JPS61278033A - Production of magnetic recording medium - Google Patents

Production of magnetic recording medium

Info

Publication number
JPS61278033A
JPS61278033A JP12007585A JP12007585A JPS61278033A JP S61278033 A JPS61278033 A JP S61278033A JP 12007585 A JP12007585 A JP 12007585A JP 12007585 A JP12007585 A JP 12007585A JP S61278033 A JPS61278033 A JP S61278033A
Authority
JP
Japan
Prior art keywords
crucible
magnetic recording
boron nitride
recording medium
production
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12007585A
Other languages
Japanese (ja)
Inventor
Toshihiko Sato
敏彦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP12007585A priority Critical patent/JPS61278033A/en
Publication of JPS61278033A publication Critical patent/JPS61278033A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To produce the title magnetic recording medium having uniform magnetic characteristics with large capacity and at high speed by using a material consisting essentially of boron nitride for a vaporization source crucible contg. a ferromagnetic metal or a alloy. CONSTITUTION:A ferromagnetic material 12 for vapor deposition set in a crucible 1 consisting essentially of boron nitride is heated by an electron beam emitted from an electron beam generator 10 and vaporized to form a thin film of the ferromagnetic material 12 on a substrate 3 traveling along a substrate carrier 8 on a cylinder. Since boron nitride is a material resist and to the high temps. of about 3000 deg.C and having an extremely small thermal expansion coefficient and excellent stability to thermal shock which is suitable as the material of the vaporization source crucible, the vaporization crucible is hardly broken by a thermal cycle and hence the stability of the magnetic recording medium production is improved. Since boron nitride is also chemically inactive, a metallic melt is practically uncontaminated by the reaction of the nitride with the molten metal and the stability of the production is improved.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は磁性薄膜を有する磁気記録媒体の製造方法に関
し、詳しくは大容量高速蒸着を可能にして大量生産に適
した磁気記録媒体の製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a magnetic recording medium having a magnetic thin film, and more specifically, a method for manufacturing a magnetic recording medium that enables large-capacity, high-speed deposition and is suitable for mass production. Regarding.

「従来技術」 磁気テープ、磁気シートのような磁気記録媒体は、オー
ディオ分野やビデオ分野で広く使用されている。このよ
うな例えば磁気テープは、強磁性粉末をバインダーに分
散させた塗布型のものも使用されているが、最近島密度
記録に対する要望が^まるにつれてバインダーの分だけ
記録密度が小ざくなるこの塗布型のものにかわって飽和
磁化が太き(しかもバインダーを必要としないで直接、
蒸着、スパッタリング、イオンブレーティング等により
支持体上に強磁性金属薄膜を形成できる簿躾型磁気記録
媒体が多く使用されるようになってきた。
"Prior Art" Magnetic recording media such as magnetic tapes and magnetic sheets are widely used in the audio and video fields. For example, magnetic tapes of this type are coated with ferromagnetic powder dispersed in a binder, but as the demand for island density recording has recently increased, the recording density has become smaller by the amount of binder. It has thicker saturation magnetization than the molded one (and it can be used directly without the need for a binder).
BACKGROUND ART Magnetic recording media in which a ferromagnetic metal thin film can be formed on a support by vapor deposition, sputtering, ion blating, etc. have come into widespread use.

磁性薄膜を工業的規模で製造するに適した方法の1つと
して電子ビーム加熱による貞空蒸着法がある。従来、こ
の電子ビーム加熱による蒸着法においては、半導体工業
を中心として水冷銅ハースが蒸発源用るつぼとして用い
られていた。しかし、水冷銅ハースを用いた場合、蒸着
材料の蒸発速度のill III性には優れているもの
の、磁気記録媒体の製造に用いるような高融点金属の大
容量高速蒸発には不適当であった。
One of the methods suitable for producing magnetic thin films on an industrial scale is the open air deposition method using electron beam heating. Conventionally, in this vapor deposition method using electron beam heating, a water-cooled copper hearth has been used as a crucible for the evaporation source, mainly in the semiconductor industry. However, when using a water-cooled copper hearth, although it has an excellent evaporation rate of Ill III of the evaporation material, it is not suitable for high-volume, high-speed evaporation of high-melting point metals used in the manufacture of magnetic recording media. .

