JPS61281038A - Apparatus for producing optical fiber preform - Google Patents

Apparatus for producing optical fiber preform

Info

Publication number
JPS61281038A
JPS61281038A JP11887285A JP11887285A JPS61281038A JP S61281038 A JPS61281038 A JP S61281038A JP 11887285 A JP11887285 A JP 11887285A JP 11887285 A JP11887285 A JP 11887285A JP S61281038 A JPS61281038 A JP S61281038A
Authority
JP
Japan
Prior art keywords
optical fiber
starting rod
fiber preform
sintering chamber
partition wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11887285A
Other languages
Japanese (ja)
Inventor
Hiroyuki Yoshioka
弘行 吉岡
Hiroshi Ishizaki
宏 石崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OCC Corp
Original Assignee
OCC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OCC Corp filed Critical OCC Corp
Priority to JP11887285A priority Critical patent/JPS61281038A/en
Publication of JPS61281038A publication Critical patent/JPS61281038A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01486Means for supporting, rotating or translating the preforms being formed, e.g. lathes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:An apparatus for producing optical fiber preform, consisting of a reacting and sintering chamber having a specific structure and an apparatus to rotate the starting rod by a rotary magnetic field or with a motor, free of generation of toxic gas, and capable of producing a high-purity preform preventing the intrusion of impurities. CONSTITUTION:The reacting and sintering chamber 6 having closed structure is made to be movable vertically by the vertical motion of a supporting table arm 17 by placing a stretchable member at a part of the partition wall 13. The starting rod 2 fixed with the starting rod chuck 15 is rotated by the cooperative action of the external rotary magnetic disk 12 and the inner magnetic disk 14 and lowered with the supporting table arm 17. Glass soot generated by an oxyhydrogen flame burner 7 is deposited to the lower end of the starting rod 2 to obtain a porous preform 3. The objective optical fiber preform 5 can be produced by dehydrating and sintering the porous preform in the heating furnace 4.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、VAD法による光ファイバ母材製造装置に
かかわり、特に、光ファイバ母材の回転駆動装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an optical fiber preform manufacturing apparatus using the VAD method, and particularly relates to a rotational drive apparatus for an optical fiber preform.

〔従来の技術〕[Conventional technology]

公知のように、光ファイバを製造する方法の一つとして
はVAD法が知られており、この方法では原料ガスを酸
水素火炎中での加水分解反応によりガラス微粒子を生成
させ、これを回転する出発棒に付着、堆積させ多孔質母
材としたのち加熱炉中で脱水焼結して光ファイバ母材を
得るものであり、得られた母材はその後、必要に応じて
延伸、ジャケットされたのち線引炉にて加熱紡糸され光
ファイバとなる。
As is well known, the VAD method is known as one of the methods for manufacturing optical fibers, and in this method, a raw material gas is subjected to a hydrolysis reaction in an oxyhydrogen flame to generate glass particles, which are then rotated. It is attached and deposited on a starting rod to form a porous base material, and then dehydrated and sintered in a heating furnace to obtain an optical fiber base material.The obtained base material is then stretched and jacketed as necessary. It is then heated and spun in a drawing furnace to become an optical fiber.

第5図はかかるVAD法による光ファイバ母材製造装置
の概略図であり、1はチャックlaの部分で出発棒2を
固定し、出発棒2に回転をあたえると同時に、軸方向の
移動を行う駆動部、2は火炎加水分解反応により生成し
たガラス微粒子を堆積するためのターツゲトとなる出発
棒である。
FIG. 5 is a schematic diagram of an optical fiber preform manufacturing apparatus using such a VAD method, in which 1 fixes a starting rod 2 at a chuck la, rotates the starting rod 2, and simultaneously moves it in the axial direction. The driving part 2 is a starting rod that serves as a target for depositing glass particles produced by a flame hydrolysis reaction.

この出発棒2は、多孔質母材生成時には700〜aOO
度、また、焼結には1400〜1500度の高温にさら
されるため、通常、石英棒が用いられる。
This starting rod 2 has a molecular weight of 700 to aOO when producing a porous base material.
Also, quartz rods are usually used because they are exposed to high temperatures of 1,400 to 1,500 degrees during sintering.

