JPS61277307A - Management of hot line for installed power cable - Google Patents

Management of hot line for installed power cable

Info

Publication number
JPS61277307A
JPS61277307A JP60118786A JP11878685A JPS61277307A JP S61277307 A JPS61277307 A JP S61277307A JP 60118786 A JP60118786 A JP 60118786A JP 11878685 A JP11878685 A JP 11878685A JP S61277307 A JPS61277307 A JP S61277307A
Authority
JP
Japan
Prior art keywords
cable
temperature
thermal
power cable
dielectric loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60118786A
Other languages
Japanese (ja)
Other versions
JPH0546764B2 (en
Inventor
直裕 穂積
寛 鈴木
深川 裕正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP60118786A priority Critical patent/JPS61277307A/en
Publication of JPS61277307A publication Critical patent/JPS61277307A/en
Publication of JPH0546764B2 publication Critical patent/JPH0546764B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Locating Faults (AREA)
  • Electric Cable Installation (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (発明の属する技術分野) 本発明は電力ケーブルの活線管理方法の改善に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field to Which the Invention Pertains) The present invention relates to an improvement in a live line management method for power cables.

(従来の技術) 電力ケーブル(以下ケーブルと略記する)、特にOFケ
ーブルはその用途上極めて高い信頬性が要求されるが、
使用中の経年劣化や機械的損傷、または製造工程におけ
る不良などによってケーブル内の絶縁層に異常が発生す
ることがある。この異常は誘電損失の増加となって現れ
ることが多く、その結果ケーブル内部の発熱量が増大し
て内部温度が上昇し絶縁層の熱劣化が促進される。熱劣
化した絶縁層はさらに誘電損失が増加し、内部温度が上
昇して熱劣化がますます加速されるという正帰還作用が
生じ遂には熱破壊に至るというおそれがある。
(Prior art) Power cables (hereinafter abbreviated as cables), especially OF cables, are required to have extremely high reliability due to their use.
Abnormalities may occur in the insulation layer within the cable due to aging deterioration during use, mechanical damage, or defects in the manufacturing process. This abnormality often appears as an increase in dielectric loss, and as a result, the amount of heat generated inside the cable increases, internal temperature rises, and thermal deterioration of the insulating layer is accelerated. The dielectric loss of the thermally deteriorated insulating layer further increases, causing a positive feedback effect in which the internal temperature rises and further accelerates thermal deterioration, which may eventually lead to thermal breakdown.

このような事故を未然に防止するには布設されたケーブ
ル線路の誘電損失を定期的に測定して余寿命の推定や絶
縁体の異常の有無を確認することが必要である。
To prevent such accidents, it is necessary to periodically measure the dielectric loss of installed cable lines to estimate the remaining life and check for abnormalities in the insulators.

誘電損失の測定法には従来より電気的方法と熱的方法が
ある。電気的方法ではケーブルと並列に無損失コンデン
サを接続し、シエーリングブリッジ等を用いて損失を求
めるものであるが、無損失コンデンサの運搬および測定
回路の構成のために、多大の費用と労力を要するばかり
でなく長期間の停電が必要であるため、この方法は配電
ケーブルを除いて実布設のケーブルでは採用されていな
い。
Conventional methods for measuring dielectric loss include electrical methods and thermal methods. In the electrical method, a lossless capacitor is connected in parallel with the cable and the loss is determined using a shearing bridge, etc., but it requires a great deal of cost and labor to transport the lossless capacitor and configure the measurement circuit. In addition to this, it also requires a long power outage, so this method is not used in actual installations of cables, except for power distribution cables.

