JPS61278469A - Power steering device - Google Patents

Power steering device

Info

Publication number
JPS61278469A
JPS61278469A JP60118789A JP11878985A JPS61278469A JP S61278469 A JPS61278469 A JP S61278469A JP 60118789 A JP60118789 A JP 60118789A JP 11878985 A JP11878985 A JP 11878985A JP S61278469 A JPS61278469 A JP S61278469A
Authority
JP
Japan
Prior art keywords
pump
hole
spool
flow rate
discharge hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60118789A
Other languages
Japanese (ja)
Inventor
Seiji Komamura
駒村 清二
Katsuhiro Suzuki
勝博 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYB Corp
Original Assignee
Kayaba Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kayaba Industry Co Ltd filed Critical Kayaba Industry Co Ltd
Priority to JP60118789A priority Critical patent/JPS61278469A/en
Publication of JPS61278469A publication Critical patent/JPS61278469A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To aim at simplification and miniaturization in a device structure, by forming a spool, controlling a discharge flow rate out of a pump, in a pump body, while installing a variable throttle part, controlling a position of the spool by differential pressure, in the said body. CONSTITUTION:A flow control valve V consisting of a variable throttle part (f) and a flow control part (s) should be solidly assembled in a body 11 of a pump P, while the body 11 is made up of installing an inflow hole 12 to be interconnected to the discharge side of the pump P, a return hole 13 returning a hydraulic fluid to the inside of the pump P and feed hole 16 to be interconnected to a control valve 15 of a power cylinder 14. In addition, a partition wall 17 is installed in a passage process between the inflow hole and the feed hole 16, forming a discharge hole 18 herein, and a spool 19 of the flow control part (s) is installed at the upstream side of the said hole 18, while a sliding shaft 20 of the variable throttle part (f) making a proportional solenoid 25 a driving source is installed at the downstream side, respectively. This proportional solenoid 25 is energized with a continuous rating current and controlled by a controller C on the basis of a car speed v and a pump revolving speed N.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、車速及びポンプ回転数に応じて操舵力を制
御するパワーステアリング装置に関す(従来の技術) 第4図に示した従来の装置は、ポンプPとパワーシリン
ダ1とを接続する流路過程に、第1流量制御弁aと第2
流量制御弁すとを設けている。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a power steering device that controls steering force according to vehicle speed and pump rotation speed (prior art) The conventional device shown in FIG. is a first flow control valve a and a second flow control valve a in the flow path connecting the pump P and the power cylinder 1.
A flow control valve is provided.

そして、上記第1流量制御弁aは、ポンプPと一体にし
たもので、固定絞り2の前後の差圧に応じてポンプPの
吐出量を制御するとともに、当該ポンプPの一回転数が
設定の回転数以上になったとき、換言すれば、当該ポン
プPの吐出量が設定流量以上になったとき、第5図に示
すように、その吐出量を一定に保つものである。
The first flow control valve a is integrated with the pump P, and controls the discharge amount of the pump P according to the differential pressure before and after the fixed throttle 2, and also sets the number of rotations of the pump P. In other words, when the discharge amount of the pump P exceeds the set flow rate, as shown in FIG. 5, the discharge amount is kept constant.

また、第2流量制御弁すは、当該車両の車速に応じて開
度を制御する可変絞り3を備え、第6図に示すように、
車速が増すにしたがって、可変絞り3の開度を小さくし
てパワーシリンダlに対する供給流量を減少させるよう
にしてる。
Further, the second flow control valve is equipped with a variable throttle 3 that controls the opening degree according to the vehicle speed of the vehicle, and as shown in FIG.
As the vehicle speed increases, the opening degree of the variable throttle 3 is reduced to reduce the flow rate supplied to the power cylinder 1.