また、磁気記録媒体製造用としては、特開昭58−18
8335号には酸化ジルコニウムを主成分とする蒸発源
用るつぼが提案されているが、焼結安定化のために酸化
ジルコニウムと共に用いる、いわゆる安定化剤と溶融金
属との反応等の問題があり、くり返し使用に耐えないと
いう欠点があった。
Also, for manufacturing magnetic recording media, JP-A-58-18
No. 8335 proposes a crucible for an evaporation source containing zirconium oxide as a main component, but there are problems such as a reaction between the so-called stabilizer used together with zirconium oxide to stabilize sintering and the molten metal. It had the disadvantage of not being able to withstand repeated use.

さらに、特開昭58−1811号には酸化マグネシウム
や酸化ジルコニウムに窒化ケイ素ウィスカーあるいは炭
化ケイ素ウィスカー等を添加して、強度を高めたウィス
カー補強セラミックを用いた蒸発源用るつぼも検討され
ているが、改良された特性を得ているものもあるが充分
とはいえなかった。
Furthermore, in JP-A-58-1811, a crucible for evaporation source using a whisker-reinforced ceramic whose strength is increased by adding silicon nitride whiskers or silicon carbide whiskers to magnesium oxide or zirconium oxide is also being considered. Although there are some products with improved characteristics, they are not sufficient.

また、強磁性材料の高速蒸着用るつぼとして広く用いら
れているものとして、酸化マグネシウムからなる蒸発源
用るつぼがある。酸化マグネシウムは融点が高く、耐熱
性の良好なるつぼ材料である反面、熱膨張係数が13,
5X 10  ℃ 程度と比較的大きいために急激な温
償変化を伴なう、所謂熱衝撃性の観点からみると充分な
耐久特、性を有していないという欠点がある。このこと
は、磁気記録媒体の生産工程における熱サイクルによる
蒸発源用るつぼの破壊が起こり易いという事態を引き起
こし、結果として磁気記録媒体の生産の安定性を悪くす
るという問題点があった。
Furthermore, a crucible for evaporation source made of magnesium oxide is widely used as a crucible for high-speed deposition of ferromagnetic materials. Although magnesium oxide has a high melting point and is a crucible material with good heat resistance, it has a thermal expansion coefficient of 13,
Since it is relatively large at about 5×10° C., it has the disadvantage that it does not have sufficient durability and properties from the viewpoint of so-called thermal shock resistance, which is accompanied by rapid temperature compensation changes. This has caused a problem in that the evaporation source crucible is likely to be destroyed due to thermal cycles in the production process of magnetic recording media, resulting in poor production stability of magnetic recording media.

以上、従来の蒸発源用るつぼでは、磁気記録媒体の工業
的規模による人容暮高速蒸着にはいずれも満足できるも
のはなく、大容鯖高速蒸着に耐え得る蒸発源用るつぼの
開発が望まれていた。
As mentioned above, none of the conventional crucibles for evaporation sources are satisfactory for high-speed deposition of magnetic recording media on an industrial scale, and it is desired to develop a crucible for evaporation sources that can withstand high-speed deposition of large mackerel. was.

[発明の目的1 本発明は上記の事情に鑑み為されたもので、本発明の第
1の目的は、蒸着プ1]セスを用いC!!造される薄膜
型磁気記録媒体の工業規模における効率的生産を行なう
ことを可能にした磁気記録媒体の製造方法を提供づるこ
とである。
[Objective of the Invention 1] The present invention has been made in view of the above circumstances, and the first object of the present invention is to perform C! ! It is an object of the present invention to provide a method for manufacturing a magnetic recording medium that makes it possible to efficiently produce thin-film magnetic recording media on an industrial scale.

本発明の第2の目的は、大容量、高速蒸着を可能にした
磁気記録媒体の製造方法を提供することである。
A second object of the present invention is to provide a method for manufacturing a magnetic recording medium that enables high-capacity, high-speed deposition.