3は酸水素火炎加水分解反応により得られた光ファイバ
多孔質母材、4は出発棒2に堆積した多孔質母材3を焼
結するための加熱炉、5は焼結により得られた光ファイ
バ母材、6は反応容器、7酸水素バーナ、8は反応容器
6内の排ガスを引き出す排ガス処理装置である。
3 is an optical fiber porous base material obtained by an oxyhydrogen flame hydrolysis reaction, 4 is a heating furnace for sintering the porous base material 3 deposited on the starting rod 2, and 5 is a light beam obtained by sintering. A fiber base material, 6 a reaction vessel, a 7-oxyhydrogen burner, and 8 an exhaust gas treatment device for drawing out the exhaust gas in the reaction vessel 6.

また9は出発棒2を前記反応容器6.加熱炉4(以下、
この空間内を反応焼結室という)へ貫通するための貫通
口である。
9 also connects the starting rod 2 to the reaction vessel 6. Heating furnace 4 (hereinafter referred to as
This space is a through hole for penetrating into the reaction sintering chamber.

上述したように、従来のVAD法による光ファイバ母材
製造装置においては、回転、および軸方向に支持されて
いる出発棒2を、加熱炉、及び反応容器内へ導入して、
出発棒2にガラス微粒子を堆積し、徐々に引き上げ回転
しながら焼結によって光ファイバ母材を生長させている
。そのため高純度の光ファイバ母材5を製造するために
は反応焼結室は、外部に対して高い精度で密封されるこ
とが要請される。
As described above, in the conventional optical fiber preform manufacturing apparatus using the VAD method, the starting rod 2, which is rotated and supported in the axial direction, is introduced into the heating furnace and the reaction vessel.
Glass particles are deposited on the starting rod 2, and an optical fiber preform is grown by sintering while gradually pulling up and rotating the rod. Therefore, in order to manufacture a high-purity optical fiber preform 5, the reaction sintering chamber is required to be sealed with high precision from the outside.

ところで、ガラス原料は5iC14,Ge CI4等の
ハロゲン化合物であって、加水分解反応による生成物と
してガラス微粒子のほかに、塩素ガス、塩化水素等の有
毒ガスを発生し、これらはターゲットに付着しない余分
のガラス微粒子と共に大気中に放出されることなく、排
ガス処理装置8に導かれるように反応焼結室内のガスの
流れをコントロールする必要がある。そのため、通常、
反応焼結室は負圧(1〜数mmH20)に設定されてい
るが、前述したように出発棒2が貫通するような貫通口
9があると、大気が加熱炉4、あるいは反応容器6内へ
侵入してしまう。
By the way, the raw materials for glass are halogen compounds such as 5iC14 and Ge CI4, and in addition to glass particles, toxic gases such as chlorine gas and hydrogen chloride are generated as products of the hydrolysis reaction, and these are excess gases that do not adhere to the target. It is necessary to control the flow of gas in the reaction sintering chamber so that it is guided to the exhaust gas treatment device 8 without being released into the atmosphere together with the glass particles. Therefore, usually
The reaction and sintering chamber is set to negative pressure (1 to several mmH20), but as mentioned above, if there is a through hole 9 through which the starting rod 2 passes, the atmosphere may leak into the heating furnace 4 or the reaction vessel 6. It invades.

また、一方、加熱炉4には、通常、高純度のカーボンヒ
ータ4aが使用されているが、このヒータ4aは大気中
で加熱されると著しく消耗するという問題がある。そこ
で、加熱炉にはHe、A r、N2等の不活性ガスを供
給して、前述したヒータ4aの消耗の抑制を計っている
On the other hand, although a high-purity carbon heater 4a is normally used in the heating furnace 4, there is a problem in that this heater 4a is considerably consumed when heated in the atmosphere. Therefore, an inert gas such as He, Ar, N2, etc. is supplied to the heating furnace in order to suppress the consumption of the heater 4a described above.

しかしながら、反応焼結室は負圧に保たれているため、
そのままでは前記貫通口9から外気が流入し、加熱炉4
を不活性ガス雰囲気とすることができない。
However, since the reaction sintering chamber is kept under negative pressure,
If left as is, outside air will flow in through the through hole 9 and the heating furnace 4 will
cannot be in an inert gas atmosphere.

