JPS61281570A - Inspection method for semiconductor laser - Google Patents

Inspection method for semiconductor laser

Info

Publication number
JPS61281570A
JPS61281570A JP12244485A JP12244485A JPS61281570A JP S61281570 A JPS61281570 A JP S61281570A JP 12244485 A JP12244485 A JP 12244485A JP 12244485 A JP12244485 A JP 12244485A JP S61281570 A JPS61281570 A JP S61281570A
Authority
JP
Japan
Prior art keywords
wafer
laser
semiconductor
semiconductor laser
wafers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12244485A
Other languages
Japanese (ja)
Inventor
Isao Obe
功 大部
Satoru Todoroki
轟 悟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12244485A priority Critical patent/JPS61281570A/en
Publication of JPS61281570A publication Critical patent/JPS61281570A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/0014Measuring characteristics or properties thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/0014Measuring characteristics or properties thereof
    • H01S5/0042On wafer testing, e.g. lasers are tested before separating wafer into chips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0201Separation of the wafer into individual elements, e.g. by dicing, cleaving, etching or directly during growth
    • H01S5/0202Cleaving

Abstract

PURPOSE:To decide the nondefectives or defectives of semiconductor-laser wafers by detecting discharge currents generated from the semiconductor-laser wafers by applying pulse-shaped voltage between electrodes. CONSTITUTION:A whole surface electrode is formed onto the surface of a substrate as a semiconductor-laser wafer 5 and partial electrodes 3 onto the surface on the side reverse to the substrate in a striped manner, and the wafer 5 prepared in this manner is connected to an external circuit through a prober 4. The external circuit consists of a power supply 1 and a current detector 2 connected in series with the power supply 1. Pulse voltage is applied to the semiconductor-laser wafer by the power supply 1, and an optical output is detected by a photodiode composed of Ge. When a threshold current value is increased, discharge currents are reduced, and negative correlation is generated. Accordingly, the threshold current values of laser oscillations can be determined under the state of wafers without cleavage by measuring the discharge currents of the semiconductor-laser wafers, thus deciding nondefectives or defectives by the threshold currents values at the step of the wafer.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は半導体レーザの検査法に係り、特にウェーハ状
態での良否判定に好適な検査法に関する。      
               1、〔発明の背景〕 従来、半導体レーザの光学的特性、特にレーザ発振のし
きい電流値を調べる場合、半導体レーザに直流あるいは
交流の電流を流し出て来る光を検出器で捕え、光出力が
急激に増加する電2.1流をもってビーザ発振のしきい
電流値としていた。従ってレーザ光を取り出すことの出
来る状態、すなわちウェーハを伸開して反射面を形成し
た状態りなければレーザ発振のしきい電流値を調べるこ
とが出来ず、ウェーハ段階での検出は不可能であった。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an inspection method for semiconductor lasers, and particularly to an inspection method suitable for determining the quality of a wafer.
1. [Background of the Invention] Conventionally, when investigating the optical characteristics of a semiconductor laser, especially the threshold current value of laser oscillation, a direct current or an alternating current is passed through the semiconductor laser, the emitted light is captured by a detector, and the optical output is measured. The threshold current value for bead oscillation was set at a current of 2.1 current, which rapidly increases. Therefore, unless the laser beam can be extracted, that is, the wafer is expanded and opened to form a reflective surface, the threshold current value of laser oscillation cannot be investigated, and detection at the wafer stage is impossible. Ta.

この結果、ウェーハ内に不良部林が存在してもかなり後
工程まで進まなければ良否判別が出来ないという欠点が
あった。
As a result, even if there are defective parts within the wafer, there is a drawback that it is impossible to determine whether the wafer is good or bad until the process has progressed to a considerably later stage.

〔[フィジックス・オプ・セミコンダクター・デバイス
;ジ冒ン・ウィリー・アンド・サンズ(1981)75
1 * J (S、M、Sze、Physics of
 Sem1conductor   ′Devices
+ John Wiley & 8ons+ (198
1) P2S5 ) )〔発明の目的〕 本発明の目的は、上記した従来技術の不点を改良し、半
導体レーザ検査法を提供することにある。
[[Physics Op Semiconductor Devices; J.W. Willey & Sons (1981) 75
1 * J (S, M, Sze, Physics of
Sem1conductor 'Devices
+ John Wiley & 8ons+ (198
1) P2S5) ) [Object of the Invention] An object of the present invention is to improve the above-mentioned disadvantages of the prior art and to provide a semiconductor laser inspection method.