つまり、この従来の装置は、ポンプPの吐出量が設定流
量以上になると、車速のみに依存して上記第2流量制御
弁すの可変絞り3の開口面積を制御するようにしている
In other words, this conventional device controls the opening area of the variable throttle 3 of the second flow rate control valve depending only on the vehicle speed when the discharge amount of the pump P exceeds the set flow rate.

(本発明が解決しようとする問題点) 上記のようにした従来の装置では、第1流量制御弁aと
第2流量制御弁すとを別々に設けなければならないので
、それだけ構造が複雑化するとともに、当該機器全体も
大型化する問題があった。
(Problems to be Solved by the Present Invention) In the conventional device as described above, the first flow rate control valve a and the second flow rate control valve a must be provided separately, which increases the complexity of the structure. At the same time, there was a problem in that the overall size of the device also increased.

また、この装置では、当該ポンプPが所定の回転数以上
になったとき、車速のみに依存して供給流量を制御する
ようにしてるので、例えば、可変絞り3が同一の開度で
も、低速登板時のようにエンジン回転数が高くなると、
上記供給流量が増大してしまい、正確な制御ができなく
なる問題があ、った。
In addition, in this device, when the pump P reaches a predetermined rotation speed or higher, the supply flow rate is controlled depending only on the vehicle speed. When the engine speed increases as in the case of
There was a problem that the above-mentioned supply flow rate increased, making accurate control impossible.

この発明は、流量制御弁を1つにまとめるとともに、車
速と回転数の双方に依存して流量を制御するようにした
装置の提供を目的にする。
The object of the present invention is to provide a device that integrates flow control valves into one and controls the flow rate depending on both vehicle speed and rotational speed.

(問題点を解決する手段) この発明は、上記の目的を達成するために、ポンプから
の吐出流量を制御するスプールをボディに内装するとと
もに、このスプールの下流側に吐出孔を形成し、さらに
、この吐出孔の下流に、比例ソレノイドに対する通電量
に応じて移動量が制御され、しかもその移動位置に応じ
て吐出孔の実質的な開口面績を制御する摺動軸を備え、
かつ、上記吐出孔の前圧と後圧とがバランスする位置で
スプールが停止するとともに、その停止位置において当
該流量を特定する一方、上記比例ソレノイドは、車速及
びポンプ回転数に応じてその通電量を制御する構成にし
ている。
(Means for Solving Problems) In order to achieve the above object, the present invention includes a spool for controlling the discharge flow rate from the pump inside the body, a discharge hole is formed on the downstream side of the spool, and , a sliding shaft is provided downstream of the discharge hole, the amount of movement of which is controlled according to the amount of energization to the proportional solenoid, and the actual opening surface of the discharge hole is controlled according to the position of the movement;
The spool stops at a position where the front pressure and back pressure of the discharge hole are balanced, and the flow rate is specified at that stop position, while the proportional solenoid adjusts its energization amount according to the vehicle speed and pump rotation speed. It is configured to control.

(本発明の作用) この発明は、上記のように構成したので、車速及びポン
プ回転数に応じて、吐出孔の開口面積が制御されるとと
もに、その制御された吐出孔の開口面積に応じて、供給
流量が制御される。
(Operation of the present invention) Since the present invention is configured as described above, the opening area of the discharge hole is controlled according to the vehicle speed and the pump rotation speed, and the opening area of the discharge hole is controlled according to the controlled opening area of the discharge hole. , the supply flow rate is controlled.

(本発明の効果) この発明の装置によれば、流量制御弁が1つで足りるの
で、従来のものに比べて、構成が簡素化されるとともに
、機器全体も小型化される。
(Effects of the Present Invention) According to the device of the present invention, only one flow control valve is required, so the configuration is simplified and the entire device is downsized as compared to the conventional device.

