnormal increase in starting torque.
It is believed that water and oil are the main components of liquid particles that are undesirable for such a mechanical interface between a magnetic storage medium and a magnetic head. Moisture can be removed by sealing a moisture absorbent such as silica gel in the sealed chamber, and this technique is already in practical use as a known technique. Oils and fats are those that were originally mixed in the lubricating gas sealed inside the chamber, those that are based on the vapors of oils and fats adhering to the mechanical parts exposed inside the chamber, and those that are based on the vapors of lubricating oils and fats in the bearings. There are three possible types, but most of the former two can be suppressed or removed by removing oil and fat when assembling the sealed chamber or filling lubricating gas, and the applicant previously proposed Japanese Patent Application No. 50-115119 and Hope
50-115121, in which a particulate adsorbent such as activated carbon is enclosed in a closed chamber together with a moisture absorbent, the removal effect can be increased. However, if a completely different type of bearing, such as a gas bearing or a magnetic bearing, is used, the story is different, but when using a normal rolling bearing or plain bearing, the lubricating oil itself functions as a bearing. It is extremely difficult to suppress the evaporation of lubricating oil against the gas in the sealed chamber, since it is essential for this purpose and it is almost impossible to create a structure that keeps the bearing airtight from the sealed chamber. In other words, no matter how much lubricating oil vapor is captured by sealing particulate adsorbent inside the sealed chamber, the original lubricating oil will continue to evaporate, so the vapor pressure of the oil in the sealed chamber will be below a certain level. cannot be lowered.

本発明の目的は、上記のごとき問題点に鑑み、
従来の方法の欠点を除くとともに従来考慮されて
いなかつた点を補い、特に磁気記憶媒体表面と浮
動スライダとの機械的インターフエースに関し
種々の不都合をもたらすもととなる。軸受潤滑油
脂から発生する蒸気ないし微粒子を効率よく捕捉
除去することが可能な、磁気記憶装置の軸受封止
機構を提供することにある。
In view of the above problems, the purpose of the present invention is to
It overcomes the drawbacks of the prior art methods and compensates for the disadvantages that have not been considered heretofore, particularly with respect to the mechanical interface between the magnetic storage medium surface and the floating slider. It is an object of the present invention to provide a bearing sealing mechanism for a magnetic storage device that can efficiently capture and remove steam or particulates generated from bearing lubricating oil.

本発明によれば、回転駆動軸の軸受と密閉チヤ
ンバとの間にラビリンス・パツキンもしくはそれ
に類する構造の屈曲した細隙部を設け、かつこの
細隙部の気体が通ずるごとくに活性炭等の微粒子
吸着剤を収容配置することにより、その目的を達
成することができる。
According to the present invention, a bent slit section with a labyrinth packing or similar structure is provided between the bearing of the rotary drive shaft and the sealed chamber, and fine particles such as activated carbon are adsorbed so that the gas in this slit section passes through. By accommodating and arranging the agent, this purpose can be achieved.

すなわち、本発明のごとくにすれば、軸受潤滑
油脂から発生した油脂蒸気ないし油脂微粒子(以
下「油脂蒸気等」と略記する)は、密閉チヤンバ
内に到達する以前にラビリンスつまり屈曲した細
隙部を通過するが、この細隙部に対し通気性を保
つて微粒子吸着剤が設けられているため、油脂蒸
気等がこれと接触する確率が非常に大となる。単
に密閉チヤンバ内に微粒子吸着剤を配置しておく
のみの従来の方法に比し、捕捉除去効率が格段に
向上する。もちろん、細隙部の寸法構造は従来の
方法と同等にすることが可能であるから、細隙部
の存在による効果は従来と同等であり、その上に
上記のごとき高効率の捕捉除去効果が重畳するこ
とになる。従つて、軸受部における油脂蒸気等の
発生を完全に抑止することは不可能であつても、
本発明によれば、少くとも液体微粒子の発生を実
用上無視しうる程度にまで抑制することが可能で
あつて、前記のごとき不都合を極めて少くするこ
とができ、実用上の効果はまことに顕著である。
That is, according to the present invention, the oil vapor or oil particles (hereinafter abbreviated as "oil vapor, etc.") generated from the bearing lubricating oil will pass through the labyrinth, that is, the bent narrow gap, before reaching the sealed chamber. However, since a particulate adsorbent is provided to maintain air permeability in this slit, there is a very high probability that oil vapor and the like will come into contact with this slit. The trapping and removal efficiency is significantly improved compared to the conventional method in which a particulate adsorbent is simply placed in a closed chamber. Of course, the dimensional structure of the slit can be made the same as in the conventional method, so the effect of the presence of the slit is the same as that of the conventional method, and in addition, the highly efficient trapping and removal effect described above can be achieved. They will overlap. Therefore, even though it is impossible to completely prevent the generation of oil vapor, etc. in the bearing,
According to the present invention, it is possible to suppress at least the generation of liquid particles to a practically negligible level, and the above-mentioned disadvantages can be extremely reduced, and the practical effects are truly remarkable. be.