本発明の第3の目的は、長時間の蒸発操作においても、
蒸発源が安定な特性を有する磁気記録媒体の製造方法を
提供することである。
The third object of the present invention is that even in long-term evaporation operations,
It is an object of the present invention to provide a method for manufacturing a magnetic recording medium having stable characteristics as an evaporation source.

本発明の第4の目的は、蒸発源るつぼのくり返し使用耐
久性に優れた磁気記録媒体の製造方法を提供することで
ある。
A fourth object of the present invention is to provide a method for manufacturing a magnetic recording medium with excellent durability for repeated use of an evaporation source crucible.

[発明の構成] 本発明の上記目的は強磁性を有する金属または合金を電
子ビーム加熱により蒸発させ基板上に磁性薄膜を形成す
ることにより磁気記録媒体を製造する方法において、前
記強磁性を有する金属または合金を保持する蒸発源るつ
ぼが窒化II素を主成分とする磁気記録媒体の製造方法
により達成される。
[Structure of the Invention] The above object of the present invention is to provide a method for manufacturing a magnetic recording medium by evaporating a ferromagnetic metal or alloy by electron beam heating and forming a magnetic thin film on a substrate. Alternatively, the evaporation source crucible holding the alloy can be achieved by a method of manufacturing a magnetic recording medium containing II nitride as a main component.

[発明の具体的構成] 本発明の製造方法に用いられる窒化硼素を主成分とする
蒸発源るつぼにおける組成は、窒化硼素が純粋なもので
ある必要はなく、安定化剤として酸化II索(B203
)II化カルシウム(Ca O)、酸化アルミニウム(
A ’)x O3)等が適宜添加されたものであっても
よい。本発明に用いられる蒸発源るつぼにおいて、上記
した如く窒化硼素が主成分であればよいが、熱衝撃性等
の観点から窒化硼素が85重曽%〜100画量%である
ことが好ましく、より好ましくは90重惜%〜99重量
%であ一4= る。
[Specific Structure of the Invention] The composition of the evaporation source crucible containing boron nitride as a main component used in the production method of the present invention does not require that boron nitride be pure;
) Calcium II oxide (CaO), aluminum oxide (
A′)xO3) or the like may be added as appropriate. In the evaporation source crucible used in the present invention, boron nitride may be the main component as described above, but from the viewpoint of thermal shock resistance, boron nitride is preferably 85% to 100% by weight, and more preferably It is preferably 90% to 99% by weight.

本発明に用いられる蒸発源るつぼの窒化硼祭には、六方
晶系及び菱面体構造の結晶構造を自4るものがあるが、
これらの結晶構造の組成等には特に制限はない。
Some of the nitride nitrides used in the evaporation source crucible used in the present invention have hexagonal and rhombohedral crystal structures.
There are no particular restrictions on the composition of these crystal structures.

本発明に用いられる窒化ill素は、3000℃近くの
高温にも耐え得る耐熱材料であり、かつ熱膨張係数も4
,7x 10  ℃ 程度と著しく小さく、蒸発源るつ
ぼ材として熱衝撃安定性に優れた適性を有し、熱ザイク
ルによる蒸発源るつぼの破壊が起こりにクク、結果とし
て磁気記録媒体生産の安定性を改良するものである。ざ
らに、窒化硼素は科学的にも、不活性なため、溶融金属
と反応して金属融液へのコンタミネーションを起こりと
いうようなことが少なく、上記生産安定性に寄与するも
のである。
The illumination nitride used in the present invention is a heat-resistant material that can withstand high temperatures of nearly 3000°C, and has a coefficient of thermal expansion of 4.
, 7 x 10 ℃, and has excellent thermal shock stability as an evaporation source crucible material, preventing the evaporation source crucible from breaking due to thermal cycles, resulting in improved stability in magnetic recording media production. It is something to do. In general, since boron nitride is scientifically inert, it is less likely to react with molten metal and cause contamination of the metal melt, contributing to the above-mentioned production stability.