また、この流量制御弁は、車速とポンプ回転数の双方に
依存して制御されるので、例えば、登板時のように低速
走行で、しかも、エンジン回転数すなわちポンプ回転数
が高いときでも、その供給流量が所定流量以上増大しな
い、したがって、当該車両の走行条件に応じて、常に、
正確な制御が可能になる。
In addition, since this flow control valve is controlled depending on both the vehicle speed and the pump rotation speed, for example, even when driving at low speeds such as when going up the hill, and even when the engine rotation speed, that is, the pump rotation speed is high, The supply flow rate does not increase beyond a predetermined flow rate, therefore, depending on the driving conditions of the vehicle,
Accurate control becomes possible.

(本発明の実施例) 第1図〜第3図に示した実施例は、ポンプPのボディ1
1内に、流量制御弁Vを一体に組み込んだもので、この
流量制御弁Vは、第1図からも明らかなように、可変絞
り部fと流量制御部Sとからなる。
(Embodiment of the present invention) The embodiment shown in FIGS. 1 to 3 is a body 1 of a pump P.
1, a flow rate control valve V is integrated into the flow rate control valve V, and this flow rate control valve V is composed of a variable throttle part f and a flow rate control part S, as is clear from FIG.

上記可変絞り部gは、車速とポンプ回転数に応じた信号
を出力するコントローラc5接続され。
The variable throttle part g is connected to a controller c5 that outputs a signal according to the vehicle speed and the pump rotation speed.

車速とポンプ回転数に依存して当墾可変絞り部fの絞り
開度が制御されるシうにしている。
The throttle opening degree of the variable throttle section f is controlled depending on the vehicle speed and the pump rotation speed.

そして、上記可変絞り部fの開度に応じて、その前後に
差圧が発生するが、その前圧と後圧とが流量制御部Sに
作用するようにしている。
A pressure difference is generated before and after the variable throttle section f depending on the opening degree of the variable throttle section f, and the front pressure and the back pressure are made to act on the flow rate control section S.

このようにした流量制御弁Vの具体的竺構成は、第2図
に示すとおりである。
The specific structure of the flow control valve V thus constructed is as shown in FIG.

すなわち、上記ボディ11には、当該ポンプPの吐出側
に連通ずる流入孔12と、このポンプPの内部に作動油
を戻す戻り孔13と、パワーシリンダ14の制御バルブ
15に連通ずる供給孔1Bとを形成している。
That is, the body 11 has an inflow hole 12 that communicates with the discharge side of the pump P, a return hole 13 that returns hydraulic oil to the inside of the pump P, and a supply hole 1B that communicates with the control valve 15 of the power cylinder 14. and is formed.

そして、流入孔12と供給孔1Bとの流路過程に隔壁1
7を設け、この隔壁17に吐出孔18を形成するととも
に、この吐出孔18の上流側にスプール19を設け、下
流側に摺動軸20を設けている。
A partition wall 1 is provided in the flow path between the inflow hole 12 and the supply hole 1B.
7, a discharge hole 18 is formed in this partition wall 17, a spool 19 is provided on the upstream side of this discharge hole 18, and a sliding shaft 20 is provided on the downstream side.

上記スプール19は、その一端を流入孔12に連通する
室21に臨ませ、他端を供給孔1Bに連通する室22に
臨ませるとともに、供給孔1Bに連通ずる室22にはス
プリング23を介在させ、通常は当該スプール18が図
示のノーマル位置を保持するようにしている。
The spool 19 has one end facing a chamber 21 communicating with the inflow hole 12 and the other end facing a chamber 22 communicating with the supply hole 1B, and a spring 23 is interposed in the chamber 22 communicating with the supply hole 1B. The spool 18 is normally kept at the normal position shown in the figure.

スプール19が図示のノーマル位置にあるとき、ランド
部24によって、室21.!;戻り孔13との連通が遮
断されるが、スプール18がスプリング23に抗して移
動し、ランド部24が戻り孔13の開口縁より外方に位
置すると、この戻り孔13の開度に応じて流量が流入孔
12から戻り孔13に流出する。
When the spool 19 is in the normal position shown, the land portion 24 causes the chamber 21. ! ; Communication with the return hole 13 is cut off, but when the spool 18 moves against the spring 23 and the land portion 24 is located outside the opening edge of the return hole 13, the opening degree of the return hole 13 changes. Accordingly, the flow flows out from the inlet hole 12 to the return hole 13.

