JPS61280569A - Chip for adding specimen and its preparation - Google Patents

Chip for adding specimen and its preparation

Info

Publication number
JPS61280569A
JPS61280569A JP60121460A JP12146085A JPS61280569A JP S61280569 A JPS61280569 A JP S61280569A JP 60121460 A JP60121460 A JP 60121460A JP 12146085 A JP12146085 A JP 12146085A JP S61280569 A JPS61280569 A JP S61280569A
Authority
JP
Japan
Prior art keywords
chip
sample
specimen
electrophoresis
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60121460A
Other languages
Japanese (ja)
Inventor
Shunsuke Uda
俊介 右田
Ken Hirohashi
広橋 憲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP60121460A priority Critical patent/JPS61280569A/en
Publication of JPS61280569A publication Critical patent/JPS61280569A/en
Pending legal-status Critical Current

Links

Landscapes

  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

PURPOSE:To make it possible to simply analyze protein or a compound thereof within a short time, in electrophoretic analysis, by including a compatible reagent specifically reacted with the component in a specimen. CONSTITUTION:A specimen is divided into specimens A, B and, after the compatible reagent specifically reacting with the specimen B was added to the specimen B to be reacted therewith, both specimens are added to an electrophoretic gel to perform electrophoresis and the gel is subsequently stained, decolored and dried to discriminate the developed migration pattern by the naked eye or a densitometer. When the patterns of the specimens A, B are compared, in the pattern of the specimen B, the spot of the component specifically reacted with the compatible reagent is immunologically sedimented at the position of an origin and migration becomes impossible to generate omission and, therefore, the staining concn. thereof is attenuated to perfectly discriminate the specimen B from the specimen A.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は電気泳動による分析方法に用いるチップに係り
、特に試料中の成分と反応する親和性試薬を内蔵したチ
ップに間する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a chip used in an electrophoretic analysis method, and particularly to a chip containing an affinity reagent that reacts with a component in a sample.

[従来の技術] 近年、タンパク賞の分析に′i′I!気泳動が多用され
ている。この原理は、電場の中に荷電粒子を入れるとそ
の゛電荷の相違により粒子の移動する距離が異なるとい
う物理化学的な現象−を利用したものである。
[Prior art] In recent years, 'i'I!' has been used for protein analysis. Aerophoresis is widely used. This principle utilizes the physicochemical phenomenon that when charged particles are placed in an electric field, the distances traveled by the particles differ depending on the difference in their charges.

この電気泳動の方式には移動界面電気泳動とゾーン電気
泳動とにわけられる。
This electrophoresis method can be divided into moving interface electrophoresis and zone electrophoresis.

界面を気泳動は、予め試料と、その上に重層した溶媒と
の間で界面を形成させておき、電場のなかで溶液中の溶
質分子の移動として観察するものである。一方ゾーン電
気泳動法はバンド状にして加えた試料に電圧をかけるこ
とにより、各成分がバンド状に分画分離される方法であ
る。支持体を用いる場合支持体ゾーン電気泳動といわれ
、その支持体の目的は分離された成分のゾーンの安定化
を計ることであり、以下のような素材がある。
In interface pneumophoresis, an interface is formed in advance between a sample and a solvent layered on top of the interface, and the movement of solute molecules in the solution is observed in an electric field. On the other hand, zone electrophoresis is a method in which each component is fractionated and separated into bands by applying voltage to a sample added in the form of bands. When a support is used, it is called support zone electrophoresis, and the purpose of the support is to stabilize the zone of separated components, and the following materials are available:

(1)多孔質な素材として、ろ紙、セルローズアセテー
トが代表的なものであり、安価で操作が簡単なことから
臨床検査には多用されている。
(1) Typical porous materials include filter paper and cellulose acetate, which are often used in clinical tests because they are inexpensive and easy to operate.

(2)ゲル、粉末状のものとして、寒天や澱粉がよく用
いられ、試料の保持量と分離の能力が高い点が5平f面
されている。
(2) Agar and starch are often used as gels and powders, and they have a high sample retention capacity and high separation ability.

(3)分子ふるい効果を持つものとして、ポリアクリル
アミドゲルがあり、分子量にしたがった移動と、溶質の
拡散が少ないことから、優れた分離能が認められている
(3) Polyacrylamide gel has a molecular sieving effect, and is recognized to have excellent separation ability due to its migration according to molecular weight and low solute diffusion.

この様にゾーン電気泳動においては、支持体の性質に多
く 1&存するが、泳動したゾーンの分析方法として泳
動の後、タンパク質に特異的な染色を行ない、染色され
たゾーンの位置や強弱を肉眼或は光学的方法を用いて確
認するが、その分離の確認は、重複が多く非常に困難な
場合が多い。
In this way, in zone electrophoresis, although there are many differences depending on the properties of the support, protein-specific staining is performed after electrophoresis as a method for analyzing the migrated zones, and the position and strength of the stained zones can be observed with the naked eye or is confirmed using optical methods, but confirmation of separation is often extremely difficult due to the large number of overlaps.

