JPS61280564A - Method for analyzing carbide in steel - Google Patents

Method for analyzing carbide in steel

Info

Publication number
JPS61280564A
JPS61280564A JP60122031A JP12203185A JPS61280564A JP S61280564 A JPS61280564 A JP S61280564A JP 60122031 A JP60122031 A JP 60122031A JP 12203185 A JP12203185 A JP 12203185A JP S61280564 A JPS61280564 A JP S61280564A
Authority
JP
Japan
Prior art keywords
steel
furnace
carbide
temp
decomposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60122031A
Other languages
Japanese (ja)
Inventor
Hirofumi Kurayasu
浩文 蔵保
Yasuo Iguma
康夫 猪熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP60122031A priority Critical patent/JPS61280564A/en
Publication of JPS61280564A publication Critical patent/JPS61280564A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To perform the quantitative analysis classified by form of carbide contained in steel, by decomposing the carbon extraction residue in steel while changing heating temp. to analyze the generated gas. CONSTITUTION:The carbide of the specimen 9 in a reaction furnace is decomposed under heating in an oxygen stream introduced from an oxygen inlet 14 to be sent to a reaction completion furnace 2 as decomposed gas and again heated to be perfectly converted to CO2 which is, in turn, sent to an analyser through a CO2 outlet 28 to measure the amount of CO2. Therefore, by investigating the decomposition temps. of carbides different in decomposition temp. by a form by other measuring means, each carbide contained in an extraction residue can be quantitatively analyzed in a separated state in the thermal decomposition of the reaction furnace 1 by regulating the temp. in the furnace. In this case, the temp. of the reaction completion furnace 2 is set to 350 deg.C or more.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は鋼中に含まれる炭化物をその形歯別に定量する
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for quantifying carbides contained in steel according to its profile.

従来の技術 鋼中のCは鋼を構成する金属成分や熱処理の違い等によ
り種々の形態の炭化物を形成し、鋼の性質にそれぞれ異
った影響を与える。したがって鋼中Cのg4¥!tにお
よぼす影響を定量的に評価するためには鋼中炭化物の形
態別定量方法が必要となる。
BACKGROUND OF THE INVENTION C in conventional steel forms various forms of carbide depending on the metal components constituting the steel and the heat treatment, each of which has a different effect on the properties of the steel. Therefore, G4 ¥ of C in Steel! In order to quantitatively evaluate the influence on t, a method for quantifying carbides in steel depending on their form is required.

従来、鋼中の全C琶の分析は鋼試料を酸素気流中高温で
燃焼させCをCOlに変換し該CO8による赤外線吸収
量やms度の変化を測定することにより行なわれている
Conventionally, total C in steel has been analyzed by burning a steel sample at high temperature in an oxygen stream, converting C into CO, and measuring changes in the amount of infrared absorption and ms degrees due to the CO.

一方、g4中炭化物の形儂別定量方法としては、例えば
鉄と鋼、 G O(+974>、 P、1962に報告
されているように、炭化物を湿式化学分離法によりマト
リックスから分離抽出した後読炭化物を形成する金属元
素の分析を行なう方法が多く用いられており、特に最近
では非水溶媒電解液を用いた電解抽出法が開発され、か
なり不安定な炭化物も精度よく抽出できるようになって
きた。
On the other hand, as a method for quantifying carbides in G4 by type, for example, as reported in Iron and Steel, GO (+974>, P., 1962), carbides are separated and extracted from the matrix using a wet chemical separation method. Many methods are used to analyze the metal elements that form carbides, and recently, electrolytic extraction methods using non-aqueous electrolytes have been developed, making it possible to extract even highly unstable carbides with high precision. Ta.

また、上記の湿式化学分離法に代えて水素気流中で鋼試
料を加熱して鋼中のCをCH,として抽出する方法が、
鉄と鋼、  69 (1983)、 P、 153に報
告されている。
In addition, instead of the above-mentioned wet chemical separation method, there is a method in which C in steel is extracted as CH by heating a steel sample in a hydrogen stream.
Reported in Tetsu to Hagane, 69 (1983), p. 153.

