JPS61276909A - Reduced iron manufacturing method - Google Patents
Reduced iron manufacturing methodInfo
- Publication number
- JPS61276909A JPS61276909A JP60118394A JP11839485A JPS61276909A JP S61276909 A JPS61276909 A JP S61276909A JP 60118394 A JP60118394 A JP 60118394A JP 11839485 A JP11839485 A JP 11839485A JP S61276909 A JPS61276909 A JP S61276909A
- Authority
- JP
- Japan
- Prior art keywords
- reduced iron
- gas
- dust
- furnace
- conduit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title claims description 82
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 229910052742 iron Inorganic materials 0.000 claims description 6
- 230000001590 oxidative effect Effects 0.000 claims description 5
- 239000010419 fine particle Substances 0.000 claims description 4
- 238000007664 blowing Methods 0.000 claims description 2
- 239000007789 gas Substances 0.000 description 67
- 239000000428 dust Substances 0.000 description 58
- 238000002844 melting Methods 0.000 description 18
- 230000008018 melting Effects 0.000 description 18
- 230000032258 transport Effects 0.000 description 16
- 238000000034 method Methods 0.000 description 12
- 238000009423 ventilation Methods 0.000 description 7
- 239000003245 coal Substances 0.000 description 5
- 238000002309 gasification Methods 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 238000011084 recovery Methods 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 239000000571 coke Substances 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 229910001868 water Inorganic materials 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000004449 solid propellant Substances 0.000 description 2
- 229910000805 Pig iron Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000011946 reduction process Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B13/00—Making spongy iron or liquid steel, by direct processes
- C21B13/0006—Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state
- C21B13/0013—Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state introduction of iron oxide into a bath of molten iron containing a carbon reductant
- C21B13/002—Reduction of iron ores by passing through a heated column of carbon
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B13/00—Making spongy iron or liquid steel, by direct processes
- C21B13/14—Multi-stage processes processes carried out in different vessels or furnaces
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B2100/00—Handling of exhaust gases produced during the manufacture of iron or steel
- C21B2100/40—Gas purification of exhaust gases to be recirculated or used in other metallurgical processes
- C21B2100/44—Removing particles, e.g. by scrubbing, dedusting
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacture Of Iron (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、シャフト式還元炉で還元鉄を製造する方法に
関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing reduced iron in a shaft type reduction furnace.
石炭系の固体燃料を酸素を含有するガスでガス化して生
成する顕熱によって塊状還元鉄を溶解精錬する溶蟹ガス
化炉と、この溶解ガス化炉で発生したCOおよびH2が
主成分の還元ガスを冷却することなく還元炉に吹込み、
鉱石を還元して溶解ガス化炉に供給すべき塊状還元鉄を
製造する還元炉との組合せによる製鉄法は、KR法(特
開昭57−120607号公報)、SC法(特公昭59
−18443号公報)、C0IN法等として公知である
。A molten crab gasifier that melts and refines lumpy reduced iron using the sensible heat generated by gasifying coal-based solid fuel with oxygen-containing gas, and a reduction process whose main components are CO and H2 generated in this molten gasifier. Inject the gas into the reduction furnace without cooling it,
The iron manufacturing method in combination with a reduction furnace that reduces ore to produce lump reduced iron to be supplied to the melting and gasification furnace is the KR method (Japanese Patent Application Laid-Open No. 120607/1983), the SC method (Japanese Patent Publication No. 1983-120607),
-18443), C0IN method, etc.
上記製銑プロセスにおいては、溶解ガス化炉で製造する
還元ガス中には、多量の微細ダストが存在する0たとえ
ば、本出願人等に係るSC法の場合、10μ以下の微細
ダストである。このようにダストを含有する還元ガスを
直接還元炉に用いた場合、ダストが還元炉内で還元鉄粒
子に付着して通気、荷下り障害を発生する。したがって
、溶解炉で発生したガスを除塵する必要がある。しかる
に、溶解炉で発生したガスを冷却除塵すnば、ガス中ダ
ストは微細粉も含めて除去できるが、この場合、ガスの
顕熱が失わ几るので望ましく彦く、できnば、熱間で除
塵することが望ましい。しかし、この場合、5μ以下の
ダストの除去はむずかしい。In the above ironmaking process, a large amount of fine dust is present in the reducing gas produced in the melting and gasifying furnace. For example, in the case of the SC method according to the present applicant, the fine dust is 10 microns or less. When reducing gas containing dust is directly used in a reduction furnace in this way, the dust adheres to reduced iron particles in the reduction furnace, causing problems with ventilation and unloading. Therefore, it is necessary to remove dust from the gas generated in the melting furnace. However, if the gas generated in the melting furnace is cooled and removed, the dust in the gas, including fine particles, can be removed, but in this case, the sensible heat of the gas is lost, so it is desirable to It is desirable to remove dust with However, in this case, it is difficult to remove dust of 5 μm or less.
