JPS61279372A - Gas shielded arc welding method - Google Patents

Gas shielded arc welding method

Info

Publication number
JPS61279372A
JPS61279372A JP12060185A JP12060185A JPS61279372A JP S61279372 A JPS61279372 A JP S61279372A JP 12060185 A JP12060185 A JP 12060185A JP 12060185 A JP12060185 A JP 12060185A JP S61279372 A JPS61279372 A JP S61279372A
Authority
JP
Japan
Prior art keywords
welding
gas
weld metal
amount
shielding gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12060185A
Other languages
Japanese (ja)
Inventor
Ikuo Wakamoto
郁夫 若元
Toshiro Kobayashi
敏郎 小林
Toshimitsu Tetsui
利光 鉄井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP12060185A priority Critical patent/JPS61279372A/en
Publication of JPS61279372A publication Critical patent/JPS61279372A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/38Selection of media, e.g. special atmospheres for surrounding the working area
    • B23K35/383Selection of media, e.g. special atmospheres for surrounding the working area mainly containing noble gases or nitrogen

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding In General (AREA)

Abstract

PURPOSE:To increase the high temp. crack resistance of a welding metal by welding an austenite group stainless steel by using the shielded gas adding N2 in Ar, He or Ar + He gas. CONSTITUTION:The stainless steel 1 of a base metal is welded with feeding a shielded gas 10 from a shielded gas nozzle 7 with feeding a welding wire 3 via a welding wire feeding roll 8. The shielded gas is fed after mixing uniformly by a mixer, etc. in advance 2-30% N2 in either Ar, He, or Ar + He inert gas. The welding head consisting of a welding torch 5 and shielded gas nozzle 7 is made in flat shape so as to come into a narrow groove. For melting sufficiently both sides of the groove the oscillating device by the magnetic deviation, etc. of the arc and the mechanism forming a bending habit to the wire 3 are installed. The high temp. crack resistance of the welding metal can thus be increased.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はオーステナイト系ステンレス鋼のνXa溶接等
のガスシールドアーク溶接方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a gas-shielded arc welding method such as νXa welding of austenitic stainless steel.

(従来の技術) 使用雰囲気が極低温、高圧でめる*aにおいては脆性破
壊に対する安全確保の点よりオーステナイト系ステンレ
ス鋼が使用されることが多いが、これの製作過程での溶
接施行において、特にMrG溶接方法を用いる場合、高
品質な溶接部を得るためには以下の5つの要求を溝た丁
必要がある。
(Prior art) Austenitic stainless steel is often used when the working atmosphere is extremely low temperature and high pressure to ensure safety against brittle fracture. In particular, when using the MrG welding method, the following five requirements must be met in order to obtain a high quality weld.

1点目は溶接欠陥防止のための、溶接作業中におけるア
ークの安定性であり、このために従来ではAr等の不活
性ガス中に約2%の酸素を添加し、溶融池表面に酸化物
を形成させることKよ多安定な陰極点を供給し、アーク
の安定を図っている。
The first point is the stability of the arc during welding work in order to prevent welding defects.For this purpose, in the past, approximately 2% oxygen was added to an inert gas such as Ar, and oxides were formed on the surface of the molten pool. The formation of K provides a multistable cathode spot and stabilizes the arc.

2点目は溶接金属の優れた低温靭性であシ、このために
は溶接金属中の酸素量と6フエライト量をできるだけ低
減する必要がある。
The second point is the excellent low-temperature toughness of the weld metal, and for this purpose it is necessary to reduce the amount of oxygen and 6-ferrite in the weld metal as much as possible.

3点目は溶接金属の優れた耐高温側を性であジ、このた
めには従来ではp、sなどの不純物元素の低減とともに
、これらをよp多く固溶できるδ7エライト全溶接金属
中に数%含有させることにより、これらの粒界への偏析
を抑制し、高温割れを防いでいる。
The third point is to improve the high temperature resistance of the weld metal, and for this purpose, in addition to reducing impurity elements such as p and s, conventionally it is necessary to reduce the impurity elements such as p and s, and to add δ7 elite to the entire weld metal, which can dissolve more of these elements. By containing several percent of Ni, segregation to these grain boundaries is suppressed and hot cracking is prevented.