以下、図面を用いて、本発明の実施例につき詳
細に説明する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は、本発明を固定ヘツド磁気デイスク装
置に適用した第1の実施例を示す部分断面図であ
る。同図において、1は磁気デイスクで回転駆動
軸2に固定されており、回転駆動軸2は軸受3を
介して基部ハウジング4に回転自在に取り付けら
れ図示されていない駆動電動機によつて駆動され
る。5はラビリンス回転部、6はラビリンス固定
部で、それぞれ回転駆動軸2および基部ハウジン
グ4に取り付けられている。ラビリンス回転部5
には同心円周上に回転側円環状突出部51が、ま
たラビリンス固定部6にも同様に固定側円環状突
出部61が、それぞれ設けられており、これらが
互いに入り組んでラビリンスつまり屈曲した細隙
部7を構成している。この機構はすでに周知のも
ので、いわゆるラビリンス・パツキンのそれと全
く同じものであるが、本実施例においてはその上
に、ラビリンス固定部6における一部の固定側円
環状突出部61の円周上に多数の通気孔62が穿
ち、その一方は細隙部7に、また他方は微粒子吸
着剤64が収容されている環状溝に、それぞれ開
口せしめている。本実施例においては、微粒子吸
着剤64として粒状の活性炭が用いられている
が、その微細破片の細隙部7への混入を防止する
ために膜状のフイルタ63が前記環状溝の底部に
取り付けられている。また微粒子吸着剤の保持6
4およびその交換の容易さを得るために押え板6
5がラビリンス固定部6に取り付けられている。
8は装置のカバーハウジンであり、これを基部ハ
ウジング4と気密に締結することにより密閉チヤ
ンバ9が構成されている。本実施例においては、
密閉チヤンバ9の密閉度を確保するために、密閉
チヤンバ9に係る各はめあい個所にOリング・ガ
スケツトによる封止を行うとともに、図示されて
いない駆動電動機に関しても、電動機自体を密閉
構造となした上に、その基部ハウジング4に対す
る取付部にもシール剤を塗布する等の配慮が施さ
れている。なお、同図には本実施例の作用効果の
説明に特に必要はないので磁気ヘツドは示してい
ない。
FIG. 1 is a partial sectional view showing a first embodiment in which the present invention is applied to a fixed head magnetic disk device. In the figure, a magnetic disk 1 is fixed to a rotary drive shaft 2, and the rotary drive shaft 2 is rotatably attached to a base housing 4 via a bearing 3 and is driven by a drive motor (not shown). . 5 is a labyrinth rotating part, and 6 is a labyrinth fixing part, which are attached to the rotary drive shaft 2 and the base housing 4, respectively. Labyrinth rotating part 5
A rotary-side annular protrusion 51 is provided on a concentric circumference, and a stationary-side annular protrusion 61 is provided on the labyrinth fixed part 6, and these intertwine to form a labyrinth, that is, a bent slit. It constitutes section 7. This mechanism is already well known and is exactly the same as that of the so-called labyrinth packing, but in this embodiment, in addition to this, the A large number of ventilation holes 62 are bored in the pores, one of which opens into the slit 7 and the other into an annular groove in which a particulate adsorbent 64 is accommodated. In this embodiment, granular activated carbon is used as the particulate adsorbent 64, and a membrane filter 63 is attached to the bottom of the annular groove to prevent fine pieces of activated carbon from entering the slit 7. It is being In addition, retention of particulate adsorbent 6
4 and a presser plate 6 for ease of its replacement.
5 is attached to the labyrinth fixing part 6.
Reference numeral 8 denotes a cover housing of the device, and a sealed chamber 9 is constructed by airtightly fastening this to the base housing 4. In this example,
In order to ensure the airtightness of the sealed chamber 9, each fitting part of the sealed chamber 9 is sealed with an O-ring gasket, and the drive motor (not shown) is also designed to have a sealed structure. In addition, consideration has been taken such as applying a sealant to the attachment portion to the base housing 4 as well. Note that the magnetic head is not shown in this figure since it is not particularly necessary for explaining the effects of this embodiment.