さらに、このような熱間除塵で除去でき彦い微細粉を含
むガスを還元炉に吹込むと、製造する還元鉄表面には微
細粉が付着しているので、その還元鉄を溶解炉に供給す
ると、伺着ダストが再びガス中に混入する結果、ダスト
のガス→還元鉄骨ガス循環が生じ、還元ガス中のダスト
量の増大を引きおこす結果に彦るO8C法の例では、溶
解ガス化炉で発生したガスを熱間サイクロンで除塵して
、1011以下のゲス)10.!9/Nm+に寸で清浄
した後還元炉に供給して還元鉄を製造し、その還元鉄を
直接溶解炉に供給して操業した結果、やがて、ガス中の
10μ以下ダスト量が369 /Nm K: fxる捷
で増加し、還元炉の通気不良現象を発生することが多い
。Furthermore, when gas containing fine powder that cannot be removed by hot dust removal is blown into the reduction furnace, fine powder will adhere to the surface of the reduced iron being produced, so the reduced iron will be supplied to the melting furnace. Then, as a result of the incoming dust mixed into the gas again, a circulation of dust gas → reduced steel gas occurs, resulting in an increase in the amount of dust in the reducing gas. Remove dust from the generated gas using a hot cyclone to obtain a gas of 1011 or less) 10. ! After being cleaned to 9/Nm+, it is supplied to a reduction furnace to produce reduced iron, and the reduced iron is directly supplied to a melting furnace for operation. As a result, the amount of dust of 10 μ or less in the gas eventually decreases to 369 /Nm K. : It increases with fx operation and often causes poor ventilation in the reduction furnace.
そこで、本発明の目的は、確実に微細ダストをも除去で
き、もって還元炉内での通気・荷下りを良好々状態に保
持できる還元鉄の製造方法を提供することにある○
〔問題点を解決するための手段〕
上記問題点を解決するために、本発明は、炉上部に鉱石
装入口および還元後ガス排出口を有し、炉の中間部また
は下部に還元ガス吹込み口を有し、炉下部に還元鉄排出
口を有するシャフト式還元炉で、前記還元ガス吹込み口
から還元ガスを吹込むことによって、鉱石装入口から装
入した鉱石を、還元ガスと向流で降下さぜながら還元さ
せて還元鉄を製造する方法において;前記還元鉄排出口
の下方にこ汎に連って下向きの還元鉄導管を設け、この
下部から非酸化性ガスを吹込み、還元鉄導管内を降下す
る還元鉄と向流で上昇させて還元鉄導管上部から抽出さ
せて、還元鉄中の微細粒子を除去することとしく :3
)
たものである。Therefore, an object of the present invention is to provide a method for manufacturing reduced iron that can reliably remove fine dust and maintain good ventilation and unloading in a reduction furnace. Means for Solving] In order to solve the above problems, the present invention has an ore charging inlet and a post-reduction gas outlet in the upper part of the furnace, and a reducing gas inlet in the middle or lower part of the furnace. This is a shaft-type reducing furnace that has a reduced iron discharge port at the bottom of the furnace, and by blowing reducing gas through the reducing gas inlet, the ore charged through the ore charging port is caused to descend in a countercurrent flow to the reducing gas. In the method of manufacturing reduced iron by reducing the iron while reducing the iron; a downward reduced iron conduit is provided below the reduced iron discharge port, and a non-oxidizing gas is blown from the lower part of the reduced iron conduit so that the inside of the reduced iron conduit is Fine particles in the reduced iron are removed by raising it in a countercurrent to the descending reduced iron and extracting it from the upper part of the reduced iron conduit. :3
).