他方熱的測定法はケーブル表面に熱センサを張り付けて
ケーブル表面から放散する熱流量を検出し誘電損失を推
定する方法で、測定装置は簡単であり、局所的な異常検
出も可能である。しかし従来のこの方法では外気温度や
通電電流の変動によりケーブル温度が複雑に変化した場
合には通電損失およびケーブルの熱容量の作用によって
誘電損失権乳分以外の熱流量が発生し熱センサを応答さ
せてしまうから、実際にケーブルが置かれている状態で
は測定が困難であった。このため被測定ケーブルと同一
構造のダミーケーブルを被測定ケーブルと同一環境下に
無謀型にて設置し、両ケーブルの表面放散熱流量の差を
求めて誘電損失とする方法が提案されているが実布設線
路へのダミーケーブルの搬入は大掛かりであり、また長
期間の停電を伴うので実用的な方法とは言えない。
On the other hand, the thermal measurement method is a method in which a thermal sensor is attached to the cable surface to detect the amount of heat dissipated from the cable surface and estimate the dielectric loss.The measurement device is simple and it is also possible to detect local abnormalities. However, with this conventional method, when the cable temperature changes in a complex manner due to fluctuations in the outside temperature or the current flowing, a heat flow other than the dielectric loss is generated due to the action of the current flow loss and the heat capacity of the cable, causing the thermal sensor to respond. Therefore, it was difficult to measure when the cable was actually placed. For this reason, a method has been proposed in which a dummy cable with the same structure as the cable under test is installed in the same environment as the cable under test, and the difference in the surface dissipation heat flow rate of both cables is determined to determine the dielectric loss. Carrying dummy cables onto the actual installed line is not a practical method because it requires a large amount of work and involves a long power outage.

(発明の具体的な目的) 本発明は従来の熱的誘電損失測定法の欠点を除去し、実
使用状態のケーブルの誘電損失を無停電にて安全、簡単
かつ迅速、正確に測定するとともに、ケーブルの余寿命
推定または絶縁体の異常検出を行うことを可能とした電
力ケーブルの管理方法を提供することを目的としている
(Specific Object of the Invention) The present invention eliminates the drawbacks of the conventional thermal dielectric loss measurement method, safely, easily, quickly, and accurately measures the dielectric loss of a cable in actual use without interruption. The purpose of this invention is to provide a power cable management method that makes it possible to estimate the remaining life of the cable or detect abnormalities in the insulator.

(発明の構成と作用) 説明の便宜上最初本発明の要点をあげておく。(Structure and operation of the invention) For convenience of explanation, the main points of the present invention will be listed first.

本発明の管理システムでは電力ケーブルの最外層の表面
温度および表面放射熱流量、または表面温度と周囲温度
を時々刻々実測し、その測定値に特殊な計算処理を施し
てケーブル内部の温度と発熱量を推定し、電力ケーブル
の劣化状態や余寿命を推定し、また異常検出を行うこと
が特徴である。
The management system of the present invention measures the surface temperature and surface radiant heat flow of the outermost layer of a power cable, or the surface temperature and ambient temperature from time to time, and performs special calculation processing on the measured values to calculate the temperature and heat generation amount inside the cable. It is characterized by estimating the state of deterioration and remaining life of power cables, and detecting abnormalities.

この具体的な手段を以下に説明する。This specific means will be explained below.

第1図はケーブルの内部構造を示す断面別図で、lはケ
ーブル導体、1aは絶縁体、1bは金属遮蔽(シース)
層、1cは防食層である。各層の熱容量および半径方向
の熱抵抗は材料固有の比熱および固有熱抵抗から計算で
きる。これらの熱定数は熱容量Cを静電容量に、抵抗R
を電気抵抗に置換えて第2図のようなケーブル内部の熱
等価回路で表すことができる。第2図において、W、、
 L−、W。
Figure 1 is a cross-sectional view showing the internal structure of the cable, where l is the cable conductor, 1a is the insulator, and 1b is the metal shield (sheath).
Layer 1c is an anti-corrosion layer. The heat capacity and radial thermal resistance of each layer can be calculated from the specific heat and specific thermal resistance of the material. These thermal constants are defined by heat capacity C as capacitance and resistance R as
can be expressed by the thermal equivalent circuit inside the cable as shown in Figure 2 by replacing it with electrical resistance. In Figure 2, W,...
L-, W.

はケーブル内部の発熱源であってWcは導体損失、!A
−は誘電損失、6はシース損失であっていずれも電流源
として表わされている。これらのうち−6とり、はケー
ブルの構造と布設形態より定まる定数に通電電流の自乗
を乗じて求めることができる。
is the heat source inside the cable, Wc is the conductor loss, ! A
- is dielectric loss and 6 is sheath loss, both of which are expressed as current sources. Among these, -6 can be determined by multiplying a constant determined by the structure and installation form of the cable by the square of the conducting current.

