JPS61279614A - Production of extra-low sulfur alloy steel - Google Patents

Production of extra-low sulfur alloy steel

Info

Publication number
JPS61279614A
JPS61279614A JP12179385A JP12179385A JPS61279614A JP S61279614 A JPS61279614 A JP S61279614A JP 12179385 A JP12179385 A JP 12179385A JP 12179385 A JP12179385 A JP 12179385A JP S61279614 A JPS61279614 A JP S61279614A
Authority
JP
Japan
Prior art keywords
molten steel
steel
powder
slag
refining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12179385A
Other languages
Japanese (ja)
Inventor
Kenichi Kamegawa
亀川 憲一
Kaoru Masame
眞目 薫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP12179385A priority Critical patent/JPS61279614A/en
Publication of JPS61279614A publication Critical patent/JPS61279614A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/068Decarburising
    • C21C7/0685Decarburising of stainless steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/064Dephosphorising; Desulfurising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/072Treatment with gases

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To decrease efficiently the sulfur component of a high chronium steel by forming slag having specific basicity on the surface of a molten steel contg. a specific ratio of Cr and blowing an additive for desulfurization refining to the surface of the molten steel under specific conditions while subjecting the molten steel to bottom stirring. CONSTITUTION:The slag having >=1 basicity =(CaO+MgO)/(SiO2+Al2O3) is preliminarily formed on the surface of the molten steel contg. 10-35% Cr in the stage of producing the extra-low sulfur alloy steel from the molten steel. The powder of the additive for desulfurization refining is then blown to the surface of the molten steel under the reduced pressure at the rate at which the powder is substantially intruded into the molten steel while the molten steel is stirred by the inert gas blown from the bottom. The slag is formed on the surface of the molten steel at about 1-100kg/molten steel ton and the bottom blowing inert gas is blown at about 0.5-10Nl/min molten steel ton. The powder of the additive for desulfurization refining consists essentially of CaO and the inside of the refining vessel is reduced to about 200-0.3Torr pressure.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はステンレス鋼等のクロムを10〜35%含有す
る溶鋼から極低硫合金鋼を製造する方法に関し、さらに
詳細には、クロム合金鋼の減圧下での還元精錬期におい
て脱硫効率を向上する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing ultra-low sulfur alloy steel from molten steel containing 10 to 35% chromium, such as stainless steel. The present invention relates to a method for improving desulfurization efficiency in the reductive refining stage below.

!引1浦                 、:。! Hiki 1ura, :.

転炉、電気炉等の装置で予め精錬した溶鋼を減    
 1圧下でさらに精錬して所望の化学組成をもつ溶鋼を
製造することは広〈実施されている。その代表的なもの
はステンレス鋼製造における■○Dプロセス、一部の高
級鋼、合金鋼の製造に用いられるVADプロセスであり
、また主に溶鋼の脱ガスを目的とするDH法、RH法な
ども減圧下における鋼の精錬の一種である。
Reduces molten steel that has been refined in advance using equipment such as converters and electric furnaces.
It is widely practiced to produce molten steel with a desired chemical composition by further refining under one pressure. Typical examples are the ■○D process in stainless steel manufacturing, the VAD process used in the manufacturing of some high-grade steels and alloy steels, and the DH method and RH method, which are mainly used for degassing molten steel. It is also a type of steel refining under reduced pressure.

第2図はステンレス鋼製造におけるVODプロセスのフ
ローチャートである。図示の如く、この方法ではまず電
気炉でスクラップおよび合金鉄を溶解、還元処理し、ク
ロム含有粗溶鋼とし、出鋼、除滓の後、VOD炉に装入
して減圧下で精錬を行う。このVOD炉における精錬で
は、まず真空下で酸素上吹きをして脱炭を行ってC量を
所望の値まで低減する。還元(脱ガス)期においは、前
の真空脱炭時に酸化され、クロム酸化物となって溶  
   (鋼表面にスラグとして生成したクロム酸化物を
還元するため、Si、 AI等の脱酸剤およびCaO,
CaF2等の造滓剤を投入し、底吹き等による攪拌を行
い、脱硫等も行う。次いで、溶鋼の脱酸を行い、これを
出鋼、鋳込みを行う。
FIG. 2 is a flowchart of the VOD process in stainless steel manufacturing. As shown in the figure, in this method, scrap and ferroalloy are first melted and reduced in an electric furnace to produce chromium-containing crude molten steel, which is tapped and slag removed, then charged into a VOD furnace and refined under reduced pressure. In refining in this VOD furnace, first, oxygen is top-blown under vacuum to perform decarburization and reduce the amount of C to a desired value. During the reduction (degassing) stage, the odor is oxidized during the previous vacuum decarburization, becomes chromium oxide, and is dissolved.
(In order to reduce the chromium oxide generated as slag on the steel surface, deoxidizers such as Si and AI and CaO,
A slag-forming agent such as CaF2 is added, and agitation is performed by means of bottom blowing, and desulfurization is also performed. Next, the molten steel is deoxidized, and then tapped and cast.