窒化硼素を主成分とする蒸発源るつぼの製造方法として
は、窒化硼素粉末を静水圧による加圧成形で成形し、1
800℃まで窒素雰囲気中で焼成する乾式加圧成形法が
一般的であるが、900℃反応ぐ得られる、5%酸化I
#索を含有する窒化m*粉末を、圧力35〜70kg/
ci11110o〜19oo℃テ10分間保つ、いわゆ
るホットプレス法によっても得る事が出来る。
As a method for manufacturing an evaporation source crucible containing boron nitride as the main component, boron nitride powder is molded by pressure molding using hydrostatic pressure.
A dry pressure molding method in which firing is performed in a nitrogen atmosphere up to 800°C is common, but 5% oxidized I obtained by reaction at 900°C is
#Nitride m* powder containing cords is heated at a pressure of 35 to 70 kg/
It can also be obtained by a so-called hot press method in which the temperature is kept at 11110°C to 190°C for 10 minutes.

第1図は本発明の製造方法を実施するための装置の一例
の要部断面図である。同図において、このli[の内部
は、全体を符号1で示す真空槽により外気から気密にシ
ールされており、真空槽1内は分鐘隔12により非磁性
基板3を送出・巻取る室と蒸着室に分けられ、真空槽1
の底部には排気管4が設けられ、排気管4は爽空排気I
AM5に接続している。
FIG. 1 is a sectional view of essential parts of an example of an apparatus for carrying out the manufacturing method of the present invention. In the same figure, the inside of this li[ is hermetically sealed from the outside air by a vacuum chamber indicated by the symbol 1, and the inside of the vacuum chamber 1 is divided into a chamber for sending out and winding a non-magnetic substrate 3 by a counter spacer 12, and a chamber for feeding and winding a non-magnetic substrate 3, and a chamber for vapor deposition. Divided into chambers, vacuum chamber 1
An exhaust pipe 4 is provided at the bottom of the
Connected to AM5.

送出・巻取る室には、基板走行系として、送出軸6.2
個のフリーローラー7、基板支持体8、巻取軸9を有し
ている。蒸着室には蒸着系として電子ビーム発生装[1
0,るっぽ11、るっは11内にセットされた蒸着用強
磁性材F412がそれぞれ1冒されており、また反応性
ガス(例えば酸素ガス等)を導入する導入口13が設け
られている。
In the delivery/winding chamber, there is a delivery shaft 6.2 as a board running system.
It has two free rollers 7, a substrate support 8, and a winding shaft 9. The deposition chamber is equipped with an electron beam generator [1] as a deposition system.
The ferromagnetic material F412 for deposition set in 0, Ruppo 11, and Ruppo 11 are each affected, and an inlet 13 for introducing a reactive gas (for example, oxygen gas, etc.) is provided. There is.

上記装置において、るつぼ11内にセットされた蒸着用
強磁性材料12を電子ビーム発生装置10から出た電子
ビームにより加熱し蒸発させる。
In the above apparatus, the ferromagnetic material 12 for deposition set in the crucible 11 is heated and evaporated by the electron beam emitted from the electron beam generator 10.

その蒸気流を円筒上の基板支持体8に沿って移動する基
板3−トに強磁性材料12の%l膜を形成する。
The vapor stream is moved along a cylindrical substrate support 8 to form a film of ferromagnetic material 12 on the substrate 3-t.

なお、第1図に示した装置に、さらに蒸気流の一部をさ
えぎるよう上記基板支持体8とるつぼ11の間にマスク
板(図示せず)を設けることは任意であり、また、真空
槽1内に反応性ガス(例えば、アルゴン等の希ガス、酸
素、窒素、゛−酸化炭素、水素、メタンガス等)を導入
することも任意である。
It should be noted that it is optional to provide the apparatus shown in FIG. 1 with a mask plate (not shown) between the substrate support 8 and the crucible 11 so as to block a part of the vapor flow. It is also optional to introduce a reactive gas (for example, a rare gas such as argon, oxygen, nitrogen, carbon oxide, hydrogen, methane gas, etc.) into the reactor.