第2図の等価回路を用いた場合、導体温度をTCs絶縁
体平均温度をTa、シース温度Tいケーブルの表面温度
T0とし、表面放散熱流量をHoとすると誘電損失−4
は次式で与えられる。
When using the equivalent circuit shown in Figure 2, the conductor temperature is TCs, the average temperature of the insulator is Ta, the sheath temperature is T, the cable surface temperature is T0, and the surface dissipated heat flow is Ho, then the dielectric loss is -4
is given by the following equation.

ここで、−0はケーブル表面に張りつけたセンサを用い
て実測できる。また最外層の表面放散熱抵抗が既知のと
きにはケーブル表面温度と外気温度の差から求めてもよ
い。
Here, -0 can be actually measured using a sensor attached to the surface of the cable. Furthermore, when the surface heat dissipation resistance of the outermost layer is known, it may be determined from the difference between the cable surface temperature and the outside temperature.

TcおよびT、は次式で計算できる。((2)、 (3
1両式の誘導については本発明者による特願昭59=8
9260号参照) Tt −T(1+ R1W6  −・−・・−・・−−
−−−−−−・−・−・−−−−−−−・・−−−−−
−−一・−−−−−(3)(2)式には未知数−4を含
んでいるが絶縁体の温度変化に伴う−、の時間変化dL
/dtが問題にならなければ(2)式を微分してdTc
/dtを求める際に−。
Tc and T can be calculated using the following equations. ((2), (3
Regarding the one-car type guidance, the present inventor filed a patent application in 1988=8.
9260) Tt −T(1+ R1W6 −・−・・−・・−−
−−−−−−・−・−・−−−−−−−・・−−−−
−−1・−−−−(3) Equation (2) includes the unknown number −4, but the time change dL of − due to the temperature change of the insulator
/dt is not a problem, differentiate equation (2) and find dTc
- when calculating /dt.

は消去されるので、!/44には予想される適当値を仮
定しておいてTc、 T、を一旦求めて記憶しておき、
これらの値の時間微分を計算して(1)式より6の値を
求めて修正すればよい。なお、計算に必要な時間微分の
演算は時々刻々の測定データもしくは計算結果をマイク
ロコンピュータなどの内部メモリに記憶させておき、そ
の時間変化を計算して、簡単に精度よく求めることがで
きる。
will be deleted, so! Assuming an appropriate expected value for /44, calculate and store Tc, T, once.
The time differential of these values may be calculated, and the value of 6 may be obtained from equation (1) and corrected. Note that the time differential calculation required for calculation can be easily and accurately determined by storing momentary measurement data or calculation results in an internal memory of a microcomputer or the like, and calculating the changes over time.

次に−4の値がその温度特性に影響されてケープル温度
の変動に伴い時間的に大きく変化する場合には、前述の
方法で一旦修正したW4の温度特性を(2)式に代入し
て再度Tcを求め、dTc/dtの演算を行って(1)
式に代入し、6の値を再修正してゆく操作をくり返すこ
とにより推定精度を向上させることができる。
Next, if the value of -4 is affected by its temperature characteristics and changes significantly over time with fluctuations in cable temperature, substitute the temperature characteristics of W4, which has been corrected using the method described above, into equation (2). Find Tc again and calculate dTc/dt (1)
The estimation accuracy can be improved by repeating the operation of substituting into the equation and re-correcting the value of 6.

以上述べた方法はケーブルからの表面放散熱流量を正確
に求めることができるならばどのようなケーブル布設条
件下でもその誘電損失を推定することができる。
The method described above can estimate the dielectric loss under any cable installation conditions if the surface heat dissipation flow rate from the cable can be accurately determined.

次にOFケーブルにおいて熱劣化の進行速度とケーブル
内部の熱的安定性から余寿命を推定する方法を示す。(
第3図の流れ図参照)従来の研究からケーブルの熱的安
定性が問題となる温度領域において絶縁体(油浸紙)の
誘電正接δは近時的に tanδ=Be+B1  e −”t/kT−、−−−
−−、−−−−−−−−(4)で表わされることが知ら
れている。ここでBo、 B。
Next, we will show how to estimate the remaining life of an OF cable from the rate of progress of thermal deterioration and the thermal stability inside the cable. (
(Refer to the flowchart in Figure 3) According to previous research, in the temperature range where the thermal stability of the cable is a problem, the dielectric loss tangent δ of the insulator (oil-impregnated paper) is recently calculated as tanδ=Be+B1 e −”t/kT− ,---
It is known that it is represented by --, ----- (4). Here Bo, B.