また、上記摺動軸20は、その先端を上記吐出孔18に
対向させる一方、比例ソレノイド25内に挿入し、この
比例ソレノイド25に対する通電量に応じて移動すると
ともに、その移動位置において、摺動軸20と吐出孔1
Bとの対向間隔、すなわち当該吐出孔18の実質的な開
度を制御するようにしている。そして、上記比例ソレノ
イド25は、前記コントローラCに接続するとともに、
当該車両の車速とエンジン回転数(ポンプ回転数)に依
存した信号に応じてその通電量が制御されるようにして
いる。
Further, the sliding shaft 20 has its tip opposed to the discharge hole 18, and is inserted into a proportional solenoid 25, and moves according to the amount of current applied to the proportional solenoid 25, and at the moving position, slides. Shaft 20 and discharge hole 1
He is trying to control the facing distance with respect to B, that is, the substantial opening degree of the discharge hole 18. The proportional solenoid 25 is connected to the controller C, and
The amount of energization is controlled according to a signal depending on the vehicle speed and engine rotation speed (pump rotation speed) of the vehicle.

なお、この具体例において、スプール19が上記した流
量制御部Sの主要素を構成し、吐出孔1Bと摺動軸20
とで上記可変絞り部fを構成する。
In this specific example, the spool 19 constitutes the main element of the above-mentioned flow rate control section S, and the discharge hole 1B and the sliding shaft 20
These constitute the variable aperture section f.

しかして、車速とエンジン回転数の両者に依存した信号
がコントローラCから出力されるとともに、その出力信
号に応じて比例ソレノイド25に対する通電量が制御さ
れる。
Thus, a signal dependent on both the vehicle speed and the engine speed is output from the controller C, and the amount of current applied to the proportional solenoid 25 is controlled in accordance with the output signal.

したがって、上記摺動軸20は比例ソレノイド25に対
する通電量に応じて、換言すれば車速とエンジン回転数
に依存して、移動位置を特定する。
Therefore, the sliding shaft 20 specifies the moving position depending on the amount of current supplied to the proportional solenoid 25, in other words, depending on the vehicle speed and engine rotation speed.

このようにして摺動軸20の移動位置が特定されると、
そのときの摺動軸20と吐出孔18との対向間隔が特定
され、当該吐出孔18の開度が制御される。そして、上
記対向間隔が狭ければ狭いほど、吐出孔18の開度が小
さくなり、逆に、対向間隔が広ければ、その開度が大き
くなる。
When the moving position of the sliding shaft 20 is specified in this way,
The opposing interval between the sliding shaft 20 and the discharge hole 18 at that time is specified, and the opening degree of the discharge hole 18 is controlled. The narrower the facing interval, the smaller the opening degree of the discharge holes 18, and conversely, the wider the facing interval, the larger the opening degree.

いま、流入孔12からポンプPの作動油が流入すると、
この作動油は、室21→吐出孔18→供給孔16→制御
バルブ15を経由してパワーシリンダ14に供給される
。このように吐出孔18に作動油が流れると、その前後
に差圧が発生するが、その前圧が室21に作用し、後圧
が室23に作用する。
Now, when the hydraulic oil of the pump P flows in from the inflow hole 12,
This hydraulic oil is supplied to the power cylinder 14 via the chamber 21 → discharge hole 18 → supply hole 16 → control valve 15. When the hydraulic oil flows into the discharge hole 18 in this manner, a differential pressure is generated before and after the hydraulic oil, and the front pressure acts on the chamber 21 and the back pressure acts on the chamber 23.