しかし1以上5つの要求は相反することであシ、すべて
全同時に満足するMIG溶接方法はこれまで実現されて
いない。すなわち、2点目の低温靭性向上のためには溶
接金属中の酸素量と17エライト量の低減が必要である
か、この酸素はほとんどシールドガス中よp混入するも
ので6j)シールドガスとしてAr + 2%02等を
用いる従来法ではアーク安定性の観点からめるレベルよ
シ低減が不可能でめった。またδフェライトも耐高温割
れ性の観点からある程度より低減が不可能であった。
However, the 1 to 5 requirements are contradictory, and no MIG welding method that satisfies them all at the same time has been realized to date. In other words, in order to improve the second point of low-temperature toughness, it is necessary to reduce the amount of oxygen and 17-elite in the weld metal, or because most of this oxygen is mixed in with the shielding gas, 6j) Ar is used as the shielding gas. The conventional method using +2%02 etc. was unable to reduce the level of damage from the viewpoint of arc stability. Furthermore, it has been impossible to reduce δ ferrite beyond a certain level from the viewpoint of hot cracking resistance.

そこで、これらの8題を解決するために、酸素を添加し
ない不活性ガスをシールドガスとしてもアークが安定す
るように、希土類元来(La。
Therefore, in order to solve these eight problems, we developed rare earth elements (La.

Os  等)をわずかに添加したワイヤー(いわゆる活
性化ワイヤー)が新九に登場した。
A wire (so-called activated wire) to which a small amount of (Os, etc.) is added has appeared in New Nine.

このワイヤーを用いたMIG溶接方法によると溶接金属
中の酸素量は従来法の牝。程度にな夕低温靭性は向上す
る。しかしこの方法でも耐高温割れ性の観点よシタフェ
ライトfをおる程度以下にすることはできず、この低温
靭性向上にも限界がある。
According to the MIG welding method using this wire, the amount of oxygen in the weld metal is equal to that of conventional methods. Evening low temperature toughness improves to a certain degree. However, even with this method, from the viewpoint of hot cracking resistance, it is not possible to reduce sita ferrite f to a level below that of the steel, and there is a limit to this improvement in low temperature toughness.

また、この溶接方法におけるシールドガスとして純アル
ゴンを用いるとアークの安定性はめま夕良好でなく溶接
欠陥もよく発生する。そこで現状では優れたアーク安定
性を得るためにはアルゴンに数10%のヘリウムを加え
たものをシールドガスとして用いる必要があるためにコ
スト的にも問題がある。
Furthermore, if pure argon is used as the shielding gas in this welding method, the stability of the arc is poor and welding defects often occur. Currently, in order to obtain excellent arc stability, it is necessary to use argon with several 10% helium added as a shielding gas, which also poses a problem in terms of cost.

(発明が解決しようとする問題点) 本発明は極低温、高圧下で使用される、オーステナイト
系ステンレス鋼を材質とするa器の製作過程での溶接施
行において、溶接中のアークの安定性、溶接金属の低温
靭性、耐高温割れ性などすべてにおいて優れた性能が得
られるMIG溶接方法を提供しようとするものである。
(Problems to be Solved by the Invention) The present invention aims to improve the stability of the arc during welding during welding in the process of manufacturing a utensils made of austenitic stainless steel that are used at extremely low temperatures and under high pressure. The purpose is to provide a MIG welding method that provides excellent performance in all aspects, including low-temperature toughness and hot cracking resistance of the weld metal.

(問題点を解決するための手段) すなわち、本発明は、不活性ガス(Ar1H6+hr+
He )中に2〜30%の’m索cN2)′t−添加し
たものをシールドガスとして用いることを特徴とするオ
ーステナイト系ステンレス鋼のシールドアーク#接法で
ある。
(Means for solving the problem) That is, the present invention provides an inert gas (Ar1H6+hr+
This is a shielded arc # welding method for austenitic stainless steel, which is characterized by using 2 to 30% of 'm2)'t- added to austenitic stainless steel as a shielding gas.

本発明方法の特徴としては以下のことがあげられる。The characteristics of the method of the present invention include the following.

リ シールドガス中に窒素を添加することにより1通常
のワイヤーではアークの安定性に悪影響はなく、また活
性化ワイヤーでは純アルゴンのときよpもアークは安定
する。
By adding nitrogen to the re-shielding gas, there is no adverse effect on the stability of the arc in a normal wire, and the arc is more stable in an activated wire than in the case of pure argon.

