JPS61279903A - Adaptive controller - Google Patents

Adaptive controller

Info

Publication number
JPS61279903A
JPS61279903A JP12173085A JP12173085A JPS61279903A JP S61279903 A JPS61279903 A JP S61279903A JP 12173085 A JP12173085 A JP 12173085A JP 12173085 A JP12173085 A JP 12173085A JP S61279903 A JPS61279903 A JP S61279903A
Authority
JP
Japan
Prior art keywords
str
steady state
comparator
manipulated variable
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12173085A
Other languages
Japanese (ja)
Other versions
JPH0750401B2 (en
Inventor
Toshikatsu Fujiwara
藤原 敏勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP60121730A priority Critical patent/JPH0750401B2/en
Publication of JPS61279903A publication Critical patent/JPS61279903A/en
Publication of JPH0750401B2 publication Critical patent/JPH0750401B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Feedback Control In General (AREA)

Abstract

PURPOSE:To secure the stabilized control by checking whether a control system where a controlled system is controlled by an STR is kept under a steady state or not and then calculating a manipulated variable according to said checking result. CONSTITUTION:A function generator 6 produces the feedforward signal to a controlled system with input of the known disturbance 3. while a primary differentiator 4 and a comparator 5 discriminates a steady state and supplies the deciding signal to an STR 2 through the comparator 5. A calculation mechanism 12 for manipulated variable of the STR 2 calculates the manipulated variable (u) from an equation 3 when the output of the comparator 5 is set at value '1' (unsteady state) and then from an equation 4 when the output of the comparator is set at value '0' (steady state) respectively. Then the 2nd term of the right member of the equation 3, i.e., the factor to cause the unstable control is cut out when a steady state is decided. Thus the stable control is secured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は従来のPID調節器での制御性能の限界を向上
させるために適用でれる適応制御装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an adaptive control device that can be applied to improve the control performance limits of conventional PID controllers.

〔従来の技術〕[Conventional technology]

従来の適応制御装置の一例を第3図〜第5図に示す。こ
こでは適応制御装置として、5TR(5elf Tun
ing fl、egulator )  f取上げる0
従来の制御方法の欠点は第5図の操作量算出機構IIの
ところで示すように操作−1tut求める演算式におい
て、(3)式の右辺第2項の係数b2〜bn の値によ
り、操作ikuが時間とともに発散していく結果が得ら
れ、制御対象が不安定になるこよがある。とぐに本来、
定常状態であるべき時点での不安定な挙動が目立ち問題
である。
An example of a conventional adaptive control device is shown in FIGS. 3 to 5. Here, 5TR (5elf Tun) is used as an adaptive control device.
ing fl, egulator) f pick up 0
The drawback of the conventional control method is that, as shown in the operation amount calculation mechanism II of FIG. Results that diverge over time may be obtained and the controlled object may become unstable. Toguni originally,
The problem is that unstable behavior occurs when it should be in a steady state.

なお第3図〜第5図において% lは制御対象、2はS
TR,8はサンプリング機構、9はA RM A モy
” ル作成機mhioはARMA−E−7’ルの時間シ
フト機構、llは操作量算出機構であり、第4図の8〜
IIで示す各部の詳細は第5図に示されている。またU
は操作量、yは制御量を示す。
In Figures 3 to 5, %l is the controlled object, 2 is S
TR, 8 is sampling mechanism, 9 is ARM A moy
” The le creation machine mhio is the time shift mechanism of ARMA-E-7'le, ll is the operation amount calculation mechanism, and 8 to 8 in Fig. 4 are
Details of each part indicated by II are shown in FIG. Also U
indicates the manipulated variable, and y indicates the controlled variable.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来の技術のところで述べた制御が不安定になる原
因は第5図の操作量算出機構llで示づように(3)式
の右辺第2順の係数にある。たとえば簡単のためにb 
1=1 * bl =2  です。
The cause of the unstable control described in the above-mentioned section of the prior art lies in the coefficients in the second order on the right side of equation (3), as shown in the manipulated variable calculation mechanism 11 in FIG. For example, for simplicity b
1=1*bl=2.

〜bn * aI”−an  k零においてみるとよく
わかる。この場合には第5因の(3)式の右辺第1項は
零であり、第2項はu (t)の値を次のステップの際
に右辺のu(t−1)の値と採用するため。
~bn * aI”-an k It can be clearly seen when zero. In this case, the first term on the right side of equation (3) of the fifth factor is zero, and the second term is the value of u (t) as follows. This is used as the value of u(t-1) on the right side during the step.