さて、上述のごとき構造を有する本実施例の作
用効果について述べる。先ず、第1図における通
気孔62、微粒子吸着剤64等が存在しない通常
の構造の場合は、軸受3のグリースから発生した
油脂蒸気等が基部ハウジング4とラビリンス回転
部5とに囲まれた空間を経由して、ラビリンス回
転部5の外周側から細隙部7に入り込み、密閉チ
ヤンバ9内に侵入する可能性がある。細隙部7に
は、一般の場合と同じくラビリンス回転部5の回
転に伴う遠心力によつて生ずる気体の押込効果が
現われるが、磁気デイスク装置等の場合は、たと
えばタービンや圧縮機のごとき場合と異り、細隙
部7の入口と出口との圧力差が小さいため、それ
に基く気体の絞り効果は殆んど期待できないと見
てよい。今、押込効果と絞り効果の双方をまとめ
て細隙効果と言うならば、今の場合でも細隙効果
の内容は前記押込効果が支配的であるが、押込効
果は多少の圧力上昇に伴う副次的な絞り効果を示
す程度で、さほど大きなものではない。従つて細
隙部7のみに頼る従来の方法では、細隙部7の内
部の気体の状態変化を大なるものとして、その中
に含まれる油脂蒸気等に相変化を生ぜしめ、これ
を捕捉除去することはあまり期待できず、たかだ
か軸受3のグリースの飛沫粒子を除去しうる程度
のものでしかなかつた。これに対し、本実施例の
方法によれば、屈曲した細隙部7の中途において
押込効果のため気体が多少絞られ、ラビリンス回
転部5およびラビリンス固定部6の半径方向への
気体の移動がやゝ停留することもあずかつて、微
粒子吸着剤64との接触、したがつて油脂蒸気等
の捕捉除去の確率が大となる。もちろんこの場合
でも、グリースの飛沫粒子の除去効果が並存す
る。以上述べたようにして、本実施例の軸受封止
機構は、細隙部7の中途において油脂蒸気等を効
率よく捕捉除去し、本発明の目的を達成すること
ができる。
Now, the effects of this embodiment having the above-described structure will be described. First, in the case of a normal structure in which there are no ventilation holes 62, particulate adsorbent 64, etc. in FIG. There is a possibility that the particles may enter the narrow gap 7 from the outer circumferential side of the labyrinth rotating portion 5 and enter the sealed chamber 9 via the. In the narrow gap 7, as in the general case, the gas pushing effect caused by the centrifugal force accompanying the rotation of the labyrinth rotating part 5 appears, but in the case of a magnetic disk device, etc., for example, in the case of a turbine or a compressor, etc. However, since the pressure difference between the inlet and the outlet of the narrow gap 7 is small, it can be said that almost no gas throttling effect based on this difference can be expected. Now, if we refer to both the indentation effect and the constriction effect as the slit effect, the content of the slit effect in this case is still dominated by the indentation effect, but the indentation effect is a secondary effect due to a slight increase in pressure. It is not so large as it shows the following aperture effect. Therefore, in the conventional method that relies only on the slit 7, the change in the state of the gas inside the slit 7 is considered to be significant, causing a phase change in the oil vapor, etc. contained therein, which is then captured and removed. It could not be expected that this would do much, and at most it could only remove the grease particles from the bearing 3. On the other hand, according to the method of this embodiment, the gas is somewhat squeezed due to the pushing effect in the middle of the bent narrow gap 7, and the movement of the gas in the radial direction of the labyrinth rotating part 5 and the labyrinth fixed part 6 is prevented. Even if the particles do not stagnate, the probability of contact with the particulate adsorbent 64 and therefore the capture and removal of oil vapor and the like increases. Of course, even in this case, the effect of removing grease splash particles also exists. As described above, the bearing sealing mechanism of this embodiment can efficiently capture and remove oil vapor and the like in the middle of the narrow gap 7, thereby achieving the object of the present invention.