従来のVODプロセスでは、鋼中のSを特に低くする場
合には、還元期に使用するフラックスの塩基度を高くし
、フラックスの滓化と溶鋼との接触反応を促進するため
に、^rガスの底吹きによって溶鋼を強攪拌していた。
In the conventional VOD process, when the S content in the steel is particularly low, the basicity of the flux used in the reduction stage is increased, and in order to promote the formation of flux and the contact reaction with molten steel, ^r gas is The molten steel was strongly stirred by bottom blowing.

しかしながら、高塩基度のフラックスが溶鋼表面に投入
された場合には、相互に融着して塊状化しやすく、滓化
が困難になる。一方、滓化促進のために溶鋼を強攪拌す
ることは、容器の耐火物の損傷や溶鋼温度の低下を招き
、極低硫クロム合金鋼の製造は複雑且つコストの高いも
のであった。
However, when high basicity flux is applied to the surface of molten steel, it tends to fuse together and form lumps, making it difficult to form into slag. On the other hand, vigorously stirring the molten steel to promote slag formation causes damage to the refractories in the container and a drop in the temperature of the molten steel, making the production of ultra-low sulfur chromium alloy steel complicated and expensive.

一方、フェライト系またはオーステナイト系のステンレ
ス鋼の不純物の一つであるSを数ppmのオーダーまで
低下させれば、その耐食性が飛躍的に向上することが一
般的に知られており、その−例を第3図に示す。
On the other hand, it is generally known that if S, which is one of the impurities in ferritic or austenitic stainless steel, is reduced to the order of several ppm, the corrosion resistance will be dramatically improved. is shown in Figure 3.

第3図はステンレス鋼中S量が腐食速度に及ぼす影響を
沸とう塩酸試験によって調べた結果を示すグラフである
。試験は2 t XIOW X401 (mm)のステ
ンレス鋼試験片に湿式600番エメリーの研摩、面を形
成したものを用い、これをpH1,4の沸とう塩酸中に
6時間浸漬し、その間の平均腐食度を測定し、その結果
を第3図に示した。
FIG. 3 is a graph showing the results of investigating the effect of the amount of S in stainless steel on the corrosion rate using a boiling hydrochloric acid test. The test used a stainless steel specimen of 2t XIOW The temperature was measured and the results are shown in Figure 3.

第3図から理解されるように、鋼中S量が20p、pm
以下となると腐食速度が急激に低下し、著しく耐食性の
優れたステンレス鋼が得られる。
As understood from Figure 3, the amount of S in the steel is 20 p, pm.
If it is below, the corrosion rate will drop sharply, and stainless steel with extremely excellent corrosion resistance will be obtained.

このように、ステンレス鋼等の高クロム鋼の8分を効率
よく低減することは従来より要望されて       
1いたものである。
In this way, it has long been desired to efficiently reduce the 8% of high chromium steel such as stainless steel.
1 was there.

発日の ゛しようとする問題点 本発明は、減圧下での鋼精錬に右ける技術的限    
   )界、特に脱硫精錬用添加剤を効率よく供給して
反応させると言う点での従来技術の限界を超える新  
     ましい精錬技術を提案することを目的とする
The present invention solves the technical limitations of steel refining under reduced pressure.
) industry, especially in terms of efficiently supplying and reacting additives for desulfurization and refining, which go beyond the limits of conventional technology.
The purpose is to propose new refining technology.

さらに詳細には本発明の目的は、クロムを10〜   
   −35%含有した溶鋼の脱硫慇理方法において、
・溶鋼       lを強攪拌せずに、脱硫精錬用添
加剤と溶鋼の反応       1を促進せしめて極低
硫クロム合金鋼を提供することにある。
More specifically, the object of the present invention is to contain chromium from 10 to
- In a method for desulfurizing molten steel containing 35%,
- To provide ultra-low sulfur chromium alloy steel by promoting the reaction 1 between desulfurization refining additives and molten steel without vigorously stirring the molten steel.