この欠点を解決するために、1953年にGrabar
、P、& Williams、C,Aは、上記の電気泳
動とゲル内抗原抗体沈降反応とを絹み合わせて、免疫学
的な特異性を利用した感度の高い定性的な分析を可能に
した免疫電気泳動法を発表した。
In order to solve this drawback, in 1953, Grabar
, P. & Williams, C.A. combined the above-mentioned electrophoresis with in-gel antigen-antibody precipitation to enable highly sensitive qualitative analysis utilizing immunological specificity. Presented electrophoresis method.

この方法は、薄い寒天のゲルに小さな穴をあけ、そこに
抗原を含む試料を添加して、先ず電気泳動をして、試料
中の各成分を展開分離させた後、その泳動方向に平行に
あけた溝に抗体を入れ、一定時間放置すると、ゲル中を
試料と抗体が拡散して、各成分に対応した位置に、免疫
学的に沈降線を形成するので、この沈降線位置や強弱か
ら、特定成分の分析をする方法である。しかしてこの分
析の際、ゲル中の拡散には10時間から50時間程度を
要し、また高価な抗体等の親和性試薬も、0.02m1
から0.2ml程度を必要とし、非常に困難な方法であ
る。
In this method, a small hole is made in a thin agar gel, a sample containing the antigen is added thereto, electrophoresis is first performed to develop and separate each component in the sample, and then the electrophoresis is performed parallel to the direction of electrophoresis. When antibodies are placed in the opened grooves and left for a certain period of time, the sample and antibodies will diffuse through the gel, forming immunological precipitation lines at positions corresponding to each component. , is a method for analyzing specific components. However, during leverage analysis, it takes about 10 to 50 hours for diffusion in the gel, and expensive affinity reagents such as antibodies require only 0.02ml of
This is a very difficult method, requiring approximately 0.2 ml of water.

その他、wi電気泳動免疫学的な方法の組み合わせた方
法としては(1)ロケット免疫M、気泳動法り2)交差
免疫電気泳動法(3)免疫固定法等がある。
Other combinations of WI electrophoresis and immunological methods include (1) Rocket Immunization M, pneumophoresis, 2) cross-immunoelectrophoresis, and (3) immunofixation.

(1)と(2)の方法は、割に多量の抗体等の親和性試
薬をアガロースと混ぜてゲルを作成してから、原点に抗
原を含む試料を入れ電気泳動を行ない、抗原の泳動に従
って免疫学的な沈降物の形成をロケット状や山状にして
、その大きさから特定成分の分析をする方法である。
Methods (1) and (2) involve mixing a relatively large amount of affinity reagents such as antibodies with agarose to create a gel, then placing a sample containing the antigen at the origin and performing electrophoresis, following the migration of the antigen. This is a method in which immunological precipitates are formed in the shape of rockets or mountains, and specific components can be analyzed based on their size.

(3)はゾーン電気泳動後にゲルを抗体に浸し、抗体と
反応する特定のゾーンのみを沈降物として固定して残し
、その他は食塩水によって流しだして判定を行なう方法
である。
Method (3) is a method in which after zone electrophoresis, the gel is immersed in antibodies, and only the specific zones that react with the antibodies are left fixed as precipitates, while the rest are flushed out with saline to perform the determination.

これらは、いずれも電気泳動中、または電気泳動後に電
気泳動のゲル中で免疫反応、或は親和性物質との反応を
行ない、試料中の成分を同定していた。そのため、ゲル
中である特定成分に反応する抗体、親和性試薬を多くま
た広範囲に添加する事により、反応が陰性の周辺から反
応陽性の特定成分を区別する方法であった。
In all of these methods, components in a sample are identified by performing an immunoreaction or a reaction with an affinity substance in an electrophoresis gel during or after electrophoresis. Therefore, a method was used to distinguish a specific component with a positive reaction from surrounding areas with a negative reaction by adding a large number of antibodies or affinity reagents that react with a specific component to the gel over a wide range.

[発明が解決しようとする問題点] このように、従来の電気泳動には以下のような欠点があ
った。
[Problems to be Solved by the Invention] As described above, conventional electrophoresis has the following drawbacks.

(1)高価な親和性試薬を、真に必要とする量以上に過
動に添加しなければならず、非経済的である。
(1) Expensive affinity reagents must be added in excess of the amount truly needed, which is uneconomical.

(2)これらの抗体は、通常凍結乾燥、冷凍、或は冷蔵
の状態で市販されており、使用時に凍結乾燥品は、一定
量の水を添加し液状にしたり、冷凍冷蔵品は室温に戻し
た後、使用する量だけ取り出して用いなければならず、
非常に面倒であり、また手間のかかる作業である。
(2) These antibodies are usually commercially available in a lyophilized, frozen, or refrigerated state, and when used, lyophilized products are made into a liquid by adding a certain amount of water, or frozen and refrigerated products are brought to room temperature. After that, you must take out only the amount you need and use it.
This is extremely troublesome and time-consuming work.

(3)(2)で説明した状態の抗体類は、二度に全部使
用する以外はその活性を失ったり、腐敗させて、無駄に
する機会が非常に多い。
(3) Antibodies in the state described in (2) often lose their activity or become spoiled, and are wasted unless they are used in their entirety twice.