したがって、この吐出孔18前後の差圧が大きくなれば
、その圧力差が−プール19の両端に作用するが、臣の
ときスプール19は、スプリング23をたわませつつ移
動し、上記再圧力がバランスする位置を保つ。
Therefore, if the pressure difference before and after the discharge hole 18 becomes large, the pressure difference will act on both ends of the pool 19, but when the spool 19 is in the middle, the spool 19 will move while bending the spring 23, and the above-mentioned repressurization will occur. Maintain a balanced position.

このバランス位置において戻り孔13の開度が制御され
、その戻り流量が特定されるので、供給孔16から流出
する流量が制御されることになる。
At this balance position, the opening degree of the return hole 13 is controlled and the return flow rate is specified, so that the flow rate flowing out from the supply hole 16 is controlled.

また、比例ソレノイド25に入力される車速信号及びエ
ンジン回転数信号が変化すれば、その信号に応じて比例
ソレノイド25の通電量が変化して摺動軸20の移動位
置を変え、吐出孔18の開度を制御する。
Furthermore, if the vehicle speed signal and engine rotation speed signal input to the proportional solenoid 25 change, the amount of electricity supplied to the proportional solenoid 25 changes in accordance with the signals, changing the moving position of the sliding shaft 20 and opening the discharge hole 18. Control opening degree.

そのために、上記開度に応じて当該吐出孔18前後の差
圧が変化するので、その差圧に応じてスプール1θが移
動し、その移動位置において供給流量を制御することに
なる。
Therefore, the pressure difference before and after the discharge hole 18 changes depending on the opening degree, so the spool 1θ moves according to the pressure difference, and the supply flow rate is controlled at the moving position.

上記のようにこの実施例では、吐出孔18の開度を、車
速とエンジン回転数とに依存して制御するとともに、こ
の吐出孔18の開度に応じて、供給流量を制御するよう
にしたので2例えば、登板時のように低速で、しかもエ
ンジン回転数が上昇する走行条件においても、パワーシ
リンダ14に対する供給流量が多くなりすぎたりしなく
なり、正確な制御が可能になる。
As described above, in this embodiment, the opening degree of the discharge hole 18 is controlled depending on the vehicle speed and the engine rotation speed, and the supply flow rate is controlled according to the opening degree of the discharge hole 18. Therefore, for example, even under running conditions where the engine speed is low and the engine rotational speed increases, such as when climbing a hill, the flow rate supplied to the power cylinder 14 will not become too large, and accurate control will be possible.

つまり、この実施例では、第3図に示すように、パワー
シリンダ14に対する供給流量が、常に、車速とエンジ
ン回転数とに依存して制御されるので、当該車両の走行
条件に適した制御が可能になる。
In other words, in this embodiment, as shown in FIG. 3, the flow rate supplied to the power cylinder 14 is always controlled depending on the vehicle speed and engine speed, so that control suitable for the running conditions of the vehicle can be performed. It becomes possible.

【図面の簡単な説明】[Brief explanation of drawings]

図面第1図〜第3図はこの発明の実施例を示すもので、
第1図は回路図、第2図は要部の断面図、第3図は車速
及びポンプ回転数とパワーシリンダへの供給流量との関
係を示した特性図、第4図〜第6図は従来の装置を示す
もので、第4図は回路図、第5図はポンプ回転数とポン
プ吐出量との関係を示す特性図、第6図は車速とパワー
シリンダへの供給流量との関係を示す特性図である。 P・・・ポンプ、 11・・・ボディ、■・・・流量制
御弁、18・・・吐出孔、18・・・スプール、20・
・・摺動軸、25・・・比例ソレノイド。
Drawings 1 to 3 show examples of this invention.
Figure 1 is a circuit diagram, Figure 2 is a cross-sectional view of the main parts, Figure 3 is a characteristic diagram showing the relationship between vehicle speed, pump rotational speed, and flow rate supplied to the power cylinder, and Figures 4 to 6 are Figure 4 shows a circuit diagram, Figure 5 shows a characteristic diagram showing the relationship between pump rotation speed and pump discharge amount, and Figure 6 shows the relationship between vehicle speed and flow rate supplied to the power cylinder. FIG. P...Pump, 11...Body, ■...Flow rate control valve, 18...Discharge hole, 18...Spool, 20...
...Sliding shaft, 25...Proportional solenoid.

