JPS6128097Y2 - - Google Patents

Info

Publication number
JPS6128097Y2
JPS6128097Y2 JP1981080625U JP8062581U JPS6128097Y2 JP S6128097 Y2 JPS6128097 Y2 JP S6128097Y2 JP 1981080625 U JP1981080625 U JP 1981080625U JP 8062581 U JP8062581 U JP 8062581U JP S6128097 Y2 JPS6128097 Y2 JP S6128097Y2
Authority
JP
Japan
Prior art keywords
bearing
sphere
bearing member
hole
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1981080625U
Other languages
Japanese (ja)
Other versions
JPS57193418U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1981080625U priority Critical patent/JPS6128097Y2/ja
Publication of JPS57193418U publication Critical patent/JPS57193418U/ja
Application granted granted Critical
Publication of JPS6128097Y2 publication Critical patent/JPS6128097Y2/ja
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/04Sliding-contact bearings for exclusively rotary movement for axial load only
    • F16C17/08Sliding-contact bearings for exclusively rotary movement for axial load only for supporting the end face of a shaft or other member, e.g. footstep bearings

Description

【考案の詳細な説明】 この考案は高精度回転スピンドルに用いられる
スラスト流体軸受の改良に関するものである。
[Detailed Description of the Invention] This invention relates to an improvement of a thrust fluid bearing used in a high-precision rotating spindle.

従来から音響機器や映像機器などに用いられて
いるスラスト流体軸受は、例えば第1図に示すよ
うに、円形孔による円筒状の周壁を有し、かつ、
その一端が開口し、他端に底面31aを有する底
壁を備えた支持部材3aと、該支持部材3aに任
意のラジアル軸受部を介して回転可能に支持され
た軸2aを有し、前記底壁の底面31a上には、
両端面が平面状をなした軸受部材1aが載置され
ており、しかも、該軸受部材には、前記軸2aの
起動トルクを軽減するために、その軸心位置(中
心部)に形成された盲孔4aに球体5aが保持さ
れており、また互に対向する軸2aの端面および
軸受部材1aの軸受面11aのうち、軸受面11
aに動圧発生用みぞを設け、両者の間に潤滑剤と
して油、グリース、水および気体などの流体を介
在させ、軸2aの回転によつて圧力を発生させて
前記軸2aを支承するようになつている。
Thrust fluid bearings conventionally used in audio equipment, video equipment, etc. have a cylindrical peripheral wall with a circular hole, as shown in FIG.
The support member 3a has a bottom wall that is open at one end and has a bottom surface 31a at the other end, and a shaft 2a rotatably supported by the support member 3a via an arbitrary radial bearing part. On the bottom surface 31a of the wall,
A bearing member 1a whose both end surfaces are planar is mounted, and in order to reduce the starting torque of the shaft 2a, a bearing member 1a is formed at the axial center position (center) of the shaft 2a. A sphere 5a is held in the blind hole 4a, and the bearing surface 11 of the mutually opposing end surfaces of the shaft 2a and the bearing surface 11a of the bearing member 1a is
a is provided with a groove for generating dynamic pressure, and a fluid such as oil, grease, water, or gas is interposed between the two as a lubricant, and pressure is generated by rotation of the shaft 2a to support the shaft 2a. It's getting old.

一般にこの形式のスラスト軸受の負荷容量は潤
滑油の厚さがうすいほど大きくなる性質をもつて
いるので、軸受の負荷容量を高めるには出来るだ
け膜をうすくする必要があり、そのため回転中に
軸の端面が球体に接触しないように前記軸受部材
1aの軸受面11aに保持された球体5aの軸受
面11aからの僅かな凸出量を精度よく寸法管理
する必要があるが、球体5aを保持している孔4
aが盲孔であるた、孔の深さを精度よく成形する
ことが困難であり、結果として前記球体5aの凸
出量に誤差が生じ易すく、又軸2aの端面の軸心
線O−O′に対する直角度も成形の際に誤差を生
じやすい特性であり、前記膜の厚さをうすくする
と片当りなどの問題が多く、この形式の軸受の高
負荷容量化を指向すれば各部材の成形に余分な工
数を必要とするために、著しく原価高となりやす
い欠点をもつている。
In general, the load capacity of this type of thrust bearing increases as the thickness of the lubricating oil becomes thinner, so in order to increase the load capacity of the bearing, it is necessary to make the film as thin as possible. It is necessary to precisely control the size of the slight protrusion of the sphere 5a held on the bearing surface 11a of the bearing member 1a from the bearing surface 11a so that the end face of the sphere does not contact the sphere. hole 4
Since a is a blind hole, it is difficult to precisely shape the depth of the hole, and as a result, errors are likely to occur in the amount of protrusion of the sphere 5a, and the axis line O- of the end surface of the shaft 2a The perpendicularity to O' is also a characteristic that tends to cause errors during molding, and thinning the thickness of the film often causes problems such as uneven contact. It has the disadvantage that it tends to significantly increase costs because it requires extra man-hours for molding.