(4)反応に要する時間が、親和性試薬及び試料がゲル
中を拡散する時間を含むため長時間になる。
(4) The time required for the reaction is long because it includes time for the affinity reagent and sample to diffuse through the gel.

(5)モノクロナール抗体を使用した、免疫電気泳動の
場合、免疫学的な沈降線を作らず定性的な分析が出来な
い。
(5) In the case of immunoelectrophoresis using monoclonal antibodies, no immunological precipitation lines are created, making qualitative analysis impossible.

(6)血清材料中の微量成分を分析するとき・血清中に
多量に存在するアルブミンやγグロブリンのため、その
周辺の微量成分の電気泳動のパターンが覆い隠されて分
析が困難である。
(6) When analyzing trace components in serum materials - Due to albumin and γ globulin present in large amounts in serum, the electrophoretic pattern of surrounding trace components is obscured, making analysis difficult.

[発明の目的] 本発明はこれらの欠点を鑑みて成されたものであり、そ
の目的とするところは、経済的で簡便で・しかも短時間
でタンパク質やその化合物が分析できる電気泳動と免疫
反応を組み合わせた、新規な分析方法に用いる親和性試
薬が内蔵された、添加用チップとその製造方法を提供す
ることにある。
[Object of the Invention] The present invention was made in view of these drawbacks, and its purpose is to develop electrophoresis and immunoreaction that are economical, simple, and capable of analyzing proteins and their compounds in a short time. An object of the present invention is to provide an addition chip incorporating an affinity reagent for use in a new analysis method, and a method for manufacturing the same.

[問題を解決するための手段] 本発明は、短時間で分析が終了し、しかも操作の簡単な
以下に説明する新規な電気泳動的分析方法に適用するチ
ップである。
[Means for Solving the Problems] The present invention is a chip that can be applied to the novel electrophoretic analysis method described below, which allows analysis to be completed in a short time and is easy to operate.

即ち試料を部分して、試料A、Bとする。Aは対照とす
るため、そのまま手を加えず残しておく。
That is, the sample is divided into parts and designated as samples A and B. A is left unchanged as it is used as a control.

次に試料Bに、試料B中の成分と特異的に反応する親和
性試薬を添加反応させた後、両者を電気泳動用のゲルに
添加し電気泳動をした後、公知の常法に従い、ゲルを染
色、脱色、乾燥し現われた泳動のパターンを肉眼又はデ
ンシトメーターで識別する。
Next, an affinity reagent that specifically reacts with the components in sample B is added to sample B, and both are added to an electrophoresis gel and electrophoresed. After staining, decolorizing, and drying, the pattern of migration that appears is identified with the naked eye or with a densitometer.

そして試料へと試料Bのパターンを比較すると、試料B
のパターンでは親和性試薬と特異的に反応した成分のス
ポットが、原点の位置に免疫学的に沈降して泳動が不可
能になって欠損したり、又は親和性試薬の量が少ないと
、一部分が欠損するためその染色濃度が減衰して、対照
の試料Aと明らかな差を示す。
Then, when comparing the pattern of sample B to the sample, sample B
In this pattern, the spot of the component that specifically reacted with the affinity reagent may be immunologically precipitated at the origin position, making migration impossible and missing, or if the amount of affinity reagent is small, a portion of the spot may be lost. Due to the lack of , the staining density is attenuated, showing a clear difference from the control sample A.

更に、モノクロナール抗体を親f0性試薬とした場合、
対照とした試料Aに比較して、バンドの位置に差が明確
に生じる。
Furthermore, when a monoclonal antibody is used as a f0 affinity reagent,
There is a clear difference in the position of the band compared to sample A used as a control.

これらの事より、目的とした成分が同定できる。From these facts, the target component can be identified.

本発明で試料中の成分と親和性試薬を反応する場所は、
試験管、バイアル、スピッツ、マイクロプレート等の一
般にこの種の反応に用いられる容器中であれば問題はな
い。しかし、親和性試薬の量と操作時間を考えると、本
発明のチップを用いることが最適である。
In the present invention, the location where the components in the sample and the affinity reagent are reacted is
There is no problem as long as it is in a container commonly used for this type of reaction, such as a test tube, vial, spitz, or microplate. However, considering the amount of affinity reagent and operation time, it is optimal to use the chip of the present invention.

即ち、試料をゲルに添加するために用いるチップ中で反
応させる事がよい。つまり、あらかじめ一定量の親和性
試薬を内蔵させたチップに試料を吸引し、試料中の成分
と反応させた後、これを電気泳動のゲルに添加する。こ
のようにすると、高価な親和性試薬を反応の陰性な所を
含めた広い場所に加えなくても良いし、また反応させる
容器に付着して無駄になる事がないので、極めて漱−量
で実施する事が可能である。また、支持体中でこれらが
拡散して反応する時間が不要となり、結果を得るまでの
時間が極めて短い利点が生じている。
That is, it is preferable to carry out the reaction in a chip used for adding the sample to the gel. That is, a sample is aspirated into a chip containing a certain amount of affinity reagent in advance, reacted with components in the sample, and then added to an electrophoresis gel. In this way, there is no need to add expensive affinity reagents to a large area, including areas where the reaction is negative, and there is no need to waste the affinity reagents by adhering them to the reaction container, so you can save a lot of money. It is possible to implement it. In addition, there is no need for time for these to diffuse and react in the support, resulting in an advantage that the time required to obtain results is extremely short.