次ステツプでの操作量は一2uとなり、同様にステップ
が進むにつれて4u、  8ue・・・ と発散してい
く。その結果制御対象が不安定になることがあるという
問題点がある。
The amount of operation in the next step becomes -2u, and similarly, as the steps progress, it diverges to 4u, 8ue, and so on. As a result, there is a problem that the controlled object may become unstable.

本発明は上記従来の問題点を解消するために提案された
もので、制御の安定化を図ることができるとともに、過
渡運転状態から定常状態に切換った場合にもオフセット
に非常に少なくできる適応制御装置を提供することを目
的とするものである。
The present invention was proposed in order to solve the above-mentioned conventional problems, and is capable of stabilizing control and is an adaptation that can greatly reduce offset even when switching from a transient operating state to a steady state. The purpose of this invention is to provide a control device.

〔問題点を解決するための手段〕[Means for solving problems]

本発明による適応制御装置は、STRで制御対象を制御
する制御系において、既知外乱を入力する関数発生器と
、この関数発生器の出力をフィードフォワード信号とし
て前記制御対象に加え定常状態では前記STRから出力
嘔れる操作量を零に近づける手段と、前記既知外乱を1
次微分する1次微分器と、この1次微分器の出力の絶対
値を比較する比較器と、この比較器により比較した値が
所定のしきい値を越えた段階では過渡運転状態とみなす
信号を前記STRに入力し、このSTRにより1時点先
の制御量の分散を最小にする操作量を算出し、且つ前記
比較した値が所定のしきい値を越えない段階では定常状
態とみなす信号を前記STRに入力し、このSTRによ
り定常状態と判定できた領域での操作量を算出する手段
とを具備してなることを特徴とするものである。
The adaptive control device according to the present invention includes, in a control system that controls a controlled object using an STR, a function generator that inputs a known disturbance, and an output of this function generator that is added to the controlled object as a feedforward signal to the STR in a steady state. a means for bringing the manipulated variable output from the output close to zero; and a means for reducing the known disturbance to 1.
A first-order differentiator that performs order differentiation, a comparator that compares the absolute value of the output of this first-order differentiator, and a signal that is regarded as a transient operating state when the value compared by this comparator exceeds a predetermined threshold. is input to the STR, and the STR calculates the manipulated variable that minimizes the variance of the controlled variable one point ahead, and at the stage where the compared value does not exceed a predetermined threshold, a signal is determined to be in a steady state. The present invention is characterized by comprising means for inputting the input into the STR and calculating the amount of operation in a region that can be determined to be a steady state based on the STR.

〔作 用〕[For production]

本発明によれば、操作量Uの発散を防止す石ために、定
常状態にあるか否かを制御対象への既知外乱の動きを1
次微分回路で検出して、定常状態と判定できた段階で、
従来技術の第5図の操作量算出機構11のc3)式の右
辺第2項をカットし、かつ右辺第1項の17b、の値t
l−第5図のARMAモデル作成機構9で同定した値と
は関係なく、右辺第′2項をカット後安定な制御ができ
るように指定することにより、定常状態で制御を不安定
にしている根源を取り除いているので制御の安定化が得
られるものである。
According to the present invention, in order to prevent divergence of the manipulated variable U, the movement of a known disturbance to the controlled object is determined by 1 to determine whether or not it is in a steady state.
When it is detected by the second-order differential circuit and determined to be a steady state,
The second term on the right side of equation c3) of the operation amount calculation mechanism 11 in FIG. 5 of the prior art is cut, and the value t of the first term on the right side is 17b.
l- Regardless of the value identified by the ARMA model creation mechanism 9 in Figure 5, by specifying the '2nd term on the right side so that stable control can be achieved after cutting, control is made unstable in the steady state. Since the root cause is removed, control can be stabilized.

〔実施例〕〔Example〕

本発明の一実施例を添付図面を参照して詳細に説明する
An embodiment of the present invention will be described in detail with reference to the accompanying drawings.

第1図は本発明の一実施例の構I!i、を示す図、第2
図は第1図におけるSTRの詳細図である。
FIG. 1 shows the structure of an embodiment of the present invention! i, the second diagram showing
The figure is a detailed diagram of the STR in FIG. 1.

第1図および第2図において、lは制御対象、2はST
R,3は既知外乱、4は1次微分器。
In Figures 1 and 2, l is the controlled object and 2 is the ST
R, 3 is a known disturbance, and 4 is a first-order differentiator.

5は比較器、6fi関数発生器、7は加算器、8はサン
プリング機構、9はARMAモデル作成as、7 uは
ARMAモデルの時間シフト機構。
5 is a comparator, 6 is a fi function generator, 7 is an adder, 8 is a sampling mechanism, 9 is an ARMA model creation as, and 7 u is a time shift mechanism for the ARMA model.