発明の目的 しかしながら上記従来の方法において、湿式化学分離法
の場合は炭化物をマトリックスから分離した後炭化物を
形成する金属元素を定量している場合が殆んどであるが
、必ずしも形態別定瓜法として確立されてはいない、ま
た、水素気流中で加熱する方法の場合は固溶Cとセメン
タイトとを区別できないという問題がある。
Purpose of the Invention However, in the conventional methods described above, in most cases the wet chemical separation method involves separating the carbide from the matrix and then quantifying the metal elements forming the carbide. Furthermore, in the case of heating in a hydrogen stream, there is a problem that solid solution C and cementite cannot be distinguished.

本発明は上記従来の問題を解決し、鋼中に含すれる炭化
物の形聾別定量を行なうことを目的とする。
It is an object of the present invention to solve the above-mentioned conventional problems and to quantify carbides contained in steel by type and deafness.

発明の構成 本発明は、鋼中炭化物抽出残渣中のCを酸素気流中で燃
焼させCOs に変換し、該CO1を定量することによ
りC量を求める方法において、鋼中炭化物抽出残渣を、
その残渣中に含まれる炭化物の分解温度に応じて加熱温
度を変えて分解し、次いで前記分解により生じたガスを
350℃以上に加熱しCOsに変換した後、分析するこ
とを要旨とする鋼中炭化物の分析方法に関する。
Structure of the Invention The present invention provides a method for determining the amount of C by burning C in the extraction residue of carbides in steel in an oxygen stream and quantifying the CO, in which the extraction residue of carbides in steel is
In steel, the heating temperature is changed depending on the decomposition temperature of the carbide contained in the residue to decompose it, and then the gas generated by the decomposition is heated to 350°C or higher to convert it into COs, and then analyzed. Concerning methods for analyzing carbides.

第1図は本発明を実施するための装置の構成の一例を示
す説明図で、炭化物を分解するための反応炉(1)と該
反応炉(1)で生成した分解ガスをCOlに変換する反
応完結類(2)とから構成されている。
FIG. 1 is an explanatory diagram showing an example of the configuration of an apparatus for implementing the present invention, in which a reactor (1) for decomposing carbides and a decomposition gas generated in the reactor (1) are converted into COl. It is composed of reaction completion class (2).

反応炉(藍)は試料入口(13,酸素人口04および分
解ガス出口09をイずする炉心管aυと該炉心管aDの
周囲に設けた加熱炉Ozどからなっており、反応炉(1
)内の温度は仕口に調節するとどができる6反応完結類
(2)は分解ガス人口(27)およびCO8出口(28
)を有する炉心管(2G)と該炉心管(26)の周囲に
設けた加熱炉(22)とからなり、前記の反応炉(1)
とは分解ガス出口09および分解ガス人口(27)を介
して連絡されている。
The reactor (indigo) consists of a reactor core tube aυ that opens the sample inlet (13, oxygen population 04, and cracked gas outlet 09), and a heating furnace Oz installed around the reactor core tube aD.
) can be adjusted to the end. 6 Reaction completion class (2) is the cracked gas population (27) and CO8 outlet (28
) and a heating furnace (22) provided around the furnace core tube (26),
is communicated with via cracked gas outlet 09 and cracked gas port (27).

上記のように構成された分析装置において、反応炉(f
)内のに科(9)中の炭化物は酸素人口Q4から導入さ
れる酸素気流中で加熱分解され、分解ガスとして反応完
結類(2)へ送られ、再度加熱され完全にCOlに変換
された後CO3出口(28)を経てc。
In the analyzer configured as described above, a reactor (f
) The carbide in the crab family (9) was thermally decomposed in the oxygen stream introduced from the oxygen population Q4, sent to the reaction completion group (2) as a decomposed gas, heated again, and completely converted to COl. c via the rear CO3 outlet (28).