本発明に用いられる親和性試薬の例としては、(1)ブ
ドウ状球苗の、Aタンパクのような動植物の細胞、微生
物、または組成成分及びその産生物(2)ヒトヘモグロ
ビンのようなタンパク質と、その複合物 (3)ホルモン、薬物などとその複合物(4)血液、脳
を髄液中に存在する抗体に対する抗原(5)各種の抗体 (6)前記のものが、ラジオアイソトープ、蛍光試薬、
酵素等で、標識化されたものがある。
Examples of affinity reagents used in the present invention include (1) animal and plant cells, microorganisms, or constituents and their products, such as the A protein of grape-like bulbs, and (2) proteins such as human hemoglobin. , their complexes (3) Hormones, drugs, etc. and their complexes (4) Antigens against antibodies present in blood, brain and cerebrospinal fluid (5) Various antibodies (6) The above include radioisotopes and fluorescent reagents. ,
Some are labeled with enzymes, etc.

これらは、単独或は複数の混合物として用いられる。又
はこれらに糖類、アミノ酸等の安定剤、チッ化ナトリウ
ムのような防腐剤及び親和性試薬を識別するための色素
なと、各種の添加物を加えて用いることも出来る。
These may be used alone or as a mixture of a plurality of them. Alternatively, various additives such as stabilizers such as sugars and amino acids, preservatives such as sodium nitride, and dyes for identifying affinity reagents may be added to these.

本発明に用いられる親和性試薬を内蔵したチップの材質
は、ガラス、プラスチック、ステンレス鋼など試料や親
和性試薬と反応しない材料であれば何でもよいが、望ま
しくはこれらの物が付着しにくい材料であるポリプロピ
レン、ポリエチレン、ポリ沸化エチレン等のポリオレフ
ィン化合物が良い。
The chip containing the affinity reagent used in the present invention may be made of any material, such as glass, plastic, or stainless steel, as long as it does not react with the sample or the affinity reagent, but it is preferably made of a material to which these substances do not easily adhere. Some polyolefin compounds such as polypropylene, polyethylene, and polyfluorinated ethylene are suitable.

また、本発明に用いられるチップの形状は毛細管状の物
であればよいが、操作性を考えるとマイクロシリンジ又
はマイクロピペットの先端に装着出来る形状が望ましい
。従って、公知のマイクロピペット用の円錐形のチップ
が使用できることは言うまでもない。しかし、好ましく
は根元がマイクロピペットやマイクロシリンジに取り付
けられるほと太く、先端が少なくとも長さ101以上の
毛細管状の形状が望ましい。この様な形状のチップを用
いるとゲル等の支持体への試料の添加が容易である。な
お毛細管部の太さは外径が0.5mm〜1,01111
1内径はO,:3〜0.5mm程度の物がよい。
Further, the tip used in the present invention may have a capillary shape, but from the viewpoint of operability, it is desirable that the tip be of a shape that can be attached to the tip of a microsyringe or micropipette. Therefore, it goes without saying that known conical tips for micropipettes can be used. However, it is preferable that the base is thick enough to be attached to a micropipette or microsyringe, and the tip has a capillary shape with a length of at least 101 or more. Using a tip with such a shape makes it easy to add a sample to a support such as a gel. The outer diameter of the capillary part is 0.5 mm to 1,01111 mm.
1. The inner diameter is preferably about 3 to 0.5 mm.

また親和性試薬を内蔵させるには、チップをマイクロシ
リンジ又はマイクロピペットの先端に装着し、一定量の
親和性試薬の溶液を吸引するか、またはマイクロピペッ
ト用のチップであれば、その円錐形の太い方の先端より
滴下して、充填することも可能である。
To incorporate an affinity reagent, attach the tip to the tip of a microsyringe or micropipette and aspirate a certain amount of the affinity reagent solution, or if the tip is for a micropipette, use its conical shape. It is also possible to fill by dripping from the thick tip.

なお親和性試薬、を内蔵したチップを保管するためには
、プラスチック、金属箔等の水蒸気不透過性の袋に入れ
、密封し冷蔵又は冷凍する。好ましくは、チップ内に親
和性試薬の溶液を充填した後、凍結乾燥等して乾燥状態
で保存するのがよい。このようにすると、保存性が良く
なるばかりでなく、試料と親和性試薬との混合と接触が
速やかに行なわれるため、微少なカップ中での反応も、
迅速に進行し、親和性試薬が溶液状態でチップ中に内蔵
されているよりも反応時間が短くなる。
To store the chip containing the affinity reagent, place it in a water vapor-impermeable bag made of plastic, metal foil, etc., seal it, and refrigerate or freeze it. Preferably, after filling the chip with a solution of the affinity reagent, the chip is stored in a dry state by lyophilization or the like. This not only improves storage stability, but also allows rapid mixing and contact between the sample and the affinity reagent, allowing for even small reactions in the cup.
It proceeds rapidly and requires a shorter reaction time than if the affinity reagent was in solution and contained in the chip.