問題点を解゛する手段 上記した如く、クロムを含有する鋼中のSを特に低くす
るために、還元(脱ガス)期に使用するフラックスの塩
基度を高くし、溶鋼表面に上置の状態で添加する従来方
法では、溶鋼の攪拌力が弱いと脱硫は十分に進行せず、
また強攪拌を行うと耐火物の損傷や溶鋼温度の低下を招
き、極低硫鋼の製造コストが高くなる。こうした問題点
を解決するため本発明者等は種々の実験、検討の末、次
のことを見出したものである。
Means for solving the problem As mentioned above, in order to particularly reduce the S content in steel containing chromium, the basicity of the flux used in the reduction (degassing) stage is increased and the flux is placed on the surface of the molten steel. In the conventional method of adding molten steel, desulfurization does not proceed sufficiently if the stirring force of the molten steel is weak.
In addition, strong stirring causes damage to refractories and a drop in molten steel temperature, increasing the manufacturing cost of ultra-low sulfur steel. In order to solve these problems, the inventors of the present invention have discovered the following after various experiments and studies.

すなわち、フラックスの滓化と溶鋼との接触反応を促進
するための手段として、還元期において、精錬用気体及
び/又は他のキャリアガスによって脱硫精錬用添加剤の
粉体を溶鋼中に吹き込むと、溶鋼との接触面積が大きく
脱硫が効率よく進行し、またスラグの塩基度を高くする
と、鋼中のSを数ppmオーダーにまで低下させること
が可能である。
That is, as a means to promote slag formation of flux and contact reaction with molten steel, during the reduction period, when powder of a desulfurization refining additive is blown into molten steel using refining gas and/or other carrier gas, If the contact area with molten steel is large and desulfurization proceeds efficiently, and if the basicity of the slag is increased, it is possible to reduce the S content in the steel to the order of several ppm.

本発明は上記知見に基づき完成したものであって、クロ
ムを10〜35%含有した溶鋼から極低硫合金網を製造
する方法において、予め塩基度= (Ca O+MgO
) / (SiO2+A1ao3)が1以上ノスラグを
溶       :。
The present invention was completed based on the above findings, and includes a method for producing an ultra-low sulfur alloy network from molten steel containing 10 to 35% chromium.
) / (SiO2+A1ao3) dissolves 1 or more Noslag:.

鋼表面に生成させ、底部より不活性ガスを吹込ん   
    i! で溶鋼を攪拌しながら、脱硫精錬用添加剤の粉体   
    1を、精錬用気体及び/又は他のキャリアガス
にょ       1って、前記粉体が溶鋼中に十分侵
入し得る速度で       1減圧下において溶鋼表
面に吹きつけることを特徴としている。
Generates on the steel surface and blows inert gas from the bottom
i! While stirring the molten steel, add powder of additive for desulfurization refining.
The method is characterized in that the powder is blown onto the surface of the molten steel under reduced pressure using a refining gas and/or other carrier gas at a speed that allows the powder to sufficiently penetrate into the molten steel.

尚、溶鋼表面に生成させるスラグの量は1〜+00kg
 /溶鋼トン、底部より吹込む不活性ガスの量は0.5
〜10 N 1 /min溶鋼トン程度が好ましい。
The amount of slag generated on the surface of molten steel is 1 to +00 kg.
/ ton of molten steel, the amount of inert gas blown from the bottom is 0.5
~10 N 1 /min molten steel tons is preferred.

使用する脱硫精錬用添加剤の粉体はCaOを生成分とし
たものであり、精錬容器内の減圧の程度は、S U 5
304精錬の■oDプロセスの場合、2oo〜0、3T
orrの範囲である。
The powder of the desulfurization refining additive used contains CaO, and the degree of vacuum in the refining vessel is S U 5.
304 refining ■ oD process, 2oo ~ 0, 3T
It is in the range of orr.

また、脱硫精錬用添加剤の粉体を吹き込むキャリアガス
は、精錬用気体、すなわちo2ガス、あるいはAr等の
不活性ガスまたはそれらの混合気体でもよい。
Further, the carrier gas into which the powder of the desulfurization refining additive is blown may be a refining gas, that is, O2 gas, an inert gas such as Ar, or a mixture thereof.