第2図は本発明の第2の実施例を示した部分断
面図である。本実施例は、本発明を密閉循環空気
流路系を有する可動ヘツド形磁気デイスク装置に
適用したものであるが、磁気ヘツド、そのキヤリ
ツジ、ボイス・コイル・モータ等の部材およびチ
ヤンバの全容等は、以降の説明に特に必要がない
ので図示を省略した。磁気デイスク1および図示
していない上記部材を主として収容するチヤンバ
は、前記密閉循環空気流路系の主要な一部をなし
ているものの厳密には第1の実施例と構造上の差
があるとも言えるが、原理的には全く同一視して
よいから、以降このような場合も密閉チヤンバ9
として取扱うものとする。さて第2図を参照する
と、本実施例は、ラビリンスすなわち屈曲した細
隙部7を構成する要素たるラビリンス固定部が2
つの部分に分たれている点が第1の実施例に比し
異るのみで他は殆んど同一である。従つて第2図
においては、第1図に比し同一の機能、構造の部
材には同一の番号に付し、以降においては特に必
要がない限りこれらに関する説明は省略する。本
実施例におけるラビリンス固定部は、細隙部7の
一部を構成し軸受3の押え板を兼ねた第1のラビ
リンス固定部6′と、細隙部7の残りの部分を構
成し微粒子吸着剤64を収容する第2のラビリン
ス固定部6″とから成る。第2のラビリンス固定
部6″は、微粒子吸着剤64の交換保守等をラビ
リンス回転部5の取り外しをせずに行えるように
配慮されたもので、構造的には、微粒子吸着剤6
4を収容する環状溝がラビリンス回転部5の外周
の外側に配置され、ラビリンス回転部5の外周側
面と対向する周筒面に複数の通気窓68が開口し
ており、板状焼結金属のフイルタ63がそれらを
覆うように前記環状溝の内側に円筒状に取り付け
られている。微粒子吸着剤64は第1の実施例と
同じく活性炭粒子で、その収容のために非通気性
円環板状のカバー66が用いられ、輪状の押えリ
ング67によつて第2のラビリンス固定部6″の
本体に固定されている。
FIG. 2 is a partial sectional view showing a second embodiment of the invention. In this embodiment, the present invention is applied to a movable head type magnetic disk device having a closed circulation air flow path system, but the entire structure of the magnetic head, its carriage, voice coil motor, etc. , illustration is omitted because it is not particularly necessary for the following explanation. Although the chamber that mainly accommodates the magnetic disk 1 and the above-mentioned members (not shown) forms a main part of the closed circulation air passage system, strictly speaking, there is a difference in structure from the first embodiment. However, in principle, they can be considered completely the same, so from now on, in such a case, the closed chamber 9
shall be treated as such. Now, referring to FIG. 2, in this embodiment, the labyrinth fixing part, which is an element constituting the labyrinth, that is, the bent narrow gap part 7, has two parts.
This embodiment differs from the first embodiment only in that it is divided into two parts, and the rest is almost the same. Accordingly, in FIG. 2, members having the same functions and structures as those in FIG. The labyrinth fixing part in this embodiment includes a first labyrinth fixing part 6' which forms part of the narrow part 7 and also serves as a holding plate for the bearing 3, and a first labyrinth fixed part 6' which forms the remaining part of the narrow part 7 and which attracts fine particles. The second labyrinth fixing part 6'' accommodates the adsorbent 64.The second labyrinth fixing part 6'' is designed so that replacement and maintenance of the particulate adsorbent 64 can be performed without removing the labyrinth rotating part 5. It is structurally particulate adsorbent 6
4 is disposed outside the outer periphery of the labyrinth rotating section 5, and a plurality of ventilation windows 68 are opened on the circumferential cylindrical surface facing the outer circumferential side of the labyrinth rotating section 5. A filter 63 is installed in a cylindrical shape inside the annular groove so as to cover them. The particulate adsorbent 64 is activated carbon particles as in the first embodiment, and a non-porous annular plate-shaped cover 66 is used to accommodate the particulate adsorbent, and the second labyrinth fixing part 6 is secured by an annular retaining ring 67. ″ is fixed to the main body.