は定数、kはボルツマン定数、T4は絶縁体の平均温度
、Elは絶縁体中のイオン性電気伝導の活性化エネルギ
である。またケーブル絶縁体は課通電に伴う温度上昇の
ため熱劣化してイオン性不純物が増加して(4)式の8
1の値が増大しtanδの値が上昇する。Boの値は殆
ど変化しない。劣化温度Tdが一定であればB、の上昇
率は パ で表わされることが知られているe AOは定数、E。
is a constant, k is the Boltzmann constant, T4 is the average temperature of the insulator, and El is the activation energy of ionic electrical conduction in the insulator. In addition, the cable insulator deteriorates due to temperature rise due to energization, and ionic impurities increase, resulting in 8 in equation (4).
The value of 1 increases and the value of tan δ increases. The value of Bo hardly changes. It is known that if the deterioration temperature Td is constant, the rate of increase in B is expressed as pa. AO is a constant, and E is a constant.

は熱劣化反応の活性化エネルギである。負荷変動等に伴
って劣化温度T4が変化する場合には日間負荷パターン
およびその時点のtanδの温度特性からT4の周期変
化を計算しておき、それに等しい劣化量を与える温度T
eqを求める。すなわちLを時間として より として求めた等債券化温度Teqを(5)式のT4の代
わりに代入してB、の変化率を計算し、微小時間Δを後
のB、の値とjanδ一温度特性を求める。以下同様の
計算を繰り返すと劣化に伴うtanδ一温度特性の推移
が計算される。この際必要なり、、 B。
is the activation energy of the thermal deterioration reaction. If the deterioration temperature T4 changes due to load fluctuations, etc., calculate the periodic change in T4 from the daily load pattern and the temperature characteristics of tan δ at that point, and set the temperature T4 that gives the same amount of deterioration.
Find eq. That is, the rate of change of B is calculated by substituting the equal bonding temperature Teq obtained with L as time in place of T4 in equation (5), and the minute time Δ is expressed as the value of B after and janδ - temperature. Find characteristics. If similar calculations are repeated thereafter, the transition of tan δ-temperature characteristics due to deterioration will be calculated. It is necessary in this case, B.

の初期値およびイオン性電気伝導の活性化エネルギE、
は布設線路において前述の方法で推定した誘電損失Wd
の値から式 %式% から逆算したtanδの値の温度特性より求められる。
The initial value of and the activation energy of ionic conduction E,
is the dielectric loss Wd estimated by the method described above in the installed line.
It is determined from the temperature characteristics of the value of tan δ, which is back calculated from the value of the formula %.

ここでωは印加電圧の角周波数、■は印加電圧、Cは静
電容量である。OFケーブルではCの値は絶縁体の劣化
に伴う変化は殆どないことがわかっているので−、から
簡単にtanδの値を換算できる。また劣化反応の定数
へ〇や活性化エネルギEaは実験室におけるデータを用
いてもよいが、実布設ケーブルにおける数回の測定結果
があればその時間推移より推定できる。
Here, ω is the angular frequency of the applied voltage, ■ is the applied voltage, and C is the capacitance. Since it is known that in an OF cable, the value of C hardly changes due to deterioration of the insulator, the value of tan δ can be easily converted from -. Further, the constant of the deterioration reaction and the activation energy Ea may be determined using laboratory data, but if there are results of several measurements on an actually installed cable, they can be estimated from the time course.

tanδの値の上昇度からケーブル寿命を決定する方法
として、定格負荷電流を連続的に流したときに熱安定度
が保てなくなる時点を寿命と定めると、劣化時の各時点
で予想されるtanδ一温度特性から定格負荷時の熱的
安定性をチェックしてい(ことにより余寿命を推定でき
る。
As a method of determining cable life based on the degree of increase in the value of tanδ, if the life is defined as the point at which thermal stability cannot be maintained when the rated load current is continuously applied, then the expected tanδ at each point of deterioration can be calculated. The thermal stability at rated load is checked from the temperature characteristics (this allows the remaining life to be estimated.