許月 以下、本発明の方法の各条件の限定理由について説明す
る。
The reasons for limiting each condition of the method of the present invention will be explained below.

本発明の方法の対象となる溶鋼のクロム含有量の範囲を
制限したのは、VODプロセスにおける極低硫の対象鋼
種はクロムを10%以上含有するものであり、一方、現
状では35%以上のクロムを含有する鋼種は実用上受な
いか、らである。
The reason for limiting the range of chromium content in molten steel that is subject to the method of the present invention is that steel types that are subject to ultra-low sulfur in the VOD process contain 10% or more of chromium, whereas currently chromium contains 35% or more. Steel types containing chromium are practically impractical.

また、塩基度が1以上のスラグを予め溶鋼表面に生成さ
せるのは、VOD真空脱炭工程にて発生したCr=C)
+等の酸化物を還元する還元工程にてスラグを滓化させ
るためには塩基度が工程度必要であり、塩基度が1未満
ではスラグの脱硫能はほとんどなく、粉体を溶鋼表面に
吹きつける効果があられれないからである。
In addition, slag with a basicity of 1 or more is generated on the surface of the molten steel in advance (Cr = C) generated in the VOD vacuum decarburization process.
In order to turn slag into slag in the reduction process of reducing oxides such as This is because the effect of applying it cannot be obtained.

以下、本発明を実施例により詳細に説明する。Hereinafter, the present invention will be explained in detail with reference to Examples.

なお、これらの実施例は本発明の単なる例示であって本
発明の技術的範囲を何等制限するものではない。
It should be noted that these Examples are merely illustrative of the present invention and do not limit the technical scope of the present invention in any way.

実施例 第1表に示す化学組成の粗溶鋼を酸素上吹きによる脱炭
工程に付した。このとき、低炭素域では一部のCrが酸
化され、クロム酸化物となって溶鋼表面にスラグとして
生成した。次に溶鋼の脱酸とクロムの還元を目的として
Sl、A1等の脱酸剤およびCaO,CaF2等の造滓
剤を投入し、底吹き等による攪拌を行い、下記の第1表
に示す化学組成とした。
EXAMPLE Crude molten steel having the chemical composition shown in Table 1 was subjected to a decarburization process using oxygen top blowing. At this time, in the low carbon region, some Cr was oxidized and turned into chromium oxides, which were generated as slag on the surface of the molten steel. Next, for the purpose of deoxidizing the molten steel and reducing chromium, deoxidizers such as Sl and A1 and slag forming agents such as CaO and CaF2 are added, stirred by bottom blowing etc., and the chemical composition shown in Table 1 below is added. The composition is as follows.

次いで、本発明に従い、炉底より^rガスを吹込みなが
ら、粉体上吹きによる脱硫を行った。
Next, according to the present invention, desulfurization was performed by top blowing powder while blowing ^r gas from the bottom of the furnace.

溶鋼表面に吹付ける脱硫精錬用添加剤の粉体はCabニ
ア6%、CaFz:17%、5iOzニア%の組成を有
する、粒径50メツシユ以下の混合粉体を用い、これを
上吹用ランスからArをキャリアガスとして溶鋼に高速
度で吹付けた。この上吹用ランスはストレート型ノズル
であり、粉体をArをキャリアガスとしてマツハ1で吹
出させた。
The desulfurization refining additive powder to be sprayed onto the surface of the molten steel is a mixed powder with a particle size of 50 mesh or less, which has a composition of 6% Cab Ni, 17% CaFz, and 5iOz Ni. The molten steel was sprayed at high speed with Ar as a carrier gas. This top-blowing lance was a straight nozzle, and the powder was blown out with a Matsuha 1 using Ar as a carrier gas.

なお、Arガス圧力は5Kg/ca!、ガス流量は2N
m”/分とした。また、粉体の供給速度は2 kM/分
・トンであり、供給量は12kg/)ンとし、さらに、
上吹ランスと溶鋼湯面との間の距離は500n+mに維
持した。同時に、底吹き攪拌用のポーラスプラグを介し
てlNll1分・トンの割合でArを吹込んだ。この間
、炉内は2Torrの減圧状態に保持していた。
In addition, the Ar gas pressure is 5Kg/ca! , gas flow rate is 2N
The powder supply rate was 2 km/min/ton, the supply amount was 12 kg/min, and
The distance between the top blowing lance and the molten steel surface was maintained at 500n+m. At the same time, Ar was blown through a porous plug for bottom-blowing stirring at a rate of 1N1/min/ton. During this time, the inside of the furnace was maintained at a reduced pressure of 2 Torr.