12は操作量算出機構でおる。12 is a manipulated variable calculation mechanism.

上記本発明の一実施例の作用について説明する。The operation of the above embodiment of the present invention will be explained.

第1図において、制御対象1を5TR2で制御する制御
系において、既知外乱3を1次微分器4で1次微分(T
$、Sはラプラス演算1+τS 子、τは定数〕した値の絶対値を比較器5で指定した値
と比較して、指定した値を越えると値1t−1それ以外
は零を出力してSTR”に供給する。そして、既知外乱
31に入力とする関数発生器6の出力と5TR2の出力
を加算器7で加算し、制御対象Iに供給する。なお関数
発生器6は既知外乱3(たとえば負荷)を入力して制御
対象lへのフィードフォワード信号を発生させる。5T
R2は第2図に示すようにブンプリング機構8.ARM
Aモデル作成機構9、ARMAモデルの時間シフト機構
10および操作i算出機構ノ2よりなり1本発明の特徴
は操作置算出機構12にある。第2図の操作量算出機構
12では比較器5の出力が値1のときに(3)式により
操作量Uを算出し、比較器5の出力が値0のときには(
4)式により操作量Uを算出する。
In FIG. 1, in a control system in which a controlled object 1 is controlled by 5TR2, a known disturbance 3 is differentiated by a first-order differentiator 4 (T
Compare the absolute value of the value ($, S is the child of Laplace operation 1 + τS, τ is a constant) with the value specified by the comparator 5, and if it exceeds the specified value, the value is 1t-1. Otherwise, it outputs 0 and outputs STR. Then, an adder 7 adds the output of the function generator 6 and the output of 5TR2, which are input to the known disturbance 31, and supplies it to the controlled object I.The function generator 6 inputs the known disturbance 3 (for example, load) and generates a feedforward signal to the controlled object l.5T
R2 is a bump-pull mechanism 8 as shown in FIG. ARM
A feature of the present invention lies in the operation position calculation mechanism 12, which consists of an A model creation mechanism 9, an ARMA model time shift mechanism 10, and an operation i calculation mechanism 2. The manipulated variable calculation mechanism 12 in FIG.
4) Calculate the manipulated variable U using the formula.

ただし、(4)式のkは制御性能がよくなるように調整
員が試行錯誤により求めるものである。また、1次微分
器4は既知外乱3が不変時には微分値が零になるため、
1次微分器4の出力の絶対値で定常運転時か過渡運転時
かは判定できる。
However, k in equation (4) is determined by the adjuster through trial and error in order to improve control performance. In addition, since the differential value of the first-order differentiator 4 becomes zero when the known disturbance 3 remains unchanged,
Based on the absolute value of the output of the first-order differentiator 4, it can be determined whether the operation is steady or transient.

〔発明の効果〕〔Effect of the invention〕

以上によシ本発明によれば関数発生器でフィードフォワ
ード信号を発生させ、STRから出力される操作量uf
定常状態でははソ零にすることができ、かつ1次微分器
および比較器により定常状態か否かを判別できるため、
例えば第2図の操作量算出機構12の(31式と(4式
の切換ができ、制御の安定化が図れるとともに(4式に
切換った場合にもオフセット’に非常に少なくできる等
の優れた効果が奏せられるものである。
According to the present invention, the function generator generates a feedforward signal, and the manipulated variable uf is output from the STR.
In a steady state, it can be set to zero, and it can be determined whether it is in a steady state using a first-order differentiator and a comparator.
For example, the manipulated variable calculation mechanism 12 in Fig. 2 can be switched between the (31 and (4) formulas, stabilizing the control, and even when switching to the (4 formulas), the offset can be minimized. This will bring about the same effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の構成を示す図、第2図は第
1図におけるSTRの詳細図、第3図〜第5図はそれぞ
れ従来例を示す図である01・・・制御対象、2・・・
5TR13・・・既知外乱、4・・・1次微分器、5・
・・比較器、6・・・関数発生器、7・・・加算器、1
2・・・操作量算出機構。 出願人復代理人 弁理士 鈴 江 武 彦第1図 9R2図
FIG. 1 is a diagram showing the configuration of an embodiment of the present invention, FIG. 2 is a detailed diagram of the STR in FIG. 1, and FIGS. 3 to 5 are diagrams each showing a conventional example.01...Control Target, 2...
5TR13... Known disturbance, 4... First-order differentiator, 5.
...Comparator, 6...Function generator, 7...Adder, 1
2...Operation amount calculation mechanism. Applicant Sub-Agent Patent Attorney Takehiko Suzue Figure 1 Figure 9R2