このような構造をとる本実施例の作用効果は、
本質的にはさきに述べた第1の実施例のそれと大
差ないが、油脂蒸気等を含む細隙部7内の空気が
ラビリンス回転部5の遠心効果によつてその外周
方向に弾き出される領域に微粒子吸着剤64が位
置しているため、油脂蒸気等の除去効果が増大す
るという利点がある。
The effects of this embodiment with such a structure are as follows:
Essentially, it is not much different from that of the first embodiment described earlier, but the air in the slit 7 containing oil vapor etc. is ejected in the outer circumferential direction by the centrifugal effect of the labyrinth rotating section 5. Since the particulate adsorbent 64 is located, there is an advantage that the removal effect of oil vapor, etc. is increased.

第3図は、本発明の第3の実施例を示す部分断
面図で、同図において6″はねじによる締結に関
連する部分および押え板65を除きその構体を多
孔質のセラミツク・フイルタ材料により構成した
ラビリンス固定部である。本実施例の利点は、た
とえば第1図に示した本発明の第1の実施例と比
較してみると、その構体を構造的強度を有するフ
イルタ材料で構成しているため通気孔62および
その一方の開口部に当接するフイルタ63が不要
であつて、機構が簡単であり、押え板65に当接
する面の平面度を確保するための機械加工を要す
る以外は成型プレス後焼結したものを殆んどその
まゝ使用できるため、加工コストを低減しうるこ
とである。たゞ、機械加工を施さない部分は精度
が多少低下するから細隙部7におけるクリアラン
スを微小にすることができず、細隙効果の多少の
劣化は不可避であること、またラビリンス固定部
6の構体が通気性のフイルタ材料であるため、
細隙部7の内外周間に気体の漏洩の可能性がある
こと、の2点が懸念される。しかしながら、フイ
ルタ材料の通気性を適当に選択すれば、前述した
ごとく細隙部7の入口と出口の間の圧力差が小さ
いことにより細隙効果の劣化はさして重要なもの
ではなく、むしろ同図の構造から明らかなよう
に、屈曲した細隙部7を気体が通過しつゝフイル
タ材料を通して微粒子吸着剤64と接触する機会
が増大することにより油脂蒸気等の除去効果が増
大する利点の方が大きい。
FIG. 3 is a partial cross-sectional view showing a third embodiment of the present invention, in which the structure is made of porous ceramic filter material, except for the parts related to screw fastening and the retaining plate 65. The advantage of this embodiment, when compared with the first embodiment of the present invention shown in FIG. 1, is that the structure is made of a filter material with structural strength. Therefore, the ventilation hole 62 and the filter 63 that comes into contact with one of the openings are unnecessary, and the mechanism is simple, except that machining is required to ensure the flatness of the surface that comes into contact with the presser plate 65. Since the sintered material after forming and pressing can be used almost as is, the processing cost can be reduced. However, since the precision is somewhat reduced in the parts that are not machined, the clearance in the narrow gap 7 is cannot be made minute, and some deterioration of the slit effect is unavoidable, and the structure of the labyrinth fixing part 6 is made of a breathable filter material.
There are two concerns: there is a possibility of gas leaking between the inner and outer circumferences of the narrow gap 7. However, if the air permeability of the filter material is selected appropriately, the deterioration of the slit effect is not so important because the pressure difference between the inlet and the outlet of the slit 7 is small as described above; As is clear from the structure, the advantage is that the gas passes through the bent slit 7 and has an increased chance of contacting the particulate adsorbent 64 through the filter material, thereby increasing the removal effect of oil vapor, etc. big.