石炭系の固体燃料を酸素で部分ガス化(CmHnガス中
には、固体燃料中に含有さしている灰分の蒸発→凝縮過
程で生成する微粒粉(< 1. (1μ)が混入し、こ
の粉は還元鉄粒子表面にきわめて付着し易いことが、幾
多の実体調査から明らかとなった0々お、このようなダ
ストは、Cと共にSiO2、Cab、 MgO,Alz
e3から構成さfる非晶質のものである0ダストが還元
鉄粒子に付着し易いことがらすnば、還元炉がダストの
効果的な除塵器としてもみ々し得るものである。Partial gasification of coal-based solid fuel with oxygen (CmHn gas contains fine powder (<1. Numerous actual investigations have revealed that such dust is extremely likely to adhere to the surface of reduced iron particles.
Given that the amorphous dust consisting of e3 and f tends to adhere to the reduced iron particles, the reduction furnace can serve as an effective dust remover.
事実、除塵器の一種に充填層式除塵装置が存する0
しかるに、還元炉で還元鉄に付着したダストは、還元鉄
が還元鉄輸送導管を落下する過程で、その量の約9(1
%が還元鉄から遊離する○そこで、本発明では、還元鉄
導管において遊離ゲストを非酸化性ガスに乗せて導管外
へ排出して捕捉するようにする。こnによって、ダスト
の殆んどを除去でき、もって還元炉内での通気および荷
下り障害を防止できる。また、遊離ダストを捕捉するの
に、非酸化性ガスを用いるとともに、還元鉄と向流に上
昇させるから、還元鉄の酸化を防ぐことができるととも
に、効率良く遊離ダストヲ還元鉄導管外へ排出できる。In fact, one type of dust remover is a packed-bed dust remover. However, the amount of dust that adheres to reduced iron in a reduction furnace is approximately 9 (1
% is liberated from the reduced iron. Therefore, in the present invention, in the reduced iron conduit, the free guest is carried on a non-oxidizing gas and discharged outside the conduit to be captured. By doing this, most of the dust can be removed, thereby preventing ventilation and unloading problems in the reduction furnace. In addition, since a non-oxidizing gas is used to capture the free dust and it is raised in a countercurrent to the reduced iron, it is possible to prevent the oxidation of the reduced iron and to efficiently discharge the free dust to the outside of the reduced iron conduit. .
以下本発明をさらに詳説する。 The present invention will be explained in more detail below.
第1図には前述のSC法の概要が示さnている。溶解ガ
ス化炉1は、その上部に、還元鉄とコークスの装入口2
,3およびガス取出口4を有し、炉中段部炉壁に酸素5
、蒸気6、および微粉炭7の吹込用羽口8を有し、下部
に出銑口9を有している。10は還元炉で、その上部に
鉱石の装入口11と還元後ガスの取出口]2を有し、炉
中段炉壁に環状管13に連なるガス吹込用羽口14を有
し、下部に還元鉄切出口15を有している○こnらば、
熱間除塵器16全通して、溶解ガス化炉ガス取出口4か
ら還元炉羽口14へとガスを送るガス導管17と、還元
炉切出装置18から、溶解ガス化炉装入口2へ還元鉄を
重力落下輸送する還元鉄輸送導管19とで連結さnてい
る。FIG. 1 shows an outline of the above-mentioned SC method. The melting and gasifying furnace 1 has a charging port 2 for reduced iron and coke at its upper part.
, 3 and a gas outlet 4.
, steam 6 and pulverized coal 7, and a tap hole 9 at the bottom. Reference numeral 10 denotes a reduction furnace, which has an ore charging inlet 11 and a reduced gas outlet] 2 in its upper part, has a gas injection tuyere 14 connected to an annular pipe 13 in its middle furnace wall, and has a reduction furnace in its lower part. A ○kon rack with an iron cutting opening 15,
A gas conduit 17 passes through the hot dust remover 16 and sends gas from the melting gasifier gas outlet 4 to the reducing furnace tuyere 14, and from the reducing furnace cutting device 18, the gas is reduced to the melting gasifier charging port 2. It is connected to a reduced iron transport conduit 19 that transports iron by gravity.
溶解ガス化炉1では、コークスと微粉炭7を酸素5と蒸
気6で燃焼ガス化して、COとH2を主成分とする約2
,500℃の還元ガスを羽口8前で発生させ、その顕熱
を利用して上部から装入さ几る還元鉄を溶M精錬して銑
鉄を製造し、出銑口9から抽出すると共に、約900℃
に温度低下したガスをガス取出口4から抽出して、熱間
除塵器16を通して、還元炉10に吹込む。In the melting and gasifying furnace 1, coke and pulverized coal 7 are combusted and gasified with oxygen 5 and steam 6 to produce about 2
, 500℃ reducing gas is generated in front of the tuyere 8, and using the sensible heat, the reduced iron charged from the top is molten and refined to produce pig iron, which is extracted from the taphole 9. , about 900℃
The gas whose temperature has been lowered is extracted from the gas outlet 4 and blown into the reduction furnace 10 through the hot dust remover 16.