この考案は従来品のもつ前述のごとき欠点を補
い、高い負荷容量をもちかつ安価な流体スラスト
流体軸受を提供するものである。
This invention compensates for the above-mentioned drawbacks of conventional products and provides a fluid thrust bearing with high load capacity and low cost.

次にこの考案によるスラスト軸受装置を第2図
および第3図に示した代表的な実施例について説
明すると、図はいずれもこの考案による流体スラ
スト軸受の要部の断面図であり、図中符号1は軸
受部材、11は受部材1のもつ軸受面、2は後述
する支持部材の円形孔内に回転可能に支持されて
いる軸、21は該軸2の軸端面、3は円筒状の周
壁を有する円形孔を備え、その一方が開口し、他
方に底面31を有する底壁を備えた筒状の支持部
材、4は貫通孔、5は球体である。
Next, a typical embodiment of the thrust bearing device according to this invention shown in FIG. 2 and FIG. 1 is a bearing member, 11 is a bearing surface of the bearing member 1, 2 is a shaft rotatably supported in a circular hole of the support member to be described later, 21 is an end surface of the shaft 2, and 3 is a cylindrical peripheral wall. 4 is a through hole, and 5 is a sphere.

第1図と同様に支持部材3の底面31上に載さ
れて軸方向に支持された平板状の軸受部材1の軸
受面11に動圧発生用みぞを有しており、軸2の
回転により両者の間に介在する潤滑剤に圧力を発
生させて軸2を支承するようになつているが、第
1図と異り、軸受部材1の軸受面11の軸心に設
けた球体を保持する孔4は貫通孔となつており、
該貫通孔4に前記軸受部材1の厚さよりも僅かに
大きい直径を有する球体5が圧入されており、該
球体5の外径は第1図同様に前記軸受面11より
も僅かに凸出した状態になつている。すなわち、
前記軸受部材3の厚さと球体5の直径との差だけ
球体5の頂部が、軸受部材3の底面31よりも上
方に凸出している。
Similar to FIG. 1, the bearing surface 11 of the flat bearing member 1 placed on the bottom surface 31 of the support member 3 and supported in the axial direction has grooves for generating dynamic pressure. The shaft 2 is supported by generating pressure in the lubricant interposed between the two, but unlike in FIG. Hole 4 is a through hole,
A sphere 5 having a diameter slightly larger than the thickness of the bearing member 1 is press-fitted into the through hole 4, and the outer diameter of the sphere 5 is slightly convex than the bearing surface 11 as in FIG. It is becoming a state. That is,
The top of the sphere 5 protrudes above the bottom surface 31 of the bearing member 3 by the difference between the thickness of the bearing member 3 and the diameter of the sphere 5.

従来品は前述のごとく球体5aを保持する孔4
aが盲孔であつたために、孔の深さを精度よく成
形することが困難であり、結果として前記球体5
aの凸出量に誤差を生じ易い結果となつていた
が、この考案による軸受部材1は球体5を保持す
る孔4が貫通孔となつているので盲孔4aの深さ
の代りに軸受部材1の厚さを精度よく成形すれば
よく、平板状の部材の厚さの精度を確保する成形
は盲孔の深さの寸法を正確に成形するのと比べれ
ばはるかに容易であり、従つて球体5の凸出量を
精度よく安定して形成することが出来るようにな
るので、潤滑剤の厚さをうすくしても回転中に軸
端面21が球体5に接触するおそれはなく、又球
体5は貫通孔4に圧入されているので圧力が上つ
ても潤滑剤が該孔4から漏失するおそれもないの
で軸受のスラスト負荷容量を高くすることが可能
である。
As mentioned above, the conventional product has a hole 4 that holds the sphere 5a.
Since the hole a was a blind hole, it was difficult to accurately form the depth of the hole, and as a result, the spherical body 5
However, in the bearing member 1 according to this invention, the hole 4 that holds the sphere 5 is a through hole, so the depth of the bearing member 1 is determined by the depth of the blind hole 4a. It is sufficient to precisely form the thickness of 1, and forming to ensure the accuracy of the thickness of a flat plate member is much easier than forming accurately the depth dimension of a blind hole. Since the amount of protrusion of the sphere 5 can be formed stably with high precision, there is no risk that the shaft end surface 21 will come into contact with the sphere 5 during rotation even if the thickness of the lubricant is thinned, and the sphere Since the bearing 5 is press-fitted into the through hole 4, there is no fear that the lubricant will leak from the hole 4 even if the pressure increases, so it is possible to increase the thrust load capacity of the bearing.