本発明に用いられる強磁性を有する金、属または合金と
しては、Fe、Qo、Ni等の金属、Fe −Go 、
Fe −Ni 、Co −Ni 、Fe −Go −N
i 、Co −Cu 、Co−Y、Co −Pr 。
Examples of ferromagnetic metals, metals, or alloys used in the present invention include metals such as Fe, Qo, and Ni, Fe-Go,
Fe-Ni, Co-Ni, Fe-Go-N
i, Co-Cu, Co-Y, Co-Pr.

Go −8s 、 Go −Pt 、 Co −Cr 
、 Fe −8l 、Co −8l 、C,o−PlC
o −B、Go −V、CO−Ce 、Co−W%CO
−Mn 、CO−AQ 、Co −Ni−PlCo −
Ni−B、Co −Ni−V、Co −Ni  −8L
l11 Co −Ni  −Cr 。
Go-8s, Go-Pt, Co-Cr
, Fe-8l, Co-8l, C,o-PlC
o -B, Go -V, CO-Ce, Co-W%CO
-Mn, CO-AQ, Co-Ni-PlCo-
Ni-B, Co-Ni-V, Co-Ni-8L
l11Co-Ni-Cr.

Co  −Nl  −Cu  、  Co −Ni  
−Zn 、  Co −Nl−W、Co −8s−Cu
等の合金が挙げられる。
Co-Nl-Cu, Co-Ni
-Zn, Co-Nl-W, Co-8s-Cu
Examples include alloys such as

上記強磁性材料の薄膜を形成させる基板としては、非磁
性金属、紙、プラスチック等の可撓性基板が好ましく、
非磁性金属としては、例えばアルミニウム、アルミニウ
ム合金、銅、亜鉛、スズ、ステンレス、チタン等が挙げ
られ、プラスチックとしては、例えば酢酸セルロース、
硝酸セルロース、メチルセルロ−ス アミド、ポリメチルメタクリレート、ポリパラバン酸、
ポリエーテルイミド、ポリエーテルサルフオン、ポリエ
ーテルエーテルケトン、ポリテトラフルオロエチレン、
ポリトリフルオロエチレン、エチレンまたはプロピレン
のようなα−オレフィンの重合体あるいは共重合体、塩
化ビニルの重合体あるいは共重合体、ポリ塩化ビニリデ
ン、ポリカーボネート、ポリイミド、ポリエチレンテレ
フタレートのようなポリエステル等が挙げられる。
The substrate on which the thin film of the ferromagnetic material is formed is preferably a flexible substrate made of non-magnetic metal, paper, plastic, etc.
Examples of non-magnetic metals include aluminum, aluminum alloys, copper, zinc, tin, stainless steel, and titanium. Examples of plastics include cellulose acetate,
Cellulose nitrate, methylcelluloseamide, polymethyl methacrylate, polyparabanic acid,
polyetherimide, polyethersulfone, polyetheretherketone, polytetrafluoroethylene,
Polymers or copolymers of α-olefins such as polytrifluoroethylene, ethylene or propylene, polymers or copolymers of vinyl chloride, polyvinylidene chloride, polycarbonates, polyimides, polyesters such as polyethylene terephthalate, etc. .

[発明の具体的効果] 以上説明した如く、本発明の製造方法においては、強磁
性金属または合金を保持する蒸発源るつぼに窒化硼素を
主成分としたものを用いることにより、蒸発源るつぼの
熱衝撃安定性、くり返し使用耐久性に優れ、得られる磁
気記録媒体の保磁力、出力変動の幅も小さく、均一な磁
気特性を有する磁気記録媒体を大容量、高速で生産可能
とし、工業規模における効率生産が可能となった。
[Specific Effects of the Invention] As explained above, in the manufacturing method of the present invention, by using an evaporation source crucible containing boron nitride as a main component that holds a ferromagnetic metal or alloy, the heat of the evaporation source crucible is reduced. It enables high-capacity, high-speed production of magnetic recording media with excellent impact stability and repeated use durability, small coercive force and output fluctuations, and uniform magnetic properties, and efficiency on an industrial scale. Production has become possible.