そこで、貫通口9をシールする方法としては以下に示す
ような種種の方法が考えられている。
Therefore, as a method for sealing the through hole 9, various methods as shown below have been considered.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

第6図(a)は一般にガスシールと呼ばれているもので
貫通口9の側壁には小さな穴10a。
FIG. 6(a) shows what is generally called a gas seal, and there is a small hole 10a in the side wall of the through hole 9.

10bを設け、矢印で示すようにシールガスGsと不活
性ガスGiを注入する。そして、貫通口9を出発棒2に
非接触でシールしようとするものである。
10b, and seal gas Gs and inert gas Gi are injected as shown by arrows. The purpose is to seal the through hole 9 to the starting rod 2 without contacting it.

しかしながら、この方法によると、反応焼結室を外気と
完全に遮断するために高価なHe 、Ar、N2等の不
活性ガスGiを多量に使用するため、きわめて不経済で
ある。
However, this method is extremely uneconomical because a large amount of expensive inert gas Gi such as He, Ar, and N2 is used in order to completely isolate the reaction sintering chamber from the outside air.

第6図(b)の場合は、シールガスGsを穴10aから
注入し、穴10bから排気することによって外気の侵入
防止と不活性ガスの注入を同時に行うものであるが、こ
の場合も上記した第6図(a)のときと同様な欠点があ
る。
In the case of FIG. 6(b), the sealing gas Gs is injected through the hole 10a and exhausted through the hole 10b, thereby simultaneously preventing the intrusion of outside air and injecting the inert gas. There is a drawback similar to that shown in FIG. 6(a).

第6図(C)は貫通口9にメカニカルシールMSを適用
した例であるが、通常、出発棒2としては石英ガラスが
使用されているため出発棒2の長手方向における外形、
及び曲がりは高精度のものが得られない。そのため機械
的なシールとするときにも出発棒2とのクリアランスを
一般のメカニカルシール使用条件より大きくする必要が
あり、メカニカルシール使用条件では完全なシールを行
うことがきわめて困難である。そのため、ガスシールを
使用することになり、結局、第6図(a)。
FIG. 6(C) is an example in which a mechanical seal MS is applied to the through hole 9. Since quartz glass is normally used as the starting rod 2, the external shape of the starting rod 2 in the longitudinal direction is
Also, high precision bending cannot be obtained. Therefore, even when creating a mechanical seal, it is necessary to make the clearance with the starting rod 2 larger than under the conditions for using a general mechanical seal, and it is extremely difficult to achieve a perfect seal under the conditions for using a mechanical seal. Therefore, we ended up using a gas seal, as shown in Figure 6(a).

(b)の場合と同様な問題が発生する。A problem similar to that in case (b) occurs.

この発明は、このような問題点を解消するためになされ
たもので、反応焼結室を完全に密封した状態で従来と同
様に出発棒の回転、及び軸方向の移動ができるようにし
た光ファイバ母材製造装置を提供するものである。
This invention was made in order to solve these problems, and it is a light that allows the starting rod to rotate and move in the axial direction in the same manner as before while the reaction sintering chamber is completely sealed. The present invention provides a fiber preform manufacturing device.

〔実施例〕〔Example〕

第1図は、本発明の一実施例を示す概要図であって、1
1は回転駆動部、12は回転駆動部11に取付けられた
外部磁気板、13は非磁性体からなる隔壁、14は内部
磁気板、15は内部磁気板14に取付けられた出発棒チ
ャック、16は出発棒の軸方向に伸縮性を有し、かつ気
密性を有する伸縮体であり、非磁性体の隔壁13と加熱
炉の上部の間を外部と遮蔽しているものである。
FIG. 1 is a schematic diagram showing an embodiment of the present invention.
1 is a rotary drive unit, 12 is an external magnetic plate attached to the rotary drive unit 11, 13 is a partition made of a non-magnetic material, 14 is an internal magnetic plate, 15 is a starting rod chuck attached to the internal magnetic plate 14, 16 is a stretchable body that is stretchable in the axial direction of the starting rod and has airtightness, and shields the space between the non-magnetic partition wall 13 and the upper part of the heating furnace from the outside.