第4図は、本発明の第4の実施例を示す細隙部
近傍の拡大断面図である。本実施例は、前記第3
の実施例のごとくにすれば本発明の目的を充分に
達成しうるが、なお細隙部7における細隙効果を
もう少し助長して、第1および第2の実施例と第
3の実施例との中間的性格を持たせたものにした
い場合に適用しうるものである。すなわち、本実
施例においては、構造的には第3の実施例とほゞ
同一であるが、細隙部7を、クリアランスが小さ
く細隙効果の高い第1の細隙部7′と、クリアラ
ンスはやゝ大きいがその部分でラビリンス固定部
6のフイルタ材を通して微粒子吸着剤64と細
隙部内気体との接触の可能性を大として第2の細
隙部7″とで構成し、前記第1の細隙部7′の片側
を構成するラビリンス固定部6のフイルタ材料
の表面を通気性が低くなるようにしてある。すな
わち、本実施例においては、ラビリンス固定部6
の構体を焼結金属のフイルタ材料にて構成せし
め、前記第1の細隙部7′に対接する面69をバ
イトやフライス等により機械加工し、一方ではク
リアランス縮小のための精度を向上せしめ、他方
では機械加工による焼結金属粒子の目つぶしによ
る通気性の低下をはかつている。なお、当然のこ
とながら、押え板65に当接する部分69′等に
も機械加工が必要で、そのために必然的に通気性
が低下しているが、図からも明らかなように本実
施例の機能には何ら悪影響は及ぼさない。(第4
図には機械加工を施した面を太い実線で示してあ
る。) 以上、本発明の幾つかの実施例につき詳細に説
明したが、本発明の趣旨を逸脱しない範囲で種々
の変形が考えられる。たとえば、微粒子吸着剤6
4は粒状の活性炭に限らず、繊維状のものあるい
はこれらを多孔性を保ちつゝ固形化したものを用
いてもよく、このような場合にはラビリンス回転
部5に取りつけることが容易になる。また第4の
実施例において、ラビリンス固定部6の構体材
料を焼結金属フイルタ材料の代りに第3の実施例
におけるごときセラミツク・フイルタ材料を用
い、第4図の太い実線の部分ごとに69の部分を
機械加工の代りに気密性の塗料を塗布、含浸せし
めて同様の効果をあげることも可能である。ま
た、前記実施例は主として磁気デイスク装置に対
しる適用例をあげたが、その他ころがり軸受やす
べり軸受を用いた気密チヤンバ形式の磁気記憶装
置すべてに本発明が適用されうることも明らかで
ある。
FIG. 4 is an enlarged sectional view of the vicinity of the slit, showing a fourth embodiment of the present invention. In this embodiment, the third
Although the object of the present invention can be fully achieved if the embodiment is implemented as in the first embodiment, the slit effect in the slit portion 7 is further promoted, and the first and second embodiments and the third embodiment are This can be applied when you want to have an intermediate character. That is, in this embodiment, although the structure is almost the same as that of the third embodiment, the narrow gap 7 is replaced with the first narrow gap 7' which has a small clearance and a high gap effect, and Although it is quite large, it is configured with a second slit 7'' to increase the possibility of contact between the particulate adsorbent 64 and the gas in the slit through the filter material of the labyrinth fixing part 6 in that part. The surface of the filter material of the labyrinth fixing part 6 constituting one side of the narrow gap 7' is made to have low air permeability.In other words, in this embodiment, the labyrinth fixing part 6
The structure is made of a sintered metal filter material, and the surface 69 that is in contact with the first slit 7' is machined using a cutting tool, a milling cutter, etc., and on the other hand, the accuracy for reducing the clearance is improved, On the other hand, the sintered metal particles are closed by machining, resulting in a decrease in air permeability. It should be noted that, as a matter of course, machining is also required for the portion 69' that contacts the presser plate 65, which inevitably reduces the air permeability, but as is clear from the figure, this example It does not have any negative effect on functionality. (4th
In the figure, the machined surface is indicated by a thick solid line. Although several embodiments of the present invention have been described in detail above, various modifications can be made without departing from the spirit of the present invention. For example, particulate adsorbent 6
The material 4 is not limited to granular activated carbon, but may be fibrous or solidified while maintaining porosity.In such a case, it can be easily attached to the labyrinth rotating part 5. In addition, in the fourth embodiment, a ceramic filter material as in the third embodiment is used instead of the sintered metal filter material for the structure material of the labyrinth fixing part 6, and 69 parts are provided for each part of the thick solid line in FIG. Instead of machining the parts, it is also possible to apply or impregnate them with an airtight paint to achieve a similar effect. Furthermore, although the above embodiments have mainly been applied to magnetic disk devices, it is clear that the present invention can be applied to all other airtight chamber type magnetic storage devices using rolling bearings or sliding bearings.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は、それぞれ本発明の第1
および第2の実施例を示す部分断面図、第3図は
同じく第3の実施例の細隙部近傍の断面図、第4
図は同じく第4の実施例の細隙部近傍の拡大断面
図である。 1:磁気デイスク、2:回転駆動軸、3:軸
受、4:基部ハウジング、5:ラビリンス回転
部、51:回転側円環状突出部、61:固定側円
環状突出部、62:通気孔、63:フイルタ、6
4:微粒子吸着剤、65:押え板、66:カバ
ー、67:押えリング、68:通気窓、69,6
9′:機械加工面、6′:第1のラビリンス固定
部、6″:第2のラビリンス固定部、6:フイ
ルタ材によるラビリンス固定部、7:細隙部、
7′:第1の細隙部、7″:第2の細隙部、8:カ
バーハウジング、9:密閉チヤンバ。
FIG. 1 and FIG. 2 respectively show the first embodiment of the present invention.
and a partial sectional view showing the second embodiment; FIG. 3 is a sectional view of the third embodiment near the slit;
The figure is also an enlarged cross-sectional view of the vicinity of the slit in the fourth embodiment. 1: Magnetic disk, 2: Rotation drive shaft, 3: Bearing, 4: Base housing, 5: Labyrinth rotating part, 51: Rotating side annular projection, 61: Fixed side annular projection, 62: Ventilation hole, 63 : Filter, 6
4: Particulate adsorbent, 65: Holding plate, 66: Cover, 67: Holding ring, 68: Ventilation window, 69,6
9': Machined surface, 6': First labyrinth fixing part, 6'': Second labyrinth fixing part, 6: Labyrinth fixing part by filter material, 7: Slit part,
7′: first slot, 7″: second slot, 8: cover housing, 9: sealed chamber.