還元炉10では、そのガスを用いて上部から装入する鉱
石を還元して還元鉄を製造し、切出装置18から排出し
て、還元鉄輸送導管19を通して、その還元鉄を溶解ガ
ス化炉lに装入するDここで、溶解ガス化炉1内で発生
し、ガス取出口4から出た直後のガス中ダスト含有率は
、通常約509/Nm“である。そして、熱間除塵器1
6としてサイクロンを設置すると、ダスト濃度は約10
g/Nmとなり、大半が10μ以下の細粒になる。こ
のガスを還元炉]0で使用すると、ガス中のダストのほ
ぼ100係が還元鉄に付着し、排出さnて溶解ガス化炉
1に入る。このとき、還元鉄は還元鉄輸送導管19を落
下するに際して、付着量の約90%が還元鉄から遊離す
る。したがって、この遊離ダストが、再び溶解ガス化炉
]で生成したガスに混入するので、ガス中ダスト濃度は
増大する。ここで、遊離ダストの1部は、熱間サイクロ
ン16で除mすnるが、遊離ダストは1度熱間サイクロ
ンを通過した微粉であるため、大半(〜80係)が熱間
サイクロンでは除塵さnないで還元炉10に循環する○
この結果、終局的には、還元ガス中ダスト(10μ以下
)が約369/Nm”、になり、還元炉10内で、還元
鉄に付着して、通気、荷下9障害を発生させる。In the reduction furnace 10, the gas is used to reduce the ore charged from above to produce reduced iron, which is discharged from the cutting device 18 and passed through the reduced iron transport conduit 19 to the melting and gasification furnace. Here, the dust content in the gas generated in the melting gasifier 1 and immediately after exiting from the gas outlet 4 is usually about 509/Nm. 1
If a cyclone is installed as 6, the dust concentration will be about 10
g/Nm, and most of the particles are fine particles of 10μ or less. When this gas is used in a reducing furnace]0, approximately 100% of the dust in the gas adheres to the reduced iron, is discharged, and enters the melting and gasifying furnace 1. At this time, when the reduced iron falls through the reduced iron transport conduit 19, about 90% of the attached amount is liberated from the reduced iron. Therefore, this free dust is mixed into the gas generated in the melting and gasifying furnace again, so that the dust concentration in the gas increases. Here, a part of the free dust is removed by the hot cyclone 16, but since the free dust is a fine powder that has passed through the hot cyclone once, most of the free dust (up to 80 parts) is removed by the hot cyclone. As a result, the dust (10μ or less) in the reducing gas becomes about 369/Nm, and it adheres to the reduced iron in the reducing furnace 10. Ventilation, causing underload 9 problems.
本発明は、このようなダスト循環を防止することにより
、還元ガス中のダスト濃度を低位に抑え、還元炉の通気
、荷下り障害を防止する方法であり、以下の構成として
いる。The present invention is a method of suppressing the dust concentration in the reducing gas to a low level by preventing such dust circulation and preventing problems with ventilation and unloading of the reducing furnace, and has the following configuration.
すなわち、第2図にも示すように、還元鉄輸送導管19
の下部から非酸化性ガス20を吹込口2]から吹込み、
還元鉄輸送導管19内を落下してくる還元鉄と向流で上
方に流して、回収口22から回収する。That is, as shown in FIG. 2, the reduced iron transport conduit 19
Blow non-oxidizing gas 20 from the bottom of the inlet 2],
The reduced iron is passed upward in a countercurrent to the falling reduced iron in the reduced iron transport conduit 19 and recovered from the recovery port 22.
このようにす註ば、還元鉄輸送管内を落下する過程で還
元鉄から遊離したダストを、還元鉄と自流で上昇するガ
スに混入せしめて、除去することができる。In this way, the dust liberated from the reduced iron during the process of falling through the reduced iron transport pipe can be removed by being mixed with the gas rising in its own flow with the reduced iron.