熱的安定性の判別は次のようにして行う。ケーブル内部
の発生熱量IAaとケーブルからの熱放散量−0は絶縁
体の平均温度T4を用いて次式で表される。
Thermal stability is determined as follows. The amount of heat generated inside the cable IAa and the amount of heat dissipated from the cable -0 are expressed by the following equation using the average temperature T4 of the insulator.

Wr、<?a、=ωCV”tanδ(t、Ta) + 
W。十W、 ・−−−−−−−−−(8)ただしT9は
土壌基底温度、R,ばケーブル外側の熱抵抗である。ケ
ーブルが熱的不安定となって熱破壊する条件は常温以上
で常にに0゜74) >L (Tdlとなることである
が、これは(8)、 +91両弐から判断することがで
きる。
Wr,<? a, = ωCV” tan δ (t, Ta) +
W. 10W, ・---------------------- (8) where T9 is the soil base temperature, and R is the thermal resistance on the outside of the cable. The conditions for the cable to become thermally unstable and thermally destroyed are always 0°74) > L (Tdl above room temperature), which can be determined from (8) and +91 Ryo2.

第3図は余寿命推定プロセスの流れ図で、各ステップの
内容は前記の通りである。また第4図は布設電力ケーブ
ルに本発明の管理を行うための計測回路の構成側図で、
1. Ia、 lb、 lcは第1図と共通、2は温度
測定用熱媒体、3と4は熱電対、5はケーブル電流測定
用変流器、6はインターフェイス回路、7はマイクロコ
ンピュータ、8はケーブル熱定数などのメモリ、9は表
示装置、lOは記録装置、■、は印加電源の電圧である
FIG. 3 is a flowchart of the remaining life estimation process, and the contents of each step are as described above. FIG. 4 is a side view of the configuration of a measuring circuit for managing the installed power cable according to the present invention.
1. Ia, lb, and lc are the same as in Figure 1, 2 is a heating medium for temperature measurement, 3 and 4 are thermocouples, 5 is a current transformer for cable current measurement, 6 is an interface circuit, 7 is a microcomputer, and 8 is a cable. 9 is a display device, 10 is a recording device, and 2 is the voltage of the applied power source.

(発明の効果) 前項に説明したように本発明によれば被測定ケーブル内
部および課電側にどのような工作も施すことなく安全で
、簡単にケーブルの誘電損失が測定できる。また熱容量
による熱伝達の遅れを考慮した計算方法を用いて過去の
温度履歴にかかわらず測定開始時点から直ちに内部温度
と誘電損失を推定できるので、実使用状態のケーブルの
ように外部温度や負荷電流の変動に伴って複雑な温度変
化が生じる場合でも短時間に正確な推定が可能であり、
しかも誘電損失の温度特性まで把握できる。
(Effects of the Invention) As explained in the previous section, according to the present invention, the dielectric loss of a cable can be safely and easily measured without performing any work on the inside of the cable to be measured or on the power supply side. In addition, using a calculation method that takes into account the delay in heat transfer due to heat capacity, internal temperature and dielectric loss can be estimated immediately from the start of measurement regardless of past temperature history. Accurate estimation is possible in a short time even when complex temperature changes occur due to fluctuations in temperature.
Furthermore, it is possible to understand the temperature characteristics of dielectric loss.

さらにケーブルの部分的な異常にも対応でき、これらは
低い経費で実行可能であるから本発明は布設しであるケ
ーブルの活線管理、特に余寿命推定や異常検出に実用主
著しい効果を発揮することが期待される。
Furthermore, it is possible to deal with local abnormalities in cables, and since these can be implemented at low cost, the present invention has a significant practical effect on live line management of installed cables, especially in estimating remaining life and detecting abnormalities. It is expected.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はケーブルの断面例図、第2図はケーブルの熱等
価回路図、第3図はケーブルの余寿命推定の流れ図、第
4図は布設ケーブルに本発明の管理を行うための計測回
路の構成例図である。 1・・・ケーブル導体、 1a・・・絶縁体、 lb・
・・金属遮蔽層、 lc・・・防食層、 2・・・熱媒
体、3.4・・・熱電対、 5・・・変流器、 6・・
・インターフェイス、  7・・・マイクロコンピュー
タ、8・・・メモリ、 9・・・表示装置、 1o・・
・記録装置。
Figure 1 is an example cross-sectional view of a cable, Figure 2 is a thermal equivalent circuit diagram of a cable, Figure 3 is a flowchart for estimating the remaining life of a cable, and Figure 4 is a measurement circuit for managing installed cables according to the present invention. FIG. 1... Cable conductor, 1a... Insulator, lb.
...metal shielding layer, lc...corrosion protection layer, 2...thermal medium, 3.4...thermocouple, 5...current transformer, 6...
・Interface, 7...Microcomputer, 8...Memory, 9...Display device, 1o...
・Recording device.