また、本発明で用いられる凍結乾燥の条件は以下の通り
である。即ち試料の温度は、−10℃から一80°Cて
あり、減圧度は5m+++Hg以下が°よい。本発明に
用いられる電気泳動の材料及び操作は、公知のそれらを
すべて用いる事が出来る。また、パターンの相違を見る
方法としては、公知の方法をすべて用いる事ができるが
、中でも酵素反応、ラジオオートグラフィー、補体溶血
反応などで電気泳動のパターンを出し、これを肉眼或は
デンシトメーターで識別する方法が特に有効である。
Furthermore, the freeze-drying conditions used in the present invention are as follows. That is, the temperature of the sample is between -10°C and -80°C, and the degree of vacuum is preferably 5 m+++Hg or less. All known electrophoresis materials and operations can be used in the present invention. In addition, all known methods can be used to detect differences in patterns, but among them, electrophoretic patterns are generated using enzyme reactions, radioautography, complement hemolysis reactions, etc., and these can be viewed with the naked eye or densitometry. The method of identification using a meter is particularly effective.

以下に本発明の実施例を記載するが、これらは本発明の
範囲を限定するものではない。
Examples of the present invention are described below, but these are not intended to limit the scope of the present invention.

[実施例] 実施例(1) ポリテトラフルオルエチレンで形成された毛細管で内径
0.38n+m外径0.85nua長さ30開であり根
元が、マイクロシリンジに装着出来るような形状のチッ
プに、精製されたIgG抗体に1%のグリシンと1%の
しよ糖を抗体の安定剤として0.01%のボンソーRを
識別のために混入した。これを0.002m1吸引して
、更に先端に空気を帆001m1吸引して、抗体をチッ
プの先端から中心部に移動して、−80℃で凍結した。
[Example] Example (1) A capillary tube made of polytetrafluoroethylene with an inner diameter of 0.38 n+m, an outer diameter of 0.85 nua, and a length of 30 mm, with a tip shaped so that the base can be attached to a microsyringe. The purified IgG antibody was mixed with 1% glycine and 1% sucrose as antibody stabilizers, and 0.01% Bonso R for identification. 0.002 ml of this was suctioned, and 001 ml of air was further suctioned from the tip to move the antibody from the tip to the center of the chip, and it was frozen at -80°C.

そして凍結完了、後、5+mmHgの真空度を保ちなが
ら3時間凍結乾燥し、本発明のチップを得た。
After the freezing was completed, the chips were freeze-dried for 3 hours while maintaining a vacuum level of 5+mmHg to obtain the chip of the present invention.

実施例(2) 骨髄腫血清のM成分のクラスとタイプを決定する為に、
アガロースゲルの?it気泳動の原点N0−1に血清を
0.001m1、No−2に60倍希釈の血清を帆00
1.ml、NO−3に予め精製されたIgG抗体を0.
002m1吸引して凍結乾燥したチップに、60倍希釈
血清0.002m1を吸引してIgGを免疫吸収した試
料、No−4には同様に、IgA抗体にて免疫吸収した
試料、NO−3には同様に18開抗体にて免疫吸収した
試料、No−6には同様にに抗体で免疫吸収した試料、
No−7には入坑体で免疫吸収した試料を添加し直流電
圧200 Vて60分間電気泳動し、トリクロル酢酸と
アルコールで固定し、次にコマンジーブリリアントブル
ーで染色、温風で乾燥し、鮮明なブルーの泳動パターン
を作成する。そのパターンからNo−4のIgAとNo
−6のJ(の欠損が読み取れたのてM成分は、IgAに
型と判定された。
Example (2) To determine the class and type of M component of myeloma serum,
Agarose gel? Place 0.001ml of serum at the origin of aerophoresis, No. 1, and place 60 times diluted serum at No. 2.
1. ml, NO-3 with pre-purified IgG antibody.
A sample was obtained by aspirating 0.002 ml of 60-fold diluted serum into a lyophilized chip and immunoabsorbing IgG, No. 4 was a sample similarly immunoabsorbed with IgA antibody, and No. 3 was a sample immunoabsorbing with IgA antibody. Similarly, a sample was immunoabsorbed with an 18-open antibody, and No. 6 was a sample that was similarly immunoabsorbed with an antibody.
To No. 7, a sample immunoabsorbed with the absorbed body was added, electrophoresed at a DC voltage of 200 V for 60 minutes, fixed with trichloroacetic acid and alcohol, then stained with Comangie brilliant blue, dried with warm air, Creates a clear blue migration pattern. From that pattern, No. 4 IgA and No.
Since the deletion of J(-6) was detected, the M component was determined to be IgA type.

抗体の使用量は各々0.002m1、所用時間は2時間
であった。
The amount of each antibody used was 0.002 ml, and the required time was 2 hours.