なお、前述したように2は出発棒、3は多孔質母材、4
は加熱炉、5は光ファイバ母材、6は反応容器、7は酸
水素バーナ、8は排ガス処理装置を示している。
As mentioned above, 2 is the starting rod, 3 is the porous base material, and 4 is the starting rod.
5 is a heating furnace, 5 is an optical fiber preform, 6 is a reaction vessel, 7 is an oxyhydrogen burner, and 8 is an exhaust gas treatment device.

回転駆動部11と隔壁13は支持台アーム17によって
軸方向に一体化して移動するように構成されている。
The rotation drive unit 11 and the partition wall 13 are configured to move integrally in the axial direction by a support arm 17.

内外磁気板12.14は、第2図に示すように多極化し
た2個の永久磁石工8.18を非磁性体の隔壁13を介
して対面させたもので、その厚味及び磁石間距離、磁気
板の直径の選定により、入力側から充分な回転力を出力
側に非接触で伝達できる磁気カップリングを構成してい
る。
The inner and outer magnetic plates 12.14 are made up of two multipolar permanent magnets 8.18 facing each other with a non-magnetic partition wall 13 in between, as shown in FIG. By selecting the diameter of the magnetic plate, a magnetic coupling is constructed that can transmit sufficient rotational force from the input side to the output side without contact.

第3図は、かかる磁気カップリングの部分を出発棒に取
付ける場合の具体化された一実施例を示すもので、21
は回転駆動部の軸、22.24は外部、内部磁気板、2
3は非磁性体の密封カバー(隔壁)、25は出発棒を固
定するチャック26と内部磁気板24を接続している回
転軸である。
FIG. 3 shows a concrete example of attaching such a magnetic coupling part to a starting rod, 21
is the axis of the rotation drive unit, 22.24 is the external and internal magnetic plate, 2
3 is a non-magnetic sealing cover (partition wall), and 25 is a rotating shaft that connects the internal magnetic plate 24 to the chuck 26 that fixes the starting rod.

27は前記支持アーム17に固定されている基台で、こ
の基台27にはOリング28を介して前記密封カバー2
3がネジ止めによって固定されている。さらに、ベアリ
ング29.30によって前記回転軸25を支持している
。そして蛇腹形状となっている伸縮体32がネジ31に
よって基台27の外周に密封固定されており、このネジ
31゜31を取りはずすことによって出発棒2の交換を
行うことができるように構成されている。なお、不活性
ガスは密封カバー23、または、基台27の側壁に小さ
な穴を開口して注入すればよい。
27 is a base fixed to the support arm 17, and the sealing cover 2 is attached to the base 27 via an O-ring 28.
3 is fixed with screws. Further, the rotating shaft 25 is supported by bearings 29 and 30. A bellows-shaped expandable body 32 is hermetically fixed to the outer periphery of the base 27 by screws 31, and the starting rod 2 can be replaced by removing the screws 31. There is. Note that the inert gas may be injected by opening a small hole in the side wall of the sealing cover 23 or the base 27.

この発明の光ファイバ母材製造装置は、上述したような
構造とされているので、反応焼結室と外気は密封カバー
23.伸縮体32によって完全に遮断されたもになり、
同時に出発棒2の駆動力は磁気力・ンプリングによって
行うことができるようになる。したがって反応焼結室内
のガスの流れをコントロールすることが容易になり、高
い純度の光ファイバ母材を製造することができる。
Since the optical fiber preform manufacturing apparatus of the present invention has the above-described structure, the reaction sintering chamber and the outside air are sealed by the sealing cover 23. It is completely blocked by the elastic body 32,
At the same time, the driving force for the starting rod 2 can be achieved by magnetic force and compression. Therefore, it becomes easy to control the flow of gas in the reaction sintering chamber, and it is possible to manufacture an optical fiber preform with high purity.