[実施例1 以下、実施例により本発明を具体的に説明するが、本発
明はこれらに限定されるものではない。
[Example 1] Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited thereto.

実施例1 第1図に示した魚@装置を用いて、ポリエチレンテレフ
タレートのプラスチック基板(15μ■厚)を一定の速
度40a/mlnで走行させながら、Co −Nl  
(80 : 20)の磁性材料を電子ビーム加熱により
1600℃に加熱して蒸発させ、同時に酸素ガスを1.
ON・i/■1nで真空槽内に導入しながら、圧力6,
5X 10  P aで膜厚1500人となるように薄
膜を形成した。この時用いた蒸発源るつぼを構成lる材
料は、窒化硼素97.5重量%、酸化硼素<Fi20a
 )’ 2.!i重量%であった。
Example 1 Using the FISH@ apparatus shown in FIG.
(80:20) magnetic material is heated to 1600°C by electron beam heating to evaporate it, and at the same time oxygen gas is added to 1.
While introducing into the vacuum chamber with ON・i/■1n, the pressure is 6,
A thin film was formed at 5×10 Pa to a thickness of 1,500 layers. The materials constituting the evaporation source crucible used at this time were boron nitride 97.5% by weight, boron oxide <Fi20a
)' 2. ! i% by weight.

1時間蒸着を行なった後、貴空槽を大気辻にもどした。After 1 hour of vapor deposition, the tank was returned to the atmosphere.

上記蒸着操作を10回繰り返し、それぞれで得られた磁
気テープ試料をそれぞれA−1〜A−10とした。
The above vapor deposition operation was repeated 10 times, and the magnetic tape samples obtained each time were designated as A-1 to A-10, respectively.

比較例1 実施例1で用いた蒸発源るつぼを従来用いられている′
鹸化マグネシウムるつぼ(Mg098,5i量%)に代
えた以外は実施例1と同様の条件で磁気テープ試料を作
成した。ここでは、蒸着操作の5回目で蒸発源るつぼに
亀裂が生じ、7回目で再使用不能となった。それぞれで
得られた磁気テープ試料をそれぞれB−1〜B−7とし
た。
Comparative Example 1 The evaporation source crucible used in Example 1 was
A magnetic tape sample was prepared under the same conditions as in Example 1 except that a saponified magnesium crucible (Mg098, 5i mass %) was used. Here, the evaporation source crucible cracked during the 5th evaporation operation, and it became unusable after the 7th evaporation operation. The magnetic tape samples obtained in each case were designated as B-1 to B-7, respectively.

上記実施例1および比較例1′c得られた磁気テープ試
料A−1〜A−10、B−1〜、B−7に〕いて保磁力
を測定し、その結果を第2図に保磁力の変化率(%)で
示した。
The coercive force was measured on the magnetic tape samples A-1 to A-10, B-1 to B-7 obtained in Example 1 and Comparative Example 1'c above, and the results are shown in Figure 2. It is expressed as the rate of change (%).

ここで保磁力の変化率は、蒸着長1000mあたりの変
化率C示した値である。
Here, the rate of change in coercive force is a value expressed as the rate of change C per 1000 m of deposition length.

さらに、作成()たそれぞれの磁気テープ試料を172
インチ幅にスリットし、VH’S型VTRで4 M H
Zの出力変動を調べた。結果を第3図に示した。
In addition, 172 magnetic tape samples were prepared for each
Slit to inch width and 4M H with VH'S type VTR
We investigated the Z output fluctuation. The results are shown in Figure 3.