比較例(1) 実施例(1)の分析を従来の免疫電気泳動で行なった。Comparative example (1) The analysis of Example (1) was performed by conventional immunoelectrophoresis.

先ずアガロースゲルのHNを作って、原点N0−1.2
,3,4.5に、原血清を各々0.002Il+l添加
して直流電圧200vて60分電気泳動を行ない、泳動
後、泳動の方向に平行に作った溝No−1,2,3,4
,5に、0゜0511の抗1gG、抗+gA、抗1gM
、抗に、抗入 の各抗体を入れて、これを室温で24時
間放置しての後、ようやく免疫学的な沈降線の出現のあ
った、No−2のIgAとNo−4のにから、M成分は
IgAに型と判定した。
First, make an agarose gel HN, and set the origin No. 0-1.2.
, 3 and 4.5, add 0.002 Il+l of the original serum and perform electrophoresis for 60 minutes at a DC voltage of 200 V. After electrophoresis, grooves No. 1, 2, 3, and 4 made parallel to the direction of migration
, 5, 0°0511 anti-1gG, anti+gA, anti-1gM
After adding each antibody, anti-, anti-in, and leaving it at room temperature for 24 hours, an immunological precipitation line finally appeared. The M component was determined to be IgA type.

実施例(])は比較例(1)に比べ抗体の使用量は50
倍、使用時間は12倍、試料は11倍必要であった。
In Example (]), the amount of antibody used was 50% compared to Comparative Example (1).
It required 12 times more time, and 11 times more samples.

実施例(2) IgG骨髄肚血清のM成分のIgGサブクラスを判定す
る為に、アガロースゲルの原点No−1に血清をO10
02m l、No−2に100倍希釈の血清を0.00
2m1、NO−3に予め親和クロマトグラフィにより精
製された、抗1861モノクロナール抗体を0.002
m1吸引して凍結乾燥したチップに100倍希釈血清0
.002m1を吸引して、、 IgG1を親和吸収した
試料、No−4には同様に、抗13G4にて親和吸収し
た試料、NO−3には同様にブドウ状球菌のAタンパク
で親和吸収した試料を添加し直流電圧200vで60分
間電気泳動し、トリクロル酢酸とアルコールで固定し、
次にコマンジーブリリアントブルーで染色後、温風で乾
燥する。この泳動のパターンから、NO−3のみM成分
のバンドの欠損が読み取れた。一般にAタンパクはIg
G1,2.4と反応するが、この試料は抗13G+、4
とは反応していないので、M成分のIgGサブクラスは
1gG2と判定した。
Example (2) In order to determine the IgG subclass of the M component of IgG bone marrow serum, serum was added to origin No. 1 of an agarose gel at O10.
Add 100 times diluted serum to 0.00ml, No-2.
2ml, 0.002ml of anti-1861 monoclonal antibody previously purified by affinity chromatography on NO-3
Aspirate 100 times diluted serum into the freeze-dried chip.
.. 002ml was aspirated and IgG1 was affinity-absorbed, No-4 was a sample that was affinity-absorbed with anti-13G4, and No-3 was a sample that was affinity-absorbed with Staphylococcus A protein. was added, electrophoresed for 60 minutes at a DC voltage of 200 V, fixed with trichloroacetic acid and alcohol,
Next, it is dyed with Comangie Brilliant Blue and dried with warm air. From this electrophoresis pattern, only NO-3 was found to be missing in the M component band. Generally, A protein is Ig
G1,2.4, but this sample reacts with anti-13G+,4
Since no reaction occurred, the IgG subclass of the M component was determined to be 1gG2.

比較例(2) 実施例(2)と同様に、IgG骨髄腫血清のM成分のI
gGサブクラスの同定をする時に、チップの中に抗1g
Gのモノクロナール抗体を、溶液の状態のまま吸入して
、30分後にゲルに添加して電気泳動をおこなった。そ
の結果、親和吸収はは不完全な状態であり、従って電気
泳動の泳動のパターン上、バンドには変化が見られずク
ラスの判定は出来なかった。
Comparative Example (2) Similar to Example (2), I of the M component of IgG myeloma serum
When identifying the gG subclass, there is anti-1g in the chip.
The G monoclonal antibody was inhaled in the form of a solution, and 30 minutes later, it was added to the gel and electrophoresis was performed. As a result, the affinity absorption was incomplete, and therefore, no change was observed in the band in the electrophoretic pattern, making it impossible to determine the class.

実施例(3) 試料血清中の微量成分、血清アミロイドAタンパクを分
析するためにアルブミンの抗体を内蔵したチップを用い
て実施例(2)と同様に電気泳動的分析を行なった。試
料中のアルブミンの親和吸収が行なわれて、その結果、
電気泳動のパターンはアルブミンが消失し、電気泳動的
に近接して存在する微量成分の血清アミロイドAタンパ
クが、明瞭に出現した。
Example (3) In order to analyze a trace component in a sample serum, serum amyloid A protein, electrophoretic analysis was performed in the same manner as in Example (2) using a chip containing an albumin antibody. Affinity absorption of albumin in the sample takes place, resulting in
In the electrophoretic pattern, albumin disappeared, and serum amyloid A protein, a trace component present in electrophoretic proximity, clearly appeared.