2分析計(図示せず)へ送られGO,ffiが測定され
る。このような構成の装置においては、形囮により分解
温度が異る各炭化物について分解温度をあらかじめ他の
測定手段を用いて調べておけば、反応炉(1)で加熱分
解するさい、炉内温度を逍官調節することにより油出残
渣中に含まれる各炭化物を分離して定量することができ
る。
2 analyzer (not shown) and GO and ffi are measured. In an apparatus with such a configuration, if the decomposition temperature of each carbide, which has a different decomposition temperature depending on the shape of the decoy, is determined in advance using other measuring means, the temperature inside the furnace can be adjusted when thermally decomposed in the reactor (1). By adjusting the amount, it is possible to separate and quantify each carbide contained in the oil extraction residue.

第2図は反応完結類■の炉内温度と炭化物を形成するC
のC0Illへ変換する割合(以下CO8変換率という
)との関係を示すグラフであるが、同図において炉内温
度が350℃以上のときCO1変換率は100%になる
。したがって反応炉(1)の設定温度が低い場合Cは完
全にはCOlになっておらず、分解ガスをそのままCO
1分析計へ送ってもCO,ffiの正確な定量はできな
いので、反応完結類■の温度は350℃以上に設定する
ことが必要である。
Figure 2 shows the temperature inside the furnace of the reaction completed class ① and the C that forms carbide.
This is a graph showing the relationship between the rate of conversion to C0Ill (hereinafter referred to as CO8 conversion rate). In the figure, when the furnace temperature is 350° C. or higher, the CO1 conversion rate is 100%. Therefore, if the set temperature of the reactor (1) is low, C will not completely become COl, and the cracked gas will be converted into CO as it is.
Since CO and ffi cannot be accurately quantified even if they are sent to an analyzer, it is necessary to set the temperature of the reaction completion stage (2) to 350°C or higher.

実    施    例 本発明を、鋼中炭化物としてセメンタイトを例にとり具
体的に説明する。
EXAMPLES The present invention will be specifically explained by taking cementite as an example of the carbide in steel.

wE1表に示す組成の鋼試料に第2表に示す熱処理を施
しそれぞれ試料Aおよび試料Bとした。示!!熱分析の
結果、試料Aには分解温度が200℃付近の比較的不安
定なセメンタイトが析出しており、試料Bには分解層1
11j 450 ”C付近の安定なセメンタイトが析出
していることが確認された。
Steel samples having the compositions shown in Table wE1 were subjected to the heat treatments shown in Table 2 to form Samples A and B, respectively. Show! ! As a result of thermal analysis, comparatively unstable cementite with a decomposition temperature of around 200°C was precipitated in sample A, and a decomposed layer 1 was observed in sample B.
It was confirmed that stable cementite was precipitated around 11j 450''C.

上記試料を用い10%アセチルアセトン−1%テトラメ
ヂルアンモニウムクロライドーメチルアルコール溶液を
電解液としてセメンタイ!・を電解抽出し、本発明方法
によりCの定量を行なった。
Using the above sample and using 10% acetylacetone-1% tetramethylammonium chloride methyl alcohol solution as the electrolyte, cement it! * was electrolytically extracted, and C was quantified by the method of the present invention.

使用した装置、はii図に示した構成ををし、反応炉お
よび反応完結類の炉心管はいずれも内径λ5゜、長さ3
0鴎の石英管で、その周囲にそれぞれ10amの均熱帯
を仔するように加熱炉を配置した。反応炉への酸素ガス
4人グはl、d/winとした。CO2分析計としては
Vosthoff社製のCarmhomat Cot分
析計を使用した。反応−炉の設定温度は270℃および
550℃とした。すなわち試料を2個用い、1個は27
0℃に設定、他の1個は400℃で処理した後550℃
に設定した。270℃は分解温度200℃付近の比較的
不安定なセメンタイトを分解−する温度であり、550
℃は分解温度450℃付近の安定なセメンタイトを分解
する温度である。反応完結炉の温度は1000℃に設定
した。これはCO1分析計が温度変化の影響が大きいf
!を導度測定によるものなので、反応炉の温度の違いに
よるC08の分析への影響を受けにくくするためである
The equipment used has the configuration shown in Figure ii, and the reactor and reactor core tubes for the reaction completion type both have an inner diameter of λ5° and a length of 3.
A heating furnace was placed around each quartz tube with a soaking area of 10 am. The amount of oxygen gas supplied to the reactor was 1, d/win. As a CO2 analyzer, a Carmhomat Cot analyzer manufactured by Vosthoff was used. The set temperatures of the reactor-furnace were 270°C and 550°C. In other words, two samples are used, one with 27
Set at 0℃, the other one was treated at 400℃ and then 550℃
It was set to 270℃ is the temperature at which relatively unstable cementite, which has a decomposition temperature of around 200℃, is decomposed, and 550℃
℃ is a temperature at which stable cementite, which has a decomposition temperature of around 450 ℃, is decomposed. The temperature of the reaction completion furnace was set at 1000°C. This is because CO1 analyzers are greatly affected by temperature changes.
! Since this is based on conductivity measurement, this is to make the C08 analysis less susceptible to differences in reactor temperature.