Claims (1)

【特許請求の範囲】 1 磁気記憶媒体、磁気ヘツド、およびこれらに
付随した部材を密閉チヤンバ内に挿入する形式の
磁気記憶装置において、磁気記憶媒体の回転駆動
軸を支承する軸受と前記密閉チヤンバとの間の前
記回転駆動軸上に円環状突出部を有するラビリン
ス回転部を、また前記軸受を支持固定する基部ハ
ウジング上に円環状突出部を有するラビリンス固
定部を、両者の円環状突出部が互いに入り組んで
屈曲した細隙部を構成するごとくにそれぞれ取り
つけ、かつ前記ラビリンス回転部またはラビリン
ス固定部の少なくとも一方に、前記細隙部内の気
体が通ずるごとくに微粒子吸着剤を収容したこと
を特徴とする磁気記憶装置の軸受封止機構。 2 微粒子吸着剤を収納するラビリンス回転部あ
るいはラビリンス固定部の構体を、構造部強度を
有するフイルタ材料にて構成したことを特徴とす
る、特許請求の範囲第1項記載の磁気記憶装置の
軸受封止機構。 3 屈曲した細隙部における一部の細隙をより挾
隘にし、かつ微粒子吸着剤を収容したラビリンス
回転部ないしラビリンス固定部の前記挾隘な細隙
に対接する部分の通気性を低下せしめたことを特
徴とする、特許請求の範囲第2項記載の磁気記憶
装置の軸受封止機構。
[Scope of Claims] 1. A magnetic storage device in which a magnetic storage medium, a magnetic head, and members associated therewith are inserted into a sealed chamber, comprising a bearing supporting a rotational drive shaft of the magnetic storage medium and the sealed chamber. a labyrinth rotating part having an annular protrusion on the rotary drive shaft between the two; and a labyrinth fixing part having an annular protrusion on the base housing that supports and fixes the bearing; Each of the parts is attached so as to form an intricately curved slit, and a particulate adsorbent is housed in at least one of the labyrinth rotating part and the labyrinth fixed part so that the gas in the slit passes through. Bearing sealing mechanism for magnetic storage devices. 2. A bearing seal for a magnetic storage device according to claim 1, characterized in that the structure of the labyrinth rotating part or the labyrinth fixing part that accommodates the particulate adsorbent is made of a filter material having structural strength. Stop mechanism. 3. Some of the slits in the bent slits are made more narrow, and the air permeability of the part of the labyrinth rotating part or labyrinth fixed part that accommodates the particulate adsorbent that is in contact with the narrow slits is reduced. A bearing sealing mechanism for a magnetic storage device according to claim 2, characterized in that:
JP13088276A 1976-10-29 1976-10-29 Bearing sealing mechanism of magnetic memory device Granted JPS5355106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13088276A JPS5355106A (en) 1976-10-29 1976-10-29 Bearing sealing mechanism of magnetic memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13088276A JPS5355106A (en) 1976-10-29 1976-10-29 Bearing sealing mechanism of magnetic memory device