比較例(3) 実施例(2)と同様な実験を行なった。ただし、この場
合使用したチップにはアルブミンの抗体が含まれていな
い。従って、近接して存在する微量成分血清アミロイド
タンパクはアルブミンの影響を強く受けて、覆い隠され
て識別が困難だった。
Comparative Example (3) An experiment similar to Example (2) was conducted. However, the chip used in this case does not contain albumin antibodies. Therefore, the trace component serum amyloid protein that exists in close proximity is strongly influenced by albumin and is obscured, making it difficult to identify.

実施例(4) 血清のγグロブリン領域に3本のM成分がありこれがI
gGであるかを判定した。予備試験として、市販のパー
オキシダーゼ’tRm I g Gの、倍数希釈列を作
ってその力価を検定してから、8倍希釈のパーオキシダ
ーゼ標識13G抗体を0.001m1を内蔵したチップ
をつくった。試料0.001m1を、泳動用のアガロー
スゲルの原点No−1に添加した。次に10倍希釈の試
料0.001m1をとり、NO−2に添加した。次に同
試料を標識抗体を内蔵したチップにとり、原点No−3
に添加した。これを電気泳動した後、パーオキシダーゼ
の基質)夜に浸し、4クロロ1ナフトールで紫色に発色
させた。NO−3ではM成分に相当する2本のバンドが
呈色−した。この事から試料の3本のバンドのうち、2
本がIgGのM成分であることが確かめられた。
Example (4) There are three M components in the γ globulin region of serum, which are I.
It was determined whether it was gG. As a preliminary test, we prepared a series of multiple dilutions of commercially available peroxidase'tRm IgG and tested its titer, and then created a chip containing 0.001ml of peroxidase-labeled 13G antibody diluted 8 times. . 0.001 ml of sample was added to origin No. 1 of an agarose gel for electrophoresis. Next, 0.001 ml of a 10-fold diluted sample was taken and added to NO-2. Next, the same sample was placed on a chip containing a labeled antibody, and origin No.
added to. After electrophoresis, the peroxidase substrate was soaked overnight and colored purple with 4-chloro-1-naphthol. In NO-3, two bands corresponding to the M component were colored. From this fact, two of the three bands in the sample
It was confirmed that the book was the M component of IgG.

[発明の効果] 以上の結果から、明らかなように本発明の親和性試薬を
、凍結乾燥技術によって内蔵したチップを用いた親和吸
収を行なってから、M、気泳動的分析を行なうと、一般
的に用いられている精製された抗体だけでなく、抗原と
抗体は反応しても沈降物を作らず、免疫学的な解析が不
完全だったモノクロナール抗体やタンパクAを用いる実
験が可能になって、未知試料や、より確実な解析が出来
るようになった。
[Effects of the Invention] From the above results, it is clear that when the affinity reagent of the present invention is subjected to affinity absorption using a built-in chip using freeze-drying technology and then subjected to M, pneumophoretic analysis, general In addition to purified antibodies that are commonly used, experiments using monoclonal antibodies and protein A, which do not produce precipitates even when antigens and antibodies react, and for which immunological analysis has been incomplete, are now possible. This has made it possible to analyze unknown samples and more accurately.

即ち、本発明はこの点を親和性試薬を内蔵したチップ中
で親和吸収した後、電気泳動を行ない、反応物質と、吸
収以前の成分との間に生じたパターンの差を解析する事
によって解決する事が出来た。
That is, the present invention solves this problem by performing electrophoresis after affinity absorption in a chip containing an affinity reagent and analyzing the difference in pattern between the reactant and the component before absorption. I was able to do it.

同時に経済的で短時間内に、しかも高感度で分析できる
様に工夫したため、免疫学の分野は勿論のこと、臨床検
査や生化学の分野に、診断や研究の情報の正確度を高め
る分析法として、非常に有用である。
At the same time, it has been devised to be economical, to perform analysis in a short time, and with high sensitivity, so it is useful not only in the field of immunology, but also in the fields of clinical testing and biochemistry, as an analytical method that increases the accuracy of diagnostic and research information. As such, it is very useful.

Claims (7)