〔発明Q概要〕[Summary of invention Q]

本発明は、半導体レーザウェーハにパルス電圧を印加し
た時に充電される電荷が放電される時に流れる放電々流
を測定してその大小から半導体レーザウェーハの良否判
別を行う検査方法である。
The present invention is an inspection method for determining the quality of a semiconductor laser wafer based on its size by measuring the discharge current that flows when the charge charged when a pulse voltage is applied to the semiconductor laser wafer is discharged.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の半導体レーザウェーハ検査方法の実施例
を図を用いて説明する。第1図は放電々流の測定回路で
ある。半導体レーザウェーハ50基板表面に全面電極6
、基板と反対側表面でストライプ状に部分電極3を形成
する。このようにして作成したウェーハをプローバ4を
□通して外部回路と接続する。外部回路は電源1と電源
1と直列に接続した電流検出器2から成る。電源1によ
り半導体レーザウェーハに第2図実線7で示したパルス
電圧を印加すると実線8で示す如き電流が流れる。この
時、9で示しIllた負の′#L流が放電々流である。
Embodiments of the semiconductor laser wafer inspection method of the present invention will be described below with reference to the drawings. FIG. 1 shows a circuit for measuring discharge current. Full-surface electrode 6 on the semiconductor laser wafer 50 substrate surface
, partial electrodes 3 are formed in stripes on the surface opposite to the substrate. The wafer thus produced is connected to an external circuit through the prober 4 □. The external circuit consists of a power supply 1 and a current detector 2 connected in series with the power supply 1. When a pulse voltage indicated by a solid line 7 in FIG. 2 is applied to the semiconductor laser wafer by the power source 1, a current as indicated by a solid line 8 flows. At this time, the negative '#L current indicated by 9 is the discharge current.