Claims (1)

【特許請求の範囲】[Claims] ポンプからの吐出流量を制御するスプールをボディに内
装するとともに、このスプールの下流側に吐出孔を形成
し、さらに、この吐出孔の下流に、比例ソレノイドに対
する通電量に応じて移動量が制御され、しかもその移動
位置に応じて吐出孔の実質的な開口面積を制御する摺動
軸を備え、かつ、上記吐出孔の前圧と後圧とがバランス
する位置でスプールが停止するとともに、その停止位置
において当該流量を特定する一方、上記比例ソレノイド
は、車速及びポンプ回転数に応じてその通電量を制御す
る構成にしたパワーステアリング装置。
A spool that controls the discharge flow rate from the pump is installed in the body, and a discharge hole is formed on the downstream side of this spool.Furthermore, downstream of this discharge hole, the amount of movement is controlled according to the amount of electricity applied to the proportional solenoid. In addition, the spool is provided with a sliding shaft that controls the substantial opening area of the discharge hole according to its movement position, and the spool stops at a position where the front pressure and rear pressure of the discharge hole are balanced. The power steering device is configured to specify the flow rate based on the position, and control the amount of current supplied to the proportional solenoid according to the vehicle speed and the pump rotation speed.
JP60118789A 1985-06-03 1985-06-03 Power steering device Pending JPS61278469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60118789A JPS61278469A (en) 1985-06-03 1985-06-03 Power steering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60118789A JPS61278469A (en) 1985-06-03 1985-06-03 Power steering device

Publications (1)

Publication Number Publication Date
JPS61278469A true JPS61278469A (en) 1986-12-09

Family

ID=14745130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60118789A Pending JPS61278469A (en) 1985-06-03 1985-06-03 Power steering device

Country Status (1)

Country Link
JP (1) JPS61278469A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5236315A (en) * 1990-06-11 1993-08-17 Atsugi Unisia Corporation Hydraulic pump for power-assisted steering system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61218478A (en) * 1985-03-22 1986-09-27 Toyoda Mach Works Ltd Pump unit for automobile

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61218478A (en) * 1985-03-22 1986-09-27 Toyoda Mach Works Ltd Pump unit for automobile

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5236315A (en) * 1990-06-11 1993-08-17 Atsugi Unisia Corporation Hydraulic pump for power-assisted steering system

Similar Documents

Publication Publication Date Title
JPS6088283A (en) Flow-rate controller for power steering apparatus
JPS61278469A (en) Power steering device
EP0642970B1 (en) Hydraulic power steering apparatus
JPH0725315B2 (en) Hydraulic reaction force control device for power steering device
JP2005112280A (en) Power steering device
JPH10132096A (en) Spool valve
CN114109612B (en) Metering valve assembly
US4325289A (en) Load responsive fluid control valve
JPH073035Y2 (en) Liquid pump
JPH02173478A (en) Fluid control valve
JPS598043Y2 (en) flow control valve
JP3659702B2 (en) Power steering device
EP0678672B1 (en) Flow control mechanism for power steering
JPH0623752Y2 (en) Vane pump
JPS6033445Y2 (en) automatic transmission hydraulic control valve
JPH03602Y2 (en)
JP2000211539A (en) Flow control device
JPS6347583A (en) Holding valve
JPH0246459Y2 (en)
JPS6032395Y2 (en) Pump discharge amount control device
JPS5910452Y2 (en) flow control valve
JPH0122963Y2 (en)
KR0166072B1 (en) Steering force control apparatus for power steering system
JPH0137974Y2 (en)
JPH0554474B2 (en)