2)両種のワイヤーにおいてシールドガス中の窒素は溶
接金属中に固溶し、δフエライト量の低減、結晶粒の微
細化の点より溶接金属の低温靭性および耐高温割れ性を
向上させる。
2) In both types of wires, nitrogen in the shielding gas is dissolved in the weld metal, improving the low-temperature toughness and hot cracking resistance of the weld metal by reducing the amount of δ ferrite and making the crystal grains finer.

本発明方法は、オーステナイト系ステンレス鋼が用いら
れる各種化学aI!器、原子力用機器及び宇宙機器等の
溶接構造物全般の製作に有利に適用することができる。
The method of the present invention is applicable to various chemical aIs in which austenitic stainless steel is used! It can be advantageously applied to the production of general welded structures such as nuclear power equipment, nuclear power equipment, and space equipment.

以下1本発明方法の一実施態様金第1図に従って詳述す
る。
Hereinafter, one embodiment of the method of the present invention will be described in detail with reference to FIG.

(構成) 第1図に本発明の一実施態様の構成を示す。(composition) FIG. 1 shows the configuration of one embodiment of the present invention.

第1図の(klは(bJのA−A断面を示す。1は母材
ステンレス鋼、2は溶接金属、5は溶接ワイヤ、4は溶
接電流給電チップ、5は溶接トーチ、6はアーク、7は
シールドガスノズル、8は溶接ワイヤ送給ロール、9に
溶接電源、10はシールドガスである。
In Fig. 1, (kl shows the A-A cross section of (bJ. 1 is the base material stainless steel, 2 is the welding metal, 5 is the welding wire, 4 is the welding current feeding tip, 5 is the welding torch, 6 is the arc, 7 is a shielding gas nozzle, 8 is a welding wire feed roll, 9 is a welding power source, and 10 is a shielding gas.

ここで溶接トーチ5とシールドガスノズル7からなる溶
接ヘッドは狭開先(Min、9.O關)内に入るように
偏平形状となっている。さらに開先の両gJUt十分溶
かす恵め、溶接ワイヤーに曲げぐせを付ける機構やアー
クを磁気偏向させる等によるオシレート装置が付く。な
お溶接電源9は直流のパルスMrG溶接電源である。シ
ールドガス10は不活性ガス(Ar、He、Ar+H6
)と窒素(N2)をあらかじめ混合器等で均一に混ぜ送
給される。
Here, a welding head consisting of a welding torch 5 and a shield gas nozzle 7 has a flat shape so as to fit into a narrow gap (Min, 9.0 degrees). Furthermore, it has the advantage of sufficiently melting both gJUt of the groove, a mechanism for bending the welding wire, and an oscillation device that magnetically deflects the arc. Note that the welding power source 9 is a DC pulse MrG welding power source. The shielding gas 10 is an inert gas (Ar, He, Ar+H6
) and nitrogen (N2) are uniformly mixed in advance in a mixer, etc., and then fed.

なお第19はMIG溶接について記載したが、TIG溶
接などガスシールドアーク溶接すべてに適用できる。
Although the 19th article describes MIG welding, it can be applied to all gas-shielded arc welding such as TIG welding.

(作用及び効果) シールドガス中に窒素(N2)′を添加する効果につい
て記載する。第2図に溶接金属中pN2量に及ぼすシー
ルドガス中のN2  量及び溶接金属のδフエライト量
に及ぼす溶接金属中のN2量の影響全示す。斜ff1A
ta+、(bl、(cl及び(dlは、シールドガス中
のN2  量が0%の時、Jフェライトがそれぞれ9%
、7%、5%及び2%を示す。
(Functions and Effects) The effects of adding nitrogen (N2)' to the shielding gas will be described. Figure 2 shows all the effects of the amount of N2 in the shielding gas on the amount of pN2 in the weld metal and the amount of N2 in the weld metal on the amount of δ ferrite in the weld metal. Oblique ff1A
ta+, (bl, (cl and (dl) are each 9% of J ferrite when the amount of N2 in the shielding gas is 0%.
, 7%, 5% and 2%.