Claims (1)

【特許請求の範囲】[Claims] STRで制御対象を制御する制御系において、既知外乱
を入力する関数発生器と、この関数発生器の出力をフィ
ードフォワード信号として前記制御対象に加え定常状態
では前記STRから出力される操作量を零に近づける手
段と、前記既知外乱を1次微分する1次微分器と、この
1次微分器の出力の絶対値を比較する比較器と、この比
較器により比較した値が所定のしきい値を越えた段階で
は過渡運転状態とみなす信号を前記STRに入力し、こ
のSTRにより1時点先の制御量の分散を最小にする操
作量を算出し、且つ前記比較した値が所定のしきい値を
越えない段階では定常状態とみなす信号を前記STRに
入力し、このSTRにより定常状態と判定できた領域で
の操作量を算出する手段とを具備してなることを特徴と
する適応制御装置。
In a control system that controls a controlled object using an STR, there is a function generator that inputs a known disturbance, and the output of this function generator is added to the controlled object as a feedforward signal, and in a steady state, the manipulated variable output from the STR is zero. a first-order differentiator for first-order differentiating the known disturbance; a comparator for comparing the absolute value of the output of the first-order differentiator; At the stage where the operating state is exceeded, a signal that is considered to be a transient operating state is input to the STR, and from this STR, the manipulated variable that minimizes the variance of the controlled variable one point in time is calculated, and the compared value exceeds a predetermined threshold value. An adaptive control device characterized by comprising means for inputting a signal to the STR that is considered to be a steady state when the state is not exceeded, and calculating an operation amount in a region determined to be a steady state based on the STR.
JP60121730A 1985-06-05 1985-06-05 Adaptive controller Expired - Lifetime JPH0750401B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60121730A JPH0750401B2 (en) 1985-06-05 1985-06-05 Adaptive controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60121730A JPH0750401B2 (en) 1985-06-05 1985-06-05 Adaptive controller

Publications (2)

Publication Number Publication Date
JPS61279903A true JPS61279903A (en) 1986-12-10
JPH0750401B2 JPH0750401B2 (en) 1995-05-31

Family

ID=14818459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60121730A Expired - Lifetime JPH0750401B2 (en) 1985-06-05 1985-06-05 Adaptive controller

Country Status (1)

Country Link
JP (1) JPH0750401B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6447279A (en) * 1987-08-17 1989-02-21 Mitsubishi Electric Corp Voltage converter

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58154004A (en) * 1982-03-05 1983-09-13 Toshiba Corp Auto-tuning controller with feedforward control

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58154004A (en) * 1982-03-05 1983-09-13 Toshiba Corp Auto-tuning controller with feedforward control

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6447279A (en) * 1987-08-17 1989-02-21 Mitsubishi Electric Corp Voltage converter

Also Published As

Publication number Publication date
JPH0750401B2 (en) 1995-05-31

Similar Documents

Publication Publication Date Title
US6157156A (en) Motor controller
JP3545006B2 (en) Two-degree-of-freedom controller and servo controller for electric motor
JP4553158B2 (en) Motor control apparatus and method
JPH05118302A (en) Controller for servomotor
JPH03289385A (en) Regulating method for gain of motor control
JPS61279903A (en) Adaptive controller
US10684594B2 (en) Machine learning device, servo motor controller, servo motor control system, and machine learning method
JP2002091570A (en) Servo control method
JP3556779B2 (en) Servo motor overshoot prevention method
JP2003044102A (en) Learning control method
JPH0580805A (en) Adaptive sliding mode control system based on pi control loop
JP2000020104A (en) Method and device for speed control gain adjustment
CN115425892B (en) Method for identifying rotational inertia of motor and device adopting method
Souza et al. Pid tuning for the pitch angle of a two-wheeled vehicle
JP4362762B2 (en) Servo control device and adjustment method thereof
JP7482201B1 (en) MOTOR CONTROL SYSTEM, CONTROL PARAMETER AUTOMATIC ADJUSTMENT METHOD, AND AUTOMATIC ADJUSTMENT PROGRAM
JP2010119155A (en) Motor control device and control method
Tang et al. Knowledge-based extension of model-referenced adaptive control with application to an industrial process
JPH02232702A (en) Controller
JPH01303084A (en) Digital servo-controlling method
JP3015523B2 (en) Process control equipment
JP2855644B2 (en) Controller
JPS63257487A (en) Controlling method for servo-motor
JP2005135060A5 (en)
JPS6397347A (en) Control method for molten surface in mold in continuous casting machine