第4図は、この発明の他の実施例を示すもので、第3図
と同一部分は同一記号で示されている。出発棒2の回転
は密封カバー23内に配置したモータ33に密封構造で
引き込まれているニード34から電力を供給することに
より行うようにしたものである。なお、伸縮体32の材
質としては、例えば、弗素ゴム、四弗化エチレン(テフ
ロン)が好ましい。
FIG. 4 shows another embodiment of the invention, in which the same parts as in FIG. 3 are indicated by the same symbols. The starting rod 2 is rotated by supplying electric power from a needle 34 drawn into a motor 33 in a sealed cover 23 in a sealed structure. In addition, as the material of the elastic body 32, for example, fluororubber and tetrafluoroethylene (Teflon) are preferable.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明の光ファイバ母材製造装
置は、伸縮体と電気的な駆動方式を採用することによっ
て、外気に対して反応焼結室を密閉構造とし、出発棒に
回転力の伝達をおこなうように構成しているので、従来
のように多量のガスを使用することがなくなり、また、
大気中に有毒なガスを放出することがないという大きな
効果を奏することができる。
As explained above, the optical fiber preform manufacturing apparatus of the present invention has a structure in which the reaction sintering chamber is sealed from the outside air by employing an expandable body and an electric drive system, and a rotational force is applied to the starting rod. Since it is configured to perform transmission, it eliminates the need for large amounts of gas as in the past, and
This has the great effect of not releasing toxic gases into the atmosphere.

さらに、反応焼結室が外気と完全に遮蔽された状態にな
るため、装置内のガスの流れのコントロールが容易にな
り、不純物の混入が完全になくなるので純度の高い光フ
ァイバ母材を製造することができるという優れた効果が
ある。
Furthermore, since the reaction sintering chamber is completely shielded from the outside air, it is easier to control the gas flow within the device, and impurities are completely eliminated, allowing the production of highly pure optical fiber preforms. It has the excellent effect of being able to

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す概要図、第2図は磁
気カップリングの説明図、第3図は回転駆動部の具体的
な一実施例を示す側面図、第4図は回転駆動部の他の実
施例を示す側面図、第5図は従来の光ファイバ母材製造
装置を示す概要図、第6図は従来のシール方法の説明図
である。 図中、2は出発棒、4は加熱炉、6は反応容器、7は酸
水素バーナ、8は排ガス処理装置、11は回転駆動部、
12は外部磁気板、13は隔壁、14は内部磁気板、1
6は伸縮体を示す。 第2図 第6図
Fig. 1 is a schematic diagram showing an embodiment of the present invention, Fig. 2 is an explanatory diagram of a magnetic coupling, Fig. 3 is a side view showing a specific embodiment of the rotation drive section, and Fig. 4 is a rotation FIG. 5 is a side view showing another embodiment of the drive unit, FIG. 5 is a schematic diagram showing a conventional optical fiber preform manufacturing apparatus, and FIG. 6 is an explanatory diagram of a conventional sealing method. In the figure, 2 is a starting rod, 4 is a heating furnace, 6 is a reaction vessel, 7 is an oxyhydrogen burner, 8 is an exhaust gas treatment device, 11 is a rotation drive unit,
12 is an external magnetic plate, 13 is a partition wall, 14 is an internal magnetic plate, 1
6 indicates a stretchable body. Figure 2 Figure 6

Claims (3)

【特許請求の範囲】[Claims] (1)、VAD法における光ファイバ母材製造装置にお
いて、外気に対して密ぺいされた光ファイバ母材の反応
焼結室の隔壁の一部を伸縮体によって構成し、上下方向
に移動可能に支持すると共に、前記反応焼結室内の出発
棒を前記反応焼結室内の隔壁外からの回転磁力、又は隔
壁内に配置されているモータによって回動するように構
成したことを特徴とする光ファイバ母材製造装置。
(1) In an optical fiber preform manufacturing device using the VAD method, a part of the partition wall of the reaction sintering chamber for the optical fiber preform, which is tightly sealed from the outside air, is constructed of an expandable body and is movable in the vertical direction. An optical fiber characterized in that the starting rod in the reaction sintering chamber is rotated by a rotating magnetic force from outside the partition wall in the reaction sintering chamber or by a motor disposed within the partition wall. Base material manufacturing equipment.
(2)、回転磁力は反応焼結室の隔壁の内外に設けた回
転磁気板によって伝達されることを特徴とする特許請求
の範囲第(1)項に記載の光ファイバ母材製造装置。
(2) The optical fiber preform manufacturing apparatus according to claim (1), wherein the rotating magnetic force is transmitted by rotating magnetic plates provided inside and outside the partition wall of the reaction sintering chamber.
(3)、伸縮体は蛇腹構造とされていることを特徴とす
る特許請求の範囲第(1)項に記載の光ファイバ母材製
造装置。
(3) The optical fiber preform manufacturing apparatus according to claim (1), wherein the expandable body has a bellows structure.
JP11887285A 1985-06-03 1985-06-03 Apparatus for producing optical fiber preform Pending JPS61281038A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11887285A JPS61281038A (en) 1985-06-03 1985-06-03 Apparatus for producing optical fiber preform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11887285A JPS61281038A (en) 1985-06-03 1985-06-03 Apparatus for producing optical fiber preform