ここで、使用するガスは、還元鉄を再酸化しない成分構
成であることが望ましく、N2 +並びにCO,’H2
が良いが、CO2/CO< 0.5 、 H20/H2
(0,3の条件でCO2−、H2Oを含有することは許
容される。Here, the gas used preferably has a composition that does not reoxidize reduced iron, and contains N2 + as well as CO, 'H2
is good, but CO2/CO<0.5, H20/H2
(It is permissible to contain CO2- and H2O under the conditions of 0.3.
また、還元鉄輸送導管内のガス流速としては、高速であ
る方が望せしいが、0.5 m/ s以上のガス流速に
すn、ば、遊離粉をほぼ80係は除去しく )
うる。In addition, it is desirable that the gas flow velocity in the reduced iron transport conduit be high, but if the gas flow velocity is 0.5 m/s or more, approximately 80% of free powder will be removed. .
さらに、還元鉄からのダストの遊離を促進するためには
、還元鉄輸送管内に、第2図に示すような衝突物体23
、たとえば棒または板等を設置することが望ましいoま
た、回収口22からのガスは、ガス冷却器24、除塵器
25を通して循環ポンプ26によって循環するようにす
るのが望せしい。Furthermore, in order to promote the release of dust from reduced iron, an impact object 23 as shown in FIG.
For example, it is desirable to install a rod or a plate, etc. o It is also desirable that the gas from the recovery port 22 be circulated by a circulation pump 26 through a gas cooler 24 and a dust remover 25.
次に、第1図および第2図に示す設備を用いた本発明の
実施例を示す。Next, an embodiment of the present invention using the equipment shown in FIGS. 1 and 2 will be described.
すなわち、還元炉から溶解ガス化炉還元鉄を輸送する還
元鉄輸送導管の下部にガス吹込口を設け、上部にガス回
収口を設けて、回収さしたガスを冷却塔、除塵器を通し
た後、循環ポンプで再度ガス吹込口から吹込む設備を設
置した。In other words, a gas injection port is provided at the bottom of the reduced iron transport conduit that transports reduced iron from the reduction furnace to the molten gasification furnace, and a gas recovery port is provided at the top, and the recovered gas is passed through a cooling tower and a dust remover. Then, equipment was installed to blow in the gas again from the gas inlet using a circulation pump.
ここで、溶解ガス化炉は、羽目レベル径2.5m1高さ
6mであシ、1600 Nvt/h rの酸素と、18
0 、kg/b rの水蒸気と、1930kg/hrの
微粉炭を羽目から吹込み、1100kL’hrのコ−ク
スト5140kg/h rの還元鉄を上部から装入して
4.2t/hrで溶銑を製造すると共に、950°CO
ガスを5500 N771:’/ h r製造した。こ
のガス中には、約50g/Nrrtのダストが含有さn
ている。Here, the melting and gasifying furnace has a diameter of 2.5 m and a height of 6 m at the siding level, and has an oxygen capacity of 1600 Nvt/hr and a capacity of 18
Steam of 0.0 kg/br and pulverized coal of 1930 kg/hr were injected through the slats, 1100 kL'hr of coke was charged, 5140 kg/hr of reduced iron was charged from the top, and hot metal was produced at a rate of 4.2 t/hr. 950°C
Gas was produced at 5500 N771:'/hr. This gas contains about 50g/Nrrt of dust.
ing.
このガスを熱間サイクロンで除塵して、還元炉に吹込む
。ここで還元炉は、羽目レベル径2m、高さ7mであり
、6700 kg/ hrの鉱石を装入して、5140
kg/ h rで金属化率〜85係の還元鉄を製造し
、還元鉄輸送導管を通して、溶解炉に装入した。Dust is removed from this gas using a hot cyclone, and the gas is blown into a reduction furnace. The reduction furnace has a diameter of 2 m at the grain level and a height of 7 m, and is charged with 6,700 kg/hr of ore to produce 5,140 kg/hr of ore.
Reduced iron with a metallization rate of ~85 kg/hr was produced and charged into a melting furnace through a reduced iron transport conduit.
この装置を用い、捷ず、本発明の方法を採用していない
時点では、運転相開始初期では、還元炉に吹込−!nる
ガス中ダスト濃度は10 g/Nmであったが、運転継
続と共に徐々にダスト濃度が増大し、運転開始後、約1
ケ月の時点で、還元炉に荷下り不順(棚吊と称する)が
発生した。When this apparatus is used and the method of the present invention is not used, at the beginning of the operation phase, the reduction furnace is blown into the -! The dust concentration in the gas was 10 g/Nm, but as the operation continued, the dust concentration gradually increased, and after the start of operation, it reached about 10 g/Nm.