第3図はこの考案による流体スラスト軸受装置
の第2実施例を示したもので、第2図と異なり前
記軸受部材1の軸受面11の反対側の端面である
支持面は球面状に形成されており、支持部材3の
底面との間の接触は圧入された前記球体5の前記
凸出側とは反対側の球面状の面の頂点周辺を中心
とした調心性をもつて接触支持されているので、
前記軸2の端面21が該軸2の中心線O−O′に
対して正確な直角度を持たず多少の誤差があつた
場合でも、前記軸受部材1の軸受面11の反対側
の球面状の支持面の調心性によつて、軸2aの端
面21と軸受部材1の軸受面11とは常に平行に
保たれるようになつており、両者の間に形成され
る潤滑膜がうすくても前記軸受面11と軸端面2
1とが片あたりをして損傷異常摩耗などを起こす
おそれはなく、従来よりも潤滑油をうすくする事
が出来るので、更に高い負荷容量を得ることが出
来る。
FIG. 3 shows a second embodiment of the fluid thrust bearing device according to this invention, and unlike FIG. 2, the supporting surface, which is the end surface opposite to the bearing surface 11 of the bearing member 1, is formed in a spherical shape. The contact with the bottom surface of the support member 3 is centered around the apex of the spherical surface of the press-fitted sphere 5 on the side opposite to the convex side. Because there are
Even if the end surface 21 of the shaft 2 does not have an accurate perpendicularity to the center line O-O' of the shaft 2 and there is some error, the spherical shape on the opposite side of the bearing surface 11 of the bearing member 1 Due to the alignment of the support surface, the end surface 21 of the shaft 2a and the bearing surface 11 of the bearing member 1 are always kept parallel, even if the lubricant film formed between them is thin. The bearing surface 11 and the shaft end surface 2
There is no risk of damage or abnormal wear caused by uneven contact between the lubricating oil and the lubricating oil, and since the lubricating oil can be used thinner than before, a higher load capacity can be obtained.

以上述べたようにこの考案のスラスト軸受は特
に軸受部材の軸心位置(中心部)に形成された貫
通孔内に、前記軸受部材の厚みよりも僅かに大き
い直径の球体を固着し、前記軸受部材の厚みと球
体の直径との差だけ球体の頂部を軸受部材の軸受
面よりも凸出させて形成されているので、量産に
あたつては、精度の均一したスラスト軸受部が高
精度の加工や部材を要することなく容易に得られ
るとともに、精度が良いことに関連し従来よりも
高いスラスト負荷容量を得ることが可能であり、
又原価高の要因も殆んどない。
As described above, in the thrust bearing of this invention, a sphere having a diameter slightly larger than the thickness of the bearing member is fixed in the through hole formed at the axial center position (center part) of the bearing member, and The top of the sphere is formed to protrude beyond the bearing surface of the bearing member by the difference between the thickness of the member and the diameter of the sphere, so in mass production, the thrust bearing part with uniform precision can be used with high precision. It can be easily obtained without requiring any processing or materials, and due to its high accuracy, it is possible to obtain a higher thrust load capacity than before.
Also, there are almost no factors contributing to high costs.

なおこの考案の第2実施例では軸受部材1の軸
受面11の反対側の球面状の面は支持部材3の平
面によつて支持されているが、これに限るもので
なく、支持部材として前記軸受部材1の球面状の
面の一部又は全面を凹形の球面座を用いて支持す
ることも可能であり、又動圧発生みぞも軸2の端
面か、または軸受部材1の軸受面11の双方に設
けてもよい。
In the second embodiment of this invention, the spherical surface on the opposite side of the bearing surface 11 of the bearing member 1 is supported by the flat surface of the support member 3, but the above-mentioned support member is not limited to this. It is also possible to support part or all of the spherical surface of the bearing member 1 using a concave spherical seat, and the hydrodynamic groove can also be supported by the end surface of the shaft 2 or the bearing surface 11 of the bearing member 1. It may be provided on both sides.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来用いられている動圧流体スラスト
軸受装置の要部の断面図、第2図および第3図は
それぞれこの考案によるスラスト軸受装置の実施
例の要部の断面図。 図中符号1は軸受部材、2は軸、3は支持部
材、4は貫通孔、5は球体である。
FIG. 1 is a sectional view of a main part of a conventional hydrodynamic thrust bearing device, and FIGS. 2 and 3 are sectional views of main parts of an embodiment of a thrust bearing device according to this invention. In the figure, numeral 1 is a bearing member, 2 is a shaft, 3 is a support member, 4 is a through hole, and 5 is a sphere.