シールドガス中のN2  量が増すにしたがい溶接金属
中N2  量は増加し、溶接金属のδフエライト量は低
減する。ここでシールドガス中のN2量が30%をこえ
るとアークが不安定となったシ、ビード表面にスケール
が発生し実用できなくなる。第5図に溶接金属の靭性と
高温割れ率に及ぼす溶接金属のδフエライト量の影響を
示す。
As the amount of N2 in the shielding gas increases, the amount of N2 in the weld metal increases and the amount of δ ferrite in the weld metal decreases. If the amount of N2 in the shielding gas exceeds 30%, the arc becomes unstable and scale forms on the bead surface, making it impractical. Figure 5 shows the influence of the amount of δ ferrite in the weld metal on the toughness and hot cracking rate of the weld metal.

通常の場合、δフエライト量が増すと靭性は低下するが
、耐高温割れ性は向上する。しかしN2  全添加し次
場合はδフエライト量が小さくても耐高温割れ性は良好
である。
Normally, as the amount of δ ferrite increases, toughness decreases, but hot cracking resistance improves. However, when all N2 is added, the hot cracking resistance is good even if the amount of δ ferrite is small.

したがって、シールドガス中に官業(N2)を2〜30
%添加し、靭性と耐高温割れ性両者を改善することが可
能となる。さらに、ここで溶接金属中に0.05%以下
のTi 全添加すればN2の固定及びTiSによる脱硫
作用で上記効果がさらに増す。T1〉0゜05%では逆
に靭性低下を生じる。
Therefore, 2 to 30% of government (N2) is added to the shielding gas.
%, it is possible to improve both toughness and hot cracking resistance. Furthermore, if 0.05% or less of Ti is added to the weld metal, the above effects will be further enhanced by the fixation of N2 and the desulfurization effect by TiS. Conversely, when T1>0°05%, the toughness decreases.

実施例 オーステナイト系ステンレス嚇の一釉である5US31
6LのMIG溶接刀法において、希″:j:類元素全添
加した活性化ワイヤーを用いたとき、シールドガスを純
Ar  およびAr+5%N2と変化させて各種性能を
比較した。
Example 5US31, a glaze of austenitic stainless steel
In the 6L MIG welding method, various performances were compared when an activated wire with all rare elements added was used and the shielding gas was changed to pure Ar and Ar+5%N2.

(構成) SUS316Lの鋼板1およびMあて金1−1で第4図
のような開先をもつ試験片全作り、活性化ワイヤーを用
いて1バス/1層の狭開先MIG溶接を行って溶接金属
2を得た。
(Structure) A test specimen with a groove as shown in Fig. 4 was made using SUS316L steel plate 1 and M fillet 1-1, and narrow groove MIG welding was performed for 1 bus/1 layer using activated wire. Weld metal 2 was obtained.

シールドガスは1つの試験片溶接中は同一のものでお夕
、この場合は2つの試験片についてそれぞれ純Ar、お
よびAr+5%N2全用いた。
The shielding gas was the same during welding of one specimen; in this case, pure Ar and Ar+5%N2 were used for the two specimens, respectively.

表1に2つの溶接金属と鋼板の化学成分、ガス成分、δ
フエライ)tli−示す。ここで、δフエライト量とし
ては化学成分、ガス成分よシブ田ングの状態図を用いて
求めたものと、バーマス;−ブにより測定したもの2a
!類を示した。
Table 1 shows the chemical composition, gas composition, and δ of the two weld metals and steel sheets.
tli-indicated. Here, the amount of δ ferrite is determined using chemical components, gas components, and Shibu-Tang's phase diagram, and the amount measured by Vermas;
! It showed the kind.

表2に溶接条件を示す□ 表 2  溶接条件 (作用および効果) リ アークの安定性の比較 表3KJISZ3104に従った放射線透過試験の結果
を示す。これよジシールドガスとしてAr −1−5%
N2を用いた方が純Ar  を用いたときよりアークは
安定することがわかった。
Table 2 shows the welding conditions □ Table 2 Welding conditions (function and effect) Re-arc stability comparison table 3 Shows the results of a radiographic test according to KJIS Z3104. This is Ar -1-5% as a dishield gas.
It was found that the arc was more stable when N2 was used than when pure Ar was used.