測定結果を試料(g)に対するC(ms+)の比率に換
算して第3表に示す、同表には炭化物を電解抽出した後
抽出残渣の金属成分分析結果から算出した従来法による
C量も併せ示した。
The measurement results are converted into the ratio of C (ms+) to the sample (g) and are shown in Table 3. The table also includes the amount of C calculated by the conventional method from the metal component analysis results of the extraction residue after electrolytically extracting carbides. Also shown.

第3表から、従来法においては不安定なセメンタイトと
安定なセメンタイトとを分離して定量することができな
いのに対し、本発明法ではこれらセメンタイトの分離定
量が可能で、焼鈍温度が500℃のA試料では不安定な
セメンタイトが生成しているのに対し、焼鈍温度が70
0℃のB試料では殆んどが安定なセメンタイトとなって
いると七がわかる。
Table 3 shows that while it is not possible to separate and quantify unstable cementite and stable cementite using the conventional method, the method of the present invention allows the separation and quantitative determination of these cementites, and the annealing temperature is 500°C. In sample A, unstable cementite was formed, whereas the annealing temperature was 70°C.
7 shows that most of the B sample at 0°C is stable cementite.

第1表 第2表 第3表 発明の詳細 な説明したように、鋼中炭化物の分析を行なうにあたり
、炭化物抽出残渣をそれに含まれる炭化物の分解温度付
近で加熱分解し、次いで分解ガスをCOlに変換した後
co、を分析する本発明方法により、炭化物を形聾別に
定量することができ、鋼中Cの鋼質におよぼす影響を高
精度をもって定量的に評価することが可能である。
Table 1 Table 2 Table 3 Detailed description of the invention As described above, when analyzing carbides in steel, the carbide extraction residue is thermally decomposed at around the decomposition temperature of the carbides contained therein, and then the cracked gas is converted to COl. By the method of the present invention, which analyzes CO after conversion, it is possible to quantify carbides according to their shape, and it is possible to quantitatively evaluate the influence of C in steel on steel quality with high accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施するための装置の構成の一例を示
す説明図、第2図は炉内温度とCO8変換率との関係を
示すグラフである。 1・・・反応炉     2・・・反応完結炉】1・・
・炉心管     12.22・・・加熱炉I3・・・
試料人口    14・・・酸素入口+5・・・分解ガ
ス出口  26・・・炉心管27・・・分解ガス人口 
 28・・・CO8出口9・・・試料 出 願 人  住友金属工業株式会社 第1図 ′$2図 スナ内逼4〔(ヒ)
FIG. 1 is an explanatory diagram showing an example of the configuration of an apparatus for implementing the present invention, and FIG. 2 is a graph showing the relationship between furnace temperature and CO8 conversion rate. 1... Reaction furnace 2... Reaction completion furnace] 1...
・Furnace core tube 12.22... Heating furnace I3...
Sample population 14...Oxygen inlet +5...Cracked gas outlet 26...Furnace tube 27...Cracked gas population
28...CO8 outlet 9...Sample applicant Sumitomo Metal Industries, Ltd. Figure 1'$2 Figure 4 (H)

Claims (1)