今、放電々流が最小値を示す時間を時間ゼロ秒と定義す
る。第3図は波長t3μyaのIn、Ga、As、P埋
込み型半導体レーザの放電々流の実測値である。印加電
圧の一パルス条件は周波数IMHz、パルス幅05μ式
であ1・・すvoは■。が10mAとなるように設定し
た。第4図はプローバ4で接触する部分電極を変えて、
第3図に示した如き放電々流を各々測定し時間ゼロ秒の
時の放電々流を縦軸に取り、半導体レーザウェーハ伸開
後ステム上に組み上げでボンデ・IIイングした後室温
にて半導体レーザに電流を流し、その光出力をGeのホ
トダイオードで検出した場合のレーザ発振のしぎい電流
値を横軸に取ったものである。放電々流の測定条件は周
波数I MHz、パルス幅05μ式でありV。は■。が
10mAとなるように設定する。第4図から明らかの如
く、しきい電流値が増加すると放電々流は実線10で示
す如く小さくなり負の相関が存在する。従って、放電々
流を測定すると、半導体レーザウェーハを襞間しなくて
も、つまりウェーハ状態で1・・弁開後のレーザ発振の
しきい電流値を決定することが出き、半導体レーザウェ
ーハ検査法として用いることが出きる。例えば半導体し
、−ザのしきい電流値が室温で30社以下であることが
必要であり、かつ半導体レーザウェーハから上記1゜宋
件を満足するチップが5割以上取れる場合をその半導体
レーザウェーハの合否判定基準とする場合時間ゼロの放
電々流が8mA以上であるものの割合が5割以上である
半導体レーザウェーハを合格とすれば良い。     
      11(なお上記実施例において、印加電圧
、電流条件を周波数IFJHz、パルス幅0.5 /j
式r I(1−10mAとしたが、印加電圧がv、(v
)の状態において電流が一定の状態■。が現われる範囲
であれば印加電圧パルス条件は任意で良い。また放電々
流に関し・て時間ゼロの時の値としきい電流値との関係
を取ったが時間はゼロ以上、かつ次の電圧パルスが発生
する時間以前であれば任意で良い。
Now, the time when the discharge current reaches its minimum value is defined as time zero second. FIG. 3 shows actual measured values of the discharge current of an In, Ga, As, and P buried semiconductor laser at a wavelength of t3μya. The conditions for one pulse of the applied voltage are a frequency of IMHz, a pulse width of 05μ, and 1...Svo is ■. was set to be 10 mA. Figure 4 shows that by changing the partial electrodes contacted by the prober 4,
The discharge currents as shown in Fig. 3 were measured, and the discharge current at time 0 seconds was taken as the vertical axis. After the semiconductor laser wafer was expanded and assembled on the stem, and bonded and bonded, the semiconductor was stored at room temperature. The horizontal axis represents the threshold current value for laser oscillation when a current is passed through the laser and its optical output is detected by a Ge photodiode. The measurement conditions for the discharge current are a frequency of I MHz, a pulse width of 05μ, and a voltage of V. ■. Set so that the current is 10mA. As is clear from FIG. 4, as the threshold current value increases, the discharge current decreases as shown by the solid line 10, and a negative correlation exists. Therefore, by measuring the discharge current, the threshold current value for laser oscillation after the valve is opened can be determined without folding the semiconductor laser wafer, that is, in the wafer state. It can be used as a law. For example, if the semiconductor laser wafer has a threshold current value of 30 or less at room temperature, and if more than 50% of the chips satisfying the above 1 degree condition can be obtained from the semiconductor laser wafer, the semiconductor laser wafer When using the pass/fail judgment criteria, semiconductor laser wafers in which the discharge current at time zero is 8 mA or more at a rate of 50% or more may be accepted.
11 (In the above example, the applied voltage and current conditions were set to a frequency of IFJHz and a pulse width of 0.5/j
Formula r I (1-10 mA, but the applied voltage is v, (v
) state where the current is constant ■. The applied voltage pulse conditions may be arbitrary as long as the voltage appears within the range. Regarding the discharge current, the relationship between the value at time zero and the threshold current value was taken, but the time may be arbitrary as long as it is greater than zero and before the time when the next voltage pulse is generated.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、半導体11ル−ザ
ウェーハの放電々流を測定することにより、健闘せずに
ウェーハ状態でレーザ発振のし。
As explained above, according to the present invention, by measuring the discharge current of the laser wafer of the semiconductor 11, laser oscillation can be detected in the wafer state without any difficulty.

きい電流値を知ることが出来るのでウェーハ段階でしぎ
い電流値による良否判定ができるので従来技術に比べ不
良品を前工程で検出すること1.。
Since the threshold current value can be known, pass/fail judgment can be made based on the threshold current value at the wafer stage, making it possible to detect defective products in the previous process compared to conventional technology.1. .

ができ不良品の後工程への流入防止、工数低減の効果が
ある。
This has the effect of preventing defective products from entering subsequent processes and reducing man-hours.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の放電々流測定回。 路の模式図、第2図は印加電圧、1流のタイム、1゜4
 ・ チャート、第6図は放電々流の時間変化を示す線図、第
4図は放電々流とレーザ発振のしきい電流値との関係を
示した線図である。 1・・・電源、      2・・・電流検出器、3・
・・部分電極、    4・・・プローバ、5・・・半
導体レーザウェーノ1. 6・・・全面電極。 1を 代理人弁理士 小 川 勝 男、1゜ オ 1 図 才2図 オ 3 図 ”f’41!1
FIG. 1 shows a discharge current measurement circuit according to an embodiment of the present invention. Schematic diagram of the circuit, Figure 2 shows the applied voltage, first flow time, 1°4
・The chart, FIG. 6 is a diagram showing the time change of the discharge current, and FIG. 4 is a diagram showing the relationship between the discharge current and the threshold current value of laser oscillation. 1...Power supply, 2...Current detector, 3.
...Partial electrode, 4...Prober, 5...Semiconductor laser wafer 1. 6...Full surface electrode. 1 is represented by patent attorney Katsuo Ogawa, 1.