【特許請求の範囲】[Claims] (1)試料中の成分と特異的に反応する親和性試薬を内
蔵することを特徴とする添加用のチップ。
(1) A chip for addition characterized by containing an affinity reagent that specifically reacts with components in a sample.
(2)親和性試薬が抗体、抗原または試料中の成分と反
応する色素、多糖類、脂質及びその複合物であることを
特徴とする、特許請求範囲第(1)項に記載の添加用の
チップ。
(2) The additive according to claim 1, wherein the affinity reagent is a dye, polysaccharide, lipid, or a complex thereof that reacts with an antibody, an antigen, or a component in a sample. Chip.
(3)親和性試薬が酵素、ラジオアイソトープ、蛍光物
質等で標識される物質である事を特徴とする特許請求範
囲第(1)項に記載の添加用のチップ。
(3) The chip for addition according to claim (1), wherein the affinity reagent is a substance labeled with an enzyme, a radioisotope, a fluorescent substance, or the like.
(4)チップがマイクロシリンジ或はマイクロピペット
に装着出来ることを特徴とする特許請求範囲第(1)項
に記載の添加用のチップ。
(4) The tip for addition according to claim (1), characterized in that the tip can be attached to a microsyringe or a micropipette.
(5)チップの材質が、オレフィン化合物の重合体であ
ることを特徴とする、特許請求範囲第(1)項に記載の
添加用チップ。
(5) The additive chip according to claim (1), wherein the material of the chip is a polymer of an olefin compound.
(6)根元がマイクロシリンジやマイクロピペットに装
着出来るほどの内径があり、先端部が少なくとも長さ1
0mm以上の毛細管部を持つような形状をしたことを特
徴とする、特許請求範囲第(3)項に記載の添加用のチ
ップ。
(6) The base has an inner diameter that can be attached to a microsyringe or micropipette, and the tip has a length of at least 1
The chip for addition according to claim (3), characterized in that it has a shape having a capillary portion of 0 mm or more.
(7)親和性試薬を一定量チップに充填した後、これを
凍結乾燥しチップ中に内蔵させることを特徴とする、試
料添加用のチップの製造法。
(7) A method for producing a chip for sample addition, which comprises filling a certain amount of an affinity reagent into a chip, and then freeze-drying it and incorporating it into the chip.
JP60121460A 1985-06-06 1985-06-06 Chip for adding specimen and its preparation Pending JPS61280569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60121460A JPS61280569A (en) 1985-06-06 1985-06-06 Chip for adding specimen and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60121460A JPS61280569A (en) 1985-06-06 1985-06-06 Chip for adding specimen and its preparation

Publications (1)

Publication Number Publication Date
JPS61280569A true JPS61280569A (en) 1986-12-11

Family

ID=14811684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60121460A Pending JPS61280569A (en) 1985-06-06 1985-06-06 Chip for adding specimen and its preparation

Country Status (1)

Country Link
JP (1) JPS61280569A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009265078A (en) * 2008-04-04 2009-11-12 National Institute Of Advanced Industrial & Technology Electrophoresis support having hydrophobic polymer membrane and electrophoretic separation method using the same
JP2010266431A (en) * 2009-04-14 2010-11-25 National Institute Of Advanced Industrial Science & Technology Detection method by migration separation of biopolymer, and support for electrophoresis used for the method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009265078A (en) * 2008-04-04 2009-11-12 National Institute Of Advanced Industrial & Technology Electrophoresis support having hydrophobic polymer membrane and electrophoretic separation method using the same
JP2010266431A (en) * 2009-04-14 2010-11-25 National Institute Of Advanced Industrial Science & Technology Detection method by migration separation of biopolymer, and support for electrophoresis used for the method

Similar Documents

Publication Publication Date Title
Bao Capillary electrophoretic immunoassays
US5348633A (en) Method for quantitating trace amounts of an analyte in a sample by affinity capillary electrophoresis
KR101159383B1 (en) Device for the determination of advanced glycosylated end products(AGEs)
US4434236A (en) Immunoassay wherein labeled antibody is displaced from immobilized analyte-analogue
US3939350A (en) Fluorescent immunoassay employing total reflection for activation
EP2857837B1 (en) Freeze-dried conjugate and kit for immunochromatographic point-of-care testing and a method using the kit
JP3299271B2 (en) Capillary blood antigen tester
EP0060700A1 (en) Assay method and device
JPS61277059A (en) Analysis of plural items
Schmalzing et al. Solution-phase immunoassay for determination of cortisol in serum by capillary electrophoresis
FI89984B (en) ENVIRONMENTAL ASSESSMENT OF ANTIGEN SPECIFICATION ANTICROPHOTH IN THE IMMUNOGLOBULATION GROUP A, M, D ELLER E OCH MEDEL DAERFOER
WO1980000455A1 (en) Colorimetric immunoassay employing a chromoprotein label
US4094759A (en) Method for simultaneous quantitative analysis of several constituents in a sample
JPH0575396B2 (en)
EP0609265B1 (en) Unit-of-use reagent composition for specific binding assays
JPS5984162A (en) Immunological analysis method
JPS61280569A (en) Chip for adding specimen and its preparation
FI68653C (en) METHOD OF FERTILIZATION OF TYROXIN-BINDNINGSINDEX I SERUM OCH TESTFOERPACKNING FOER UTFOERANDE AV BESTAEMNINGEN
EP0839068A1 (en) On line detection of a desired solute in an effluent stream using fluorescence spectroscopy
JPS61280570A (en) Novel analysis by electrophoresis
EP0607209B1 (en) Unit-of-use reagent compositions for specific binding assays
CN111665353B (en) Compact immunoassay device and analysis method
KR940008091B1 (en) Method for the immunological determination of ligands
EP0884594A2 (en) Analyte-fixation immunochromatographic device
JPH10319017A (en) Measuring method for substance utilizing fluorescent energy transfer and reagent therefor