Claims (1)

【特許請求の範囲】[Claims] 活線電力ケーブル最外層の表面温度と表面放散熱流量ま
たは前記電力ケーブルの周囲温度を時々刻々実測し、こ
れらの計測値を予め求めてある前記ケーブルの定数と共
に計算処理を施して前記電力ケーブル内部の温度と発熱
量を推定し、電力ケーブルの劣化状態と余寿命の推定お
よび異常検出を行うことを特徴とする布設電力ケーブル
の活線管理方法。
The surface temperature and surface dissipated heat flow of the outermost layer of the live power cable or the ambient temperature of the power cable are measured from time to time, and these measured values are calculated along with predetermined constants of the cable to determine the inside of the power cable. A live line management method for installed power cables, characterized by estimating the temperature and calorific value of the power cables, estimating the state of deterioration and remaining life of the power cables, and detecting abnormalities.
JP60118786A 1985-06-03 1985-06-03 Management of hot line for installed power cable Granted JPS61277307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60118786A JPS61277307A (en) 1985-06-03 1985-06-03 Management of hot line for installed power cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60118786A JPS61277307A (en) 1985-06-03 1985-06-03 Management of hot line for installed power cable

Publications (2)

Publication Number Publication Date
JPS61277307A true JPS61277307A (en) 1986-12-08
JPH0546764B2 JPH0546764B2 (en) 1993-07-14

Family

ID=14745050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60118786A Granted JPS61277307A (en) 1985-06-03 1985-06-03 Management of hot line for installed power cable

Country Status (1)

Country Link
JP (1) JPS61277307A (en)

Also Published As

Publication number Publication date
JPH0546764B2 (en) 1993-07-14

Similar Documents

Publication Publication Date Title
CN104697664B (en) The method of adjustment coiling hot point of transformer on-line temperature monitoring
EP1821108A1 (en) Method and apparatus for condition monitoring of electrical connections
CN105277793A (en) Cable conductor alternating current resistance measuring method and system
CN104678267A (en) Method for indirectly measuring dielectric loss of insulation layer of cable
US4795884A (en) Method for in-situ restoration of plantinum resistance thermometer calibration
JPH0376694B2 (en)
Li et al. Temperature dependent signal propagation velocity: Possible indicator for MV cable dynamic rating
CN107462815B (en) Cable insulation thermal breakdown voltage determining method and device
Chen et al. High-temperature sag model for overhead conductors
Lu et al. Characterization of thin-film heat-flux gauges
Soltanbayev et al. Automated dry-type transformer aging evaluation: A simulation study
JPS61277307A (en) Management of hot line for installed power cable
CN110618332A (en) Capacitor temperature rise measuring method and system based on heat flow measurement
Tzimas et al. Qualitative analysis of PEA and TSM techniques on a 200kV extruded cable during a VSC ageing program
JPS6351253B2 (en)
JP2574187B2 (en) Monitoring method of conductor temperature of laid power cable
Kolesnikov et al. A digital model for evaluating the thermal behavior of power cable couplings
Taklaja et al. Test setup for measuring medium voltage power cable and joint temperature in high current tests using thermocouples
JP2613132B2 (en) Monitoring method of conductor temperature of laid power cable joint
Engelhardt et al. Preliminary qualification of a HPOF pipe cable system for service at 765 kV
Gonzalez et al. Dynamic thermal modeling of voltage divider capacitive coupling
CN112467692B (en) Cable protection system and method based on temperature change waveform along cable
CN213874735U (en) Precision self-detection and self-calibration device for temperature measurement sensor
Torzyk et al. Thermal modeling and RMS current measurement in electrical power lines using IR thermography
Farmer Measurement of power loss in dielectrics of three-conductor high-tension cables