Claims (1)

【特許請求の範囲】[Claims] 1、多層エピタキシャル成長後、基板表面及び基板と反
対表面に電極を形成した劈開前の半導体レーザウェーハ
において、上記電極間にパルス状の電圧を印加しその結
果半導体レーザウェーハから生ずる放電々流を検出して
半導体レーザウェーハの良否判定を行うことを特徴とす
る半導体レーザ検査方法。
1. After multilayer epitaxial growth, in a semiconductor laser wafer before cleavage with electrodes formed on the substrate surface and the surface opposite to the substrate, a pulsed voltage is applied between the electrodes, and as a result, a discharge current generated from the semiconductor laser wafer is detected. A semiconductor laser inspection method characterized by determining the quality of a semiconductor laser wafer.
JP12244485A 1985-06-07 1985-06-07 Inspection method for semiconductor laser Pending JPS61281570A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12244485A JPS61281570A (en) 1985-06-07 1985-06-07 Inspection method for semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12244485A JPS61281570A (en) 1985-06-07 1985-06-07 Inspection method for semiconductor laser

Publications (1)

Publication Number Publication Date
JPS61281570A true JPS61281570A (en) 1986-12-11

Family

ID=14835998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12244485A Pending JPS61281570A (en) 1985-06-07 1985-06-07 Inspection method for semiconductor laser

Country Status (1)

Country Link
JP (1) JPS61281570A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0635916A1 (en) * 1993-07-21 1995-01-25 France Telecom Method to determine the wavelength of a fabry-perot semiconductor laser using electrical measurements
EP1894280A2 (en) * 2005-06-22 2008-03-05 Binoptics Corporation Algainn-based lasers produced using etched facet technology

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0635916A1 (en) * 1993-07-21 1995-01-25 France Telecom Method to determine the wavelength of a fabry-perot semiconductor laser using electrical measurements
FR2708153A1 (en) * 1993-07-21 1995-01-27 Joindot Irene Method for determining the emission wavelength of semiconductor lasers with Fabry-Perot cavity from electrical measurements.
EP1894280A2 (en) * 2005-06-22 2008-03-05 Binoptics Corporation Algainn-based lasers produced using etched facet technology
EP1894280A4 (en) * 2005-06-22 2014-03-26 Binoptics Corp Algainn-based lasers produced using etched facet technology

Similar Documents

Publication Publication Date Title
US6072320A (en) Product wafer junction leakage measurement using light and eddy current
US4456879A (en) Method and apparatus for determining the doping profile in epitaxial layers of semiconductors
WO2012111093A1 (en) Method and device for measuring carrier lifetime
US7027146B1 (en) Methods for forming a calibration standard and calibration standards for inspection systems
TW201518746A (en) Method and apparatus for non-contact measurement of internal quantum efficiency in light emitting diode structures
JPS63250835A (en) Inspection of epitaxial wafer
JPS61281570A (en) Inspection method for semiconductor laser
US5563508A (en) Non-contact resistivity measurement apparatus and method using femtosecond laser pulses to create an electron flow
US5440384A (en) Methods of inspecting wafers for manufacturing light emitting elements
JPH10135291A (en) Method of estimating semiconductor device and its estimation equipment
JPH0864652A (en) Inspection method for epitaxial wafer
US7265571B2 (en) Method and device for determining a characteristic of a semiconductor sample
JP3736749B2 (en) Method for measuring resistivity of semiconductor wafer
RU2309418C2 (en) Method for reliability separation of semiconductor products
US6657454B2 (en) High speed threshold voltage and average surface doping measurements
JPH10270516A (en) Semiconductor-wafer evaluation and its device
JP2002156402A (en) Method and apparatus for inspecting characteristic of semiconductor element
SU591974A1 (en) Method of measuring electrical parameters of semiconductor materials
JPS62102582A (en) Inspecting method for semiconductor laser
JPS5840336B2 (en) Method for non-destructive determination of wafer luminescence characteristics
JPH11102946A (en) Crack inspection method and apparatus of semiconductor device
JP2002033516A (en) Method and device for evaluating active layer of light emitting diode
JPH05152410A (en) Crystal evaluation method of silicon wafer
JPS61165668A (en) Measurement of semiconductive element
SU1668858A1 (en) Thin film thickness measuring method