【特許請求の範囲】[Claims] 鋼中炭化物抽出残渣中のCを酸素気流中で燃焼させCO
_2に変換し、該CO_2を定量することによりC量を
求める方法において、鋼中炭化物抽出残渣を、その残渣
中に含まれる炭化物の分解温度に応じて加熱温度を変え
て分解し、次いで前記分解により生じたガスを350℃
以上に加熱しCO_2に変換した後、分析することを特
徴とする鋼中炭化物の分析方法。
The carbon in the carbide extraction residue in steel is combusted in an oxygen stream to produce CO.
In this method, the amount of C is determined by converting CO_2 into The gas generated by
A method for analyzing carbides in steel, which comprises heating and converting into CO_2 and then analyzing.
JP60122031A 1985-06-05 1985-06-05 Method for analyzing carbide in steel Pending JPS61280564A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60122031A JPS61280564A (en) 1985-06-05 1985-06-05 Method for analyzing carbide in steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60122031A JPS61280564A (en) 1985-06-05 1985-06-05 Method for analyzing carbide in steel

Publications (1)

Publication Number Publication Date
JPS61280564A true JPS61280564A (en) 1986-12-11

Family

ID=14825879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60122031A Pending JPS61280564A (en) 1985-06-05 1985-06-05 Method for analyzing carbide in steel

Country Status (1)

Country Link
JP (1) JPS61280564A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997036176A1 (en) * 1996-03-27 1997-10-02 Alliedsignal Inc. Air contamination monitor
WO2023120490A1 (en) * 2021-12-21 2023-06-29 Jfeスチール株式会社 Method for quantifying carbon in carbide

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997036176A1 (en) * 1996-03-27 1997-10-02 Alliedsignal Inc. Air contamination monitor
US5750999A (en) * 1996-03-27 1998-05-12 Alliedsignal Inc. Air contamination monitor
WO2023120490A1 (en) * 2021-12-21 2023-06-29 Jfeスチール株式会社 Method for quantifying carbon in carbide

Similar Documents

Publication Publication Date Title
JP3482497B2 (en) Isotope composition analyzer
CN108593606B (en) Method for testing germanium content in coal by utilizing atomic fluorescence spectroscopy
JPS61280564A (en) Method for analyzing carbide in steel
Frech Rapid determination of antimony in steel by flameless atomic-absorption
CN106706603A (en) Method for detecting content of elements in pig iron
Xing et al. Application of chromium catalysis technology to compound-specific hydrogen isotope analysis of natural gas samples
JPH01262463A (en) Method of measuring hydrogen and oxygen isotope ratio of water
Lehmann Direct determination of lithium in serum by atomic absorption spectroscopy
CN110160986A (en) The rapid assay methods of spent acid density in a kind of TNT production
CN114136874B (en) Device and method for measuring corrosion resistance of metal at high temperature and high pressure
JPS58740A (en) Determination of trace element in gallium-arsenic
Watanabe Accurate determination of sulphur in steels and certain heat-resisting alloys by isotope dilution mass spectrometry
CN110736714A (en) method for rapidly determining content of free carbon in casting powder
US5476793A (en) Method for deciding the reactivity and soot index of carbon products
JP2000009719A (en) Quantitative method classified by form and quantitative device classified by form of carbon contained in steel
CN115047115B (en) Equipment and method for testing oxygen isotope composition in low-oxygen-content sample
TWI796975B (en) Refractory inspection method
Eng et al. Determination of Carbon in Sodium by Isotope Dilution Mass Spectrometry.
JP4018140B2 (en) Method for determining volumetric gas flow during a liquid phase process
Shishalova et al. Peculiarities of application of the gas extraction method for determination of hydrogen content in samples of irradiated zirconium materials
JPS5839410Y2 (en) Quantitative analysis device using thermal decomposition of fluorine in organic matter
JP2848680B2 (en) Pyrolysis tube for determination of oxygen in organic compounds
JP3205594B2 (en) Metal pyrolysis tube for oxygen analysis and its pyrolysis method
JP2021130092A (en) Method for confirming no hydrocarbon residue in decrepitated material of waste substrate
Alvarado et al. Determination of trace levels of calcium in steels by carbon-furnace atomic-absorption and atomic-emission spectrometry