表3 放射線透過試験結果 2)溶接金属の低温靭性の比較 第5図に、溶接のままおよび2種の後熱処理(600C
X6hr、730CX6hr)iしたときの溶接金属の
試験温度−196Cにおける2111Vノツチシヤルピ
ー衝撃試験による吸収エネルギーを示す。
Table 3 Radiographic test results 2) Comparison of low-temperature toughness of weld metal
It shows the energy absorbed by a 2111V notched pylon impact test at a test temperature of -196C for weld metal when X6hr, 730CX6hr)i.

これにより、どの条件においてもシールドガスにAr+
5%N2を用いた万が、純Ar  t−用いたときより
も溶接金属の低温靭性は優れていることがわかった。
This allows the shielding gas to contain Ar+ under any conditions.
It was found that the low-temperature toughness of the weld metal using 5% N2 was superior to that using pure Art.

この窒素の効果を考察してみると、まず、シールドガス
中の8素は溶接金属に固溶し、δフエライト量を低減す
る働きをもつために溶接金属の低温靭性全向上させたと
考えられる。また同時にこの固溶された9累はオーステ
ナイト相を安定化し、低温における応力誘起マルテンサ
イト変114を抑制するためにこの働きによっても低温
靭性を向上させたと考えられる。
Considering the effects of nitrogen, it is thought that the eight elements in the shielding gas form a solid solution in the weld metal and have the function of reducing the amount of δ ferrite, thereby completely improving the low-temperature toughness of the weld metal. At the same time, the solid-solved nine-fold stabilizes the austenite phase and suppresses stress-induced martensitic deformation 114 at low temperatures, which is considered to improve the low-temperature toughness.

3)溶接金属の耐高温割れ性の比較 第6図に高温割れ試験法の一種であるトランスパレスト
レイン試験を行ない、強制的に高温割れを発生させた結
果を示す。
3) Comparison of hot cracking resistance of weld metals Figure 6 shows the results of a transpare strain test, which is a type of hot cracking testing method, in which hot cracking was forcibly generated.

これにより、どのパラメータで比較してもシールドガス
にAr +5%N2を用いた方が純Arを用いたときよ
りも溶接金属の耐高温割れ性は優れていることがわかっ
た。
As a result, it was found that the hot cracking resistance of the weld metal is better when Ar + 5% N2 is used as the shielding gas than when pure Ar is used, no matter which parameter is compared.

この窒素の効果を考察してみると、溶接金属中の窒素は
多量に存在するとδフエライト量を低減することによル
耐高温削れ性に急影響をおよぼすがある程度まであると
溶接金属の結晶粒t−微細にする効果の方が強いために
、高温割れの伝播を抑制して耐高温割れ性を向上させた
と考えられる。
Considering the effect of nitrogen, it is found that when nitrogen exists in a large amount in weld metal, it has a sudden effect on high temperature machining resistance by reducing the amount of δ-ferrite, but if it exists to a certain extent, Since the effect of making T-fine grains is stronger, it is thought that the propagation of hot cracking was suppressed and the hot cracking resistance was improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施態様の構成を説明するための図
、第2図は溶接金属中のN2  量に及ぼすシールドガ
ス中のN2  量及び溶接金属のδフエライト量に及ぼ
す溶接金属中のN2  iの影響を示す図表、第5囚は
溶接金属の靭性と高温割れ率に及ぼす溶接金属の5フエ
ライト量の影響を示す図表、第4図は本発明の実施例で
得意試験片を示す図、第5図は第4図の試験片の溶接金
属の低温靭性効果を示す図表、第6図は第4図の試験片
の溶接金属の耐高温割れ性効果金示す図表である。 復代理人 内 1)  明 復代理人 萩 原 亮 − 復代理人 安 西 篤 夫 鍜 第6図
Fig. 1 is a diagram for explaining the configuration of one embodiment of the present invention, and Fig. 2 shows the effect of the amount of N2 in the shielding gas on the amount of N2 in the weld metal and the effect of the amount of δ ferrite in the weld metal on the amount of δ ferrite in the weld metal. Figure 5 is a diagram showing the influence of N2 i, Figure 5 is a diagram showing the influence of the amount of 5 ferrite in weld metal on the toughness and hot cracking rate of weld metal, and Figure 4 is a diagram showing a preferred test piece in an example of the present invention. , FIG. 5 is a chart showing the low-temperature toughness effect of the weld metal of the test piece of FIG. 4, and FIG. 6 is a chart showing the effect of hot cracking resistance of the weld metal of the test piece of FIG. 4. Sub-Agent 1) Meifuku Agent Ryo Hagiwara - Sub-Agent Atsushi Anzai Figure 6