この本発明による粉体上吹き脱硫後のクロム含有鋼の化
学組成を第1表に示す。
Table 1 shows the chemical composition of the chromium-containing steel after powder top-blowing desulfurization according to the present invention.

第1表 (重量%) また、第1図は、従来技術および本発明の方法による脱
硫処理における硫黄配分比を示すグラフである。この硫
黄配分比(S)/l:S)は鋼中S量に対するスラグ中
S量の比であり、脱硫の指標であり、当然ながらその数
値が大である程脱硫がよく進行することを示す。
Table 1 (% by weight) FIG. 1 is a graph showing the sulfur distribution ratio in the desulfurization treatment according to the conventional technique and the method of the present invention. This sulfur distribution ratio (S)/l:S) is the ratio of the amount of S in the slag to the amount of S in the steel, and is an index of desulfurization. Naturally, the higher the value, the better the desulfurization progresses. .

第1図中、目印は従来の上置法による結果を、Δ印は従
来法において強攪拌をしたときの結果を、・印は本発明
に従い粉体上吹したときの結果をそれぞれ示す。
In FIG. 1, the marks indicate the results obtained by the conventional over-blowing method, the Δ marks indicate the results obtained by vigorous stirring in the conventional method, and the marks indicate the results obtained by top-blowing powder according to the present invention.

第1表および第1図に示すように、従来の上置法の場合
、スラグ塩基度が2.0以上になると硫黄分配比が一定
となり、脱硫効率がそれ以上向上しないのに対して、本
発明に従う粉体上吹法ではスラグ塩基度が2.0以上と
なっても硫黄分配比は一定とならず、さらに高くなり、
従来の攪拌力を強化した方法以上の硫黄分配比が得られ
、本発明が従来法に比べ格段に優れた脱硫効果を奏する
ことが確認された。
As shown in Table 1 and Figure 1, in the case of the conventional overlay method, when the slag basicity reaches 2.0 or more, the sulfur distribution ratio becomes constant and the desulfurization efficiency does not improve any further. In the powder top blowing method according to the invention, even if the slag basicity becomes 2.0 or more, the sulfur distribution ratio does not remain constant and becomes even higher.
A higher sulfur distribution ratio than the conventional method using stronger stirring power was obtained, and it was confirmed that the present invention has a much superior desulfurization effect compared to the conventional method.

発明の効果 以上に詳細に説明したように本発明は、塩基度が1以上
のスラグを溶鋼表面に形成し、減圧下で、不活性ガスを
底吹きすることにより溶鋼を攪拌しながら、CaO等の
脱硫精錬用添加剤の粉体を、精錬用気体及び/又は他の
キャリアガスによって、前記粉体が溶鋼中に十分侵入し
得る速度で溶鋼表面に吹き込むことを特徴とするもので
ある。
Effects of the Invention As explained in detail above, the present invention involves forming a slag with a basicity of 1 or more on the surface of molten steel, and stirring the molten steel by blowing inert gas from the bottom under reduced pressure. The present invention is characterized in that the powder of the desulfurization refining additive is blown onto the surface of the molten steel using a refining gas and/or another carrier gas at a rate that allows the powder to sufficiently penetrate into the molten steel.

本発明の方法によって、鋼中S量を数ppmまで低減で
き、耐食性に優れたステンレス鋼を提供することができ
るとともに、本発明の方法においては炉底部より不活性
ガスにより溶鋼を強攪拌する必要がないので炉内耐火物
の原単位も向上し、さらに熱バランスよく脱硫を実施す
ることができる。
By the method of the present invention, the amount of S in steel can be reduced to several ppm, and stainless steel with excellent corrosion resistance can be provided. In addition, in the method of the present invention, it is not necessary to vigorously stir the molten steel with inert gas from the bottom of the furnace. Since there is no waste, the unit consumption of refractories in the furnace is improved, and desulfurization can be carried out with a better heat balance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来技術および本発明の方法による脱硫処理に
右ける硫黄配分比を示すグラフであり、第2図はステン
レス鋼製造にふけるVODプロセスのフローチャートで
あり、 第3図はステンレス鋼中S量が腐食速度に及ぼす影響を
沸とう塩酸試験によって調べた結果を示すグラフである
。 特許出願人 住友金属工業株式会社 代 理 人 弁理士 新居正彦 屯 □ ル 第1図
Fig. 1 is a graph showing the sulfur distribution ratio in desulfurization treatment according to the prior art and the method of the present invention, Fig. 2 is a flowchart of the VOD process used in stainless steel production, and Fig. 3 is a graph showing the sulfur distribution ratio in desulfurization treatment by the conventional technology and the method of the present invention. 2 is a graph showing the results of a boiling hydrochloric acid test to examine the effect of amount on corrosion rate. Patent applicant Sumitomo Metal Industries Co., Ltd. Agent Patent attorney Masahiko Arai Figure 1