Claims (1)

【実用新案登録請求の範囲】 (1) 円筒状の周壁を有する円形孔を備え、その一
方が開口し、他方に底壁を有する支持部材の前
記底壁の底面上に載置され、かつ、その中心部
に球体を有する軸受部材と、前記円形孔内に回
転可能に支持され、しかもその一端面が前記球
体と接するようになつており、かつ前記互に対
向する軸受部材の軸受面または軸端面のいずれ
か一方もしくは双方に動圧発生用の溝を有する
動圧流体スラスト軸受装置において、前記軸受
部材の軸心位置に貫通孔を設け、該孔に、前記
軸受部材の厚みよりも僅かに大きい直径の球体
を固着し、前記軸受部材の厚さと球の直径との
差だけ球体の頂部が軸受部材の軸受面よりも凸
出していることを特徴とする動圧流体スラスト
軸受装置。 (2) 実用新案登録請求の範囲第1項において、軸
受部材の軸受面の反対側の端面が平面である動
圧流体スラスト軸受装置。 (3) 実用新案登録請求の範囲第1項において、軸
受部材の軸受面の反対側が球面状に形成されて
いる動圧流体軸スラスト受装置。
[Claims for Utility Model Registration] (1) A support member having a circular hole having a cylindrical peripheral wall, one of which is open, and the other of which has a bottom wall, is placed on the bottom surface of the bottom wall, and a bearing member having a sphere in its center; and a bearing member rotatably supported in the circular hole, one end surface of which is in contact with the sphere, and bearing surfaces or shafts of the bearing members facing each other. In a hydrodynamic thrust bearing device having a groove for generating dynamic pressure on one or both of the end faces, a through hole is provided at the axial center position of the bearing member, and the hole has a diameter slightly smaller than the thickness of the bearing member. A hydrodynamic thrust bearing device characterized in that a sphere with a large diameter is fixed, and the top of the sphere protrudes beyond the bearing surface of the bearing member by the difference between the thickness of the bearing member and the diameter of the sphere. (2) The hydrodynamic thrust bearing device according to claim 1 of the utility model registration claim, wherein the end surface of the bearing member opposite to the bearing surface is flat. (3) The dynamic pressure fluid shaft thrust bearing device according to claim 1 of the utility model registration, wherein the opposite side of the bearing surface of the bearing member is formed in a spherical shape.
JP1981080625U 1981-06-02 1981-06-02 Expired JPS6128097Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1981080625U JPS6128097Y2 (en) 1981-06-02 1981-06-02

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1981080625U JPS6128097Y2 (en) 1981-06-02 1981-06-02

Publications (2)

Publication Number Publication Date
JPS57193418U JPS57193418U (en) 1982-12-08
JPS6128097Y2 true JPS6128097Y2 (en) 1986-08-21

Family

ID=29876175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1981080625U Expired JPS6128097Y2 (en) 1981-06-02 1981-06-02

Country Status (1)

Country Link
JP (1) JPS6128097Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6028627U (en) * 1983-08-02 1985-02-26 エヌ・テ−・エヌ東洋ベアリング株式会社 Dynamic pressure type spindle unit

Also Published As

Publication number Publication date
JPS57193418U (en) 1982-12-08

Similar Documents

Publication Publication Date Title
JPH056416Y2 (en)
KR940002802B1 (en) Oil impregnated sintered bearing
US7946770B2 (en) Hydrodynamic bearing device
JP4248176B2 (en) Hydrodynamic bearing
JPS6128097Y2 (en)
JPS6231205B2 (en)
JPS6128098Y2 (en)
US20040178688A1 (en) Gasdynamic bearing motor
JPH02278007A (en) Thrust bearing
JPH03181612A (en) Bearing device
JPH0654915U (en) Hydrodynamic bearing
JP3929654B2 (en) Hydrodynamic bearing
JPS594176Y2 (en) Hydrodynamic bearing device
JP2781573B2 (en) Manufacturing method of bearing device
JP2556759Y2 (en) Half bearing prevention type journal bearing
JPS6027096B2 (en) rotating head assembly
JPS6152414A (en) Dynamic-pressure type fluid bearing unit
JP2850986B2 (en) Automatic alignment mechanism of spiral groove type thrust bearing
JP2527436Y2 (en) Hydrodynamic bearing
JPS634820Y2 (en)
JPS6311386Y2 (en)
JPS6184412A (en) Hydrodynamic thrust bearing
JPH03282009A (en) Bearing device and manufacture thereof
JPS6319623Y2 (en)
JPS5846259Y2 (en) Support device for dynamic pressure type thrust bearings