Claims (1)

【特許請求の範囲】[Claims] Ar及び/又はHe中に2〜30%のN_2を添加した
ものをシールドガスとして用いることを特徴とするオー
ステナイト系ステンレス鋼のガスシールドアーク溶接法
A gas-shielded arc welding method for austenitic stainless steel characterized by using Ar and/or He with 2 to 30% N_2 added as a shielding gas.
JP12060185A 1985-06-05 1985-06-05 Gas shielded arc welding method Pending JPS61279372A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12060185A JPS61279372A (en) 1985-06-05 1985-06-05 Gas shielded arc welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12060185A JPS61279372A (en) 1985-06-05 1985-06-05 Gas shielded arc welding method

Publications (1)

Publication Number Publication Date
JPS61279372A true JPS61279372A (en) 1986-12-10

Family

ID=14790291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12060185A Pending JPS61279372A (en) 1985-06-05 1985-06-05 Gas shielded arc welding method

Country Status (1)

Country Link
JP (1) JPS61279372A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004298944A (en) * 2003-03-31 2004-10-28 Nippon Sanso Corp Shielding gas for welding and welding method
CN106695076A (en) * 2017-01-03 2017-05-24 中国十七冶集团有限公司 Welding method for low-temperature multiple-effect evaporative cooler body

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004298944A (en) * 2003-03-31 2004-10-28 Nippon Sanso Corp Shielding gas for welding and welding method
CN106695076A (en) * 2017-01-03 2017-05-24 中国十七冶集团有限公司 Welding method for low-temperature multiple-effect evaporative cooler body
CN106695076B (en) * 2017-01-03 2019-03-22 中国十七冶集团有限公司 A kind of low-temperature multi-effect devaporizer ontology welding method

Similar Documents

Publication Publication Date Title
JP5622707B2 (en) Welding materials for cryogenic steel
KR20150074934A (en) Welding material for heat resistant steel
EP0163379A2 (en) Method of welding nitrogen-containing alloys
JPH11277292A (en) Welding metal and welding joint for high temp. high strength steel
JPS61279372A (en) Gas shielded arc welding method
JPH06285683A (en) Low hydrogen coated electrode
JPH0577086A (en) Flux cored wire for gas shielded arc welding for 0.5 mo steel, mn-mo steel and mn-mo-ni steel
KR100805060B1 (en) TIG WELDING METHOD TO IMPROVE PITTING CORROSION RESISTANCE OF 22%Cr DUPLEX STAINLESS STEEL WELDS
EP2592167A1 (en) Welding material for cryogenic steels
JP5157653B2 (en) Low hydrogen type coated arc welding rod for DC power welding machine
JPH10272594A (en) Low hydrogen type coated electrode
JPH04361876A (en) High fatigue strength gas shielded arc welding method
JPH03294096A (en) Combined wire for electrogas arc welding
CN110773903A (en) CO suitable for ultralow heat input automatic welding 2Gas shielded welding wire and method for manufacturing same
JP2804973B2 (en) MIG welding method for high Mn non-magnetic steel for cryogenic use
JPH04237592A (en) Welding material for perfect austenitic iron-based alloy having excellent high-temperature crack resistance
Lau et al. Fusion welding of stainless steels
JP2005040845A (en) Low-hydrogen type coated electrode
JP2796460B2 (en) Welding material for high Si content stainless steel
JPS5847951B2 (en) Low-hydrogen coated arc welding rod for low-alloy heat-resistant steel
JPH01202395A (en) Wire for stainless steel gas shielded arc welding
CN116213886A (en) Welding process of high-manganese high-aluminum steel welding joint
JPS6380994A (en) Ni base flux-cored wire for gas shielded arc welding
JPH1094890A (en) Laser beam welding method of steel plate excellent in toughness of weld joint
JP2001353575A (en) High speed tig welding method for austenitic stainless steel