Claims (1)

【特許請求の範囲】 クロムを10〜35%含有した溶鋼から極低硫合金鋼を
製造する方法において、下式の塩基度が1以上のスラグ
を溶鋼表面に形成し、不活性ガスを底吹きすることによ
り溶鋼を攪拌しながら、脱硫精錬用添加剤の粉体を、精
錬用気体及び/又は他のキャリアガスによって、前記粉
体が溶鋼中に十分侵入し得る速度で減圧下において溶鋼
表面に吹き込むことを特徴とする極低硫合金鋼の製造方
法。 塩基度=(CaO+MgO)/(SiO_2+Al_2
O_3)
[Claims] In a method for producing ultra-low sulfur alloy steel from molten steel containing 10 to 35% chromium, slag having a basicity of 1 or more according to the following formula is formed on the surface of the molten steel, and an inert gas is blown from the bottom. While stirring the molten steel, the powder of the desulfurization refining additive is applied to the surface of the molten steel under reduced pressure using a refining gas and/or other carrier gas at a speed that allows the powder to sufficiently penetrate into the molten steel. A method for producing ultra-low sulfur alloy steel, characterized by blowing. Basicity = (CaO + MgO) / (SiO_2 + Al_2
O_3)
JP12179385A 1985-06-05 1985-06-05 Production of extra-low sulfur alloy steel Pending JPS61279614A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12179385A JPS61279614A (en) 1985-06-05 1985-06-05 Production of extra-low sulfur alloy steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12179385A JPS61279614A (en) 1985-06-05 1985-06-05 Production of extra-low sulfur alloy steel

Publications (1)

Publication Number Publication Date
JPS61279614A true JPS61279614A (en) 1986-12-10

Family

ID=14820043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12179385A Pending JPS61279614A (en) 1985-06-05 1985-06-05 Production of extra-low sulfur alloy steel

Country Status (1)

Country Link
JP (1) JPS61279614A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS589914A (en) * 1981-06-30 1983-01-20 Sumitomo Metal Ind Ltd Refining method for steel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS589914A (en) * 1981-06-30 1983-01-20 Sumitomo Metal Ind Ltd Refining method for steel

Similar Documents

Publication Publication Date Title
CA1237585A (en) Method for producing steel in a top-blown vessel
JPS589914A (en) Refining method for steel
US4604138A (en) Process for refining hot metal
CA2559154C (en) Method for a direct steel alloying
JPH10140227A (en) Production of high alloy steel by joining two molten steels
JPS61279614A (en) Production of extra-low sulfur alloy steel
JPH083619A (en) Method for melting stainless steel
US2079848A (en) Making steel
CN115652184B (en) Method for smelting ultra-pure ferrite stainless steel by using slag melting agent in AOD converter
JP7424350B2 (en) Molten steel denitrification method and steel manufacturing method
JPS6315965B2 (en)
JPH03502361A (en) Manufacturing method of general-purpose steel
JPH08134528A (en) Production of extra low carbon steel
JP3577988B2 (en) Manufacturing method of low Al ultra low sulfur steel
JPS5856005B2 (en) High chromium steel melting method
JPS59566B2 (en) Continuous desulfurization and dephosphorization method for hot metal
JPS6121285B2 (en)
JP3297997B2 (en) Hot metal removal method
JP3922189B2 (en) Ladle refining method for molten steel
RU2118380C1 (en) Method of manufacturing vanadium-microalloyed steel
CA1075012A (en) Process for dephosphorizing molten pig iron
SU1092189A1 (en) Method for making stainless steel
CN118256683A (en) Smelting method of molten steel with extremely low sulfur content and application thereof
JPS6031885B2 (en) Dephosphorization method for high chromium molten steel
JPH068454B2 (en) Dephosphorization / desulfurization method of molten iron alloy containing chromium