Publications (1)

Publication Number Publication Date
JPS61281038A true JPS61281038A (en) 1986-12-11

Family

ID=14747204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11887285A Pending JPS61281038A (en) 1985-06-03 1985-06-03 Apparatus for producing optical fiber preform

Country Status (1)

Country Link
JP (1) JPS61281038A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04193734A (en) * 1990-11-27 1992-07-13 Fujikura Ltd Production of quartz optical fiber
WO2001081257A1 (en) * 2000-04-22 2001-11-01 Heraeus Tenevo Ag Device for sintering a shaped body
WO2002102729A1 (en) * 2001-06-14 2002-12-27 Sumitomo Electric Industries, Ltd. Device and method for producing stack of fine glass particles
JP2014073946A (en) * 2012-10-05 2014-04-24 Shin Etsu Chem Co Ltd Apparatus for drawing glass preform

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04193734A (en) * 1990-11-27 1992-07-13 Fujikura Ltd Production of quartz optical fiber
WO2001081257A1 (en) * 2000-04-22 2001-11-01 Heraeus Tenevo Ag Device for sintering a shaped body
JP4814474B2 (en) * 2000-04-22 2011-11-16 ヘレウス・テネボ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Molded body sintering equipment
WO2002102729A1 (en) * 2001-06-14 2002-12-27 Sumitomo Electric Industries, Ltd. Device and method for producing stack of fine glass particles
EP1405833A1 (en) * 2001-06-14 2004-04-07 Sumitomo Electric Industries, Ltd. Device and method for producing stack of fine glass particles
EP1405833A4 (en) * 2001-06-14 2012-02-22 Sumitomo Electric Industries Device and method for producing stack of fine glass particles
JP2014073946A (en) * 2012-10-05 2014-04-24 Shin Etsu Chem Co Ltd Apparatus for drawing glass preform

Similar Documents

Publication Publication Date Title
RU2103232C1 (en) Induction furnace, apparatus for using said furnace, method for heat treatment of synthetic silicon dioxide masses and methods for producing silicon dioxide glass
JP4159247B2 (en) Method and apparatus for manufacturing optical fiber preform
JPS63256546A (en) Glassification of porous substance made from glass suit and furnace for carrying out same
JPS61281038A (en) Apparatus for producing optical fiber preform
CN207512075U (en) Segmented preform sintering furnace device
JPS6051629A (en) Manufacture of optical fiber and device therefor
JP4379554B2 (en) Dehydration sintering method for optical fiber preform
JPS6081033A (en) Manufacture of optical fiber
CA2029881A1 (en) A sintering furnace for the production of a quartz preform
WO2019107557A1 (en) Device for manufacturing lass body, method for manufacturing glass body, soot conveyance mechanism, and soot heating mechanism
JPH0214316B2 (en)
CN215909663U (en) Graphite crucible for extracting carbon element and horizontal induction heating graphitization furnace
CN107572770A (en) A kind of preform process units with control function using PCVD methods
BR112017020247B1 (en) Rotary feeder, chemical vapor deposition lathe, and preform fabrication method for optical fibers
JPS63210044A (en) Formation of quartz-based glass film
JP2003212561A (en) Method and apparatus for manufacturing glass preform
KR100506221B1 (en) Method and apparatus for sintering gel tube
JPH06456Y2 (en) Single crystal pulling device seal structure
JP3245222B2 (en) Heating device for porous silica base material
JPH03232733A (en) Apparatus for producing cellular glass perform for optical fiber
JP2002154838A (en) Method for manufacturing glass preform for optical fiber
JPH10265235A (en) Production of transparent glass preform and apparatus for its production
JP2547105B2 (en) Semiconductor single crystal pulling equipment
JPS6283325A (en) Production of quartz glass having high purity
JPS63151642A (en) Production of glass preform for optical fiber