以上の実施例、比較例から明らかなように、本発明の磁
気記録媒体の製造方法によれば、蒸発源るつぼのくり返
し使用耐久性に優れ、得られた磁気記録媒体の保磁力、
出力変動の吟も小さかった。
As is clear from the above Examples and Comparative Examples, according to the method for manufacturing a magnetic recording medium of the present invention, the evaporation source crucible has excellent durability in repeated use, and the coercive force of the obtained magnetic recording medium is
The output fluctuation was also small.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例を示し、第1図は本発明の磁気
記録媒体の111造り汰の実施に使用する製″#1装置
の概略断面図、Mg図は本発明の製造方法で得られた磁
気試料テープ(Aで表わす)と比較の製造方法で得られ
た磁気試料テープ(Bで表ねり)の保磁力の変化率を示
した図、第3図は第2図と同様の出力変動を示した図で
ある。 1・・・真空槽、       3・・・基板、10・
・・電子ビーム発7+装置 11・・・蒸発源るつぼ1
2・・・強磁性44和113・・・反応性ガス導入口第
1図 乍(叶No。 試′p+N o。
The drawings show an embodiment of the present invention, and FIG. 1 is a schematic cross-sectional view of the manufacturing device #1 used for carrying out the 111 manufacturing method of the magnetic recording medium of the present invention, and the Mg diagram shows an example of the manufacturing method of the present invention. Figure 3 shows the rate of change in coercive force of the magnetic sample tape obtained by the manufacturing method (represented by A) and the magnetic sample tape obtained by the comparative manufacturing method (represented by B). Figure 3 shows the same output as Figure 2. It is a diagram showing fluctuations. 1... Vacuum chamber, 3... Substrate, 10.
...Electron beam generator 7+ device 11...Evaporation source crucible 1
2...Ferromagnetic 44 Sum 113...Reactive gas inlet Figure 1 (No.

Claims (1)

【特許請求の範囲】[Claims] 強磁性を有する金属または合金を電子ビーム加熱により
蒸発させ基板上に磁性薄膜を形成することにより磁気記
録媒体を製造する方法において、前記強磁性を有する金
属または合金を保持する蒸発源るつぼが窒化硼素を主成
分とすることを特徴とする磁気記録媒体の製造方法。
In a method for manufacturing a magnetic recording medium by evaporating a ferromagnetic metal or alloy by electron beam heating to form a magnetic thin film on a substrate, the evaporation source crucible holding the ferromagnetic metal or alloy is made of boron nitride. A method for manufacturing a magnetic recording medium, characterized in that the main component is.
JP12007585A 1985-06-03 1985-06-03 Production of magnetic recording medium Pending JPS61278033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12007585A JPS61278033A (en) 1985-06-03 1985-06-03 Production of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12007585A JPS61278033A (en) 1985-06-03 1985-06-03 Production of magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS61278033A true JPS61278033A (en) 1986-12-08

Family

ID=14777280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12007585A Pending JPS61278033A (en) 1985-06-03 1985-06-03 Production of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS61278033A (en)

Similar Documents

Publication Publication Date Title
US3342632A (en) Magnetic coating
US3342633A (en) Magnetic coating
WO2008026439A1 (en) Magnetic thin film
EP0278629B1 (en) Amorphous materials
JPS61278033A (en) Production of magnetic recording medium
JPS61184726A (en) Production of magnetic recording medium
JPS61187126A (en) Manufacture of magnetic recording medium
JPS61292223A (en) Production of magnetic recording medium
JPS59185024A (en) Magnetic recording medium
JPS61192035A (en) Production of magnetic recording medium
JPS59147422A (en) Formation of magnetic layer
US4386113A (en) Method of making a magnetic recording medium
JPS61278034A (en) Production of magnetic recording medium
JPH0518899B2 (en)
JPH0311531B2 (en)
JP2794578B2 (en) Manufacturing method of magnetic recording medium
JPS6194237A (en) Preparation of vertical magnetic recording medium
JPS63136322A (en) Production of magnetic recording medium
JPS62298017A (en) Magnetic recording medium and its production
JPS6318607A (en) Magnetic recording medium
JPH0925576A (en) Film forming method and film forming device
JPH08221744A (en) Magnetic recording medium and its production
JPS6157028A (en) Vertical magnetic recording media
JPS59178626A (en) Manufacture of magnetic recording medium
JPS60140542A (en) Production of magnetic recording medium