Publications (2)

Publication Number Publication Date
JPS5355106A JPS5355106A (en) 1978-05-19
JPS6128178B2 true JPS6128178B2 (en) 1986-06-28

Family

ID=15044892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13088276A Granted JPS5355106A (en) 1976-10-29 1976-10-29 Bearing sealing mechanism of magnetic memory device

Country Status (1)

Country Link
JP (1) JPS5355106A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007057030A (en) * 2005-08-25 2007-03-08 Ntn Corp Bearing with seal device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5552650A (en) * 1988-06-09 1996-09-03 Papst Licensing Gmbh Disk storage device with motor with axially deep flange
US6052257A (en) * 1998-10-06 2000-04-18 International Business Machines Corporation Sealing structure for reduced lubricant leakage in a spindle motor
EP3382349B1 (en) * 2017-03-29 2019-05-15 Dr. Johannes Heidenhain GmbH Angle measuring system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007057030A (en) * 2005-08-25 2007-03-08 Ntn Corp Bearing with seal device
JP4652172B2 (en) * 2005-08-25 2011-03-16 Ntn株式会社 Bearing with seal device

Also Published As

Publication number Publication date
JPS5355106A (en) 1978-05-19

Similar Documents

Publication Publication Date Title
US4307425A (en) Breathing device for a closed housing of a magnetic memory device
US4628384A (en) Bearing assembly with integrated ferrofluid seal
US4777549A (en) Spindle filter in a data recording disk file
US10115436B1 (en) Filter media and filter products for electronic enclosures
US4599670A (en) Control of relative humidity in machine enclosures
JPH08326755A (en) Bearing unit
JPS6128178B2 (en)
US5179483A (en) Method for controlling airflow through a disc file spindle
US5901013A (en) Fluid spindle bearing vent
JPH09322464A (en) Spindle motor with labyrinth seal construction formed with hub in one united body
US5739980A (en) Seal for disk drives
JPS5816260B2 (en) magnetic disk storage device
JPH07169210A (en) Magnetic head positioning mechanism and magnetic disk device using the same
JPS5816261B2 (en) magnetic storage device
JPH08109923A (en) Magnetic fluid feeding porous oil retaining bearing unit
JPS60136985A (en) Magnetic disc storage device
JPS61148691A (en) Magnetic disk device
JPH0261884A (en) Spindle motor for magnetic disk device
JPS587504Y2 (en) Bearing sealing mechanism for magnetic storage devices
JPS62184685A (en) Magnetic disc device
JPS61269287A (en) Magnetic disk device
JP2570980B2 (en) Spindle motor for magnetic disk drive
JPH07238942A (en) Seal device for rolling bearing
JPS60219695A (en) Magnetic disc device
JPS6240212Y2 (en)