At that time, there was an unloading problem (referred to as shelving) in the reduction furnace.
このときのサイクロン手前でのダスト濃度は82、!i
’ /N m’であり、サイクロン出側のダスト濃度は
36 g/Nmであった。At this time, the dust concentration in front of the cyclone was 82! i
'/Nm', and the dust concentration at the exit side of the cyclone was 36 g/Nm.
一方、本発明の方法を、以下の条件で実施したO
すなわち、長さ3mの還元鉄輸送管の下方にガス吹込み
口を設け、その1m上方に、45゜土向き方向で、ガス
回収口を設け、ガス回収口から回収さ几るガスを散水冷
却塔と、フィルタ一式除塵器を通したのち、循環ポンプ
で循環させ、還元鉄輸送管内ガス流速をIm/sになる
ように調整した。On the other hand, the method of the present invention was carried out under the following conditions. That is, a gas injection port was provided below the reduced iron transport pipe with a length of 3 m, and a gas recovery port was installed 1 m above the reduced iron transport pipe at a 45° angle to the ground. The gas recovered from the gas recovery port was passed through a water cooling tower and a filter set dust remover, and then circulated by a circulation pump, and the gas flow rate in the reduced iron transport pipe was adjusted to Im/s.
この結果、運転開始直後の還元炉吹込みガス中ダスト濃
度が11097Nに対し、運転継続しても目立ったダス
ト濃度増加はなく(約12g/Nm”)、還元炉荷下り
不順の問題は発生し彦かった0
捷た、バグフィルタ一式除塵器への回収ダスト量は約5
1 kg/h rであった0以上の結果からみnば、熱
間サイクロンにおける1次ダスト(溶解ガス化炉発生分
)の除塵効率は80係、2次ダスト(還元鉄輸送管)の
値は20係である。As a result, the dust concentration in the gas injected into the reduction furnace was 11,097N immediately after the start of operation, but even after continued operation, there was no noticeable increase in the dust concentration (approximately 12g/Nm"), and the problem of irregular unloading of the reduction furnace did not occur. Hikota 0 The amount of dust collected into the bag filter set dust remover is about 5
Considering the result of 0 or more which was 1 kg/hr, the dust removal efficiency of the primary dust (produced by the melting gasifier) in the hot cyclone is 80, and the value of the secondary dust (reduced iron transport pipe) is This is Section 20.
さらに、還元鉄付着ダストの約90係は還元鉄輸送管を
落下する過程で遊離し、本発明による遊離ダストの除塵
効率は80係と考えらfる。Furthermore, about 90% of the dust adhering to reduced iron is liberated during the process of falling through the reduced iron transport pipe, and the efficiency of removing the free dust according to the present invention is considered to be 80%.
以上の通り、本発明によ汎ば、微細ダストを確実に除去
でき、もって還元炉での通気・荷下り障害を防止できる
。As described above, according to the present invention, fine dust can be reliably removed, thereby preventing problems with ventilation and unloading in the reduction furnace.
第1図は本発明に係る還元鉄製造設備の概要図、第2図
はその要部詳細図である。
1・・溶解ガス化炉 10・・還元炉19・・還元鉄
導管 20・・非酸化性ガス第1図
砿后
■FIG. 1 is a schematic diagram of a reduced iron production facility according to the present invention, and FIG. 2 is a detailed diagram of its main parts. 1. Melting gasification furnace 10. Reduction furnace 19. Reduced iron conduit 20.. Non-oxidizing gas Figure 1 Back ■
Claims (1)
し、炉の中間部または下部に還元ガス吹込み口を有し、
炉下部に還元鉄排出口を有するシャフト式還元炉で、前
記還元ガス吹込み口から還元ガスを吹込むことによって
、鉱石装入口から装入した鉱石を、還元ガスと向流で降
下させながら還元させて還元鉄を製造する方法において
; 前記還元鉄排出口の下方にこれに連って下向きの還元鉄
導管を設け、この下部から非酸化性ガスを吹込み、還元
鉄導管内を降下する還元鉄と向流で上昇させて還元鉄導
管上部から抽出させて、還元鉄中の微細粒子を除去する
ことを特徴とする還元鉄製造方法。(1) Having an ore charging inlet and a post-reduction gas outlet in the upper part of the furnace, and a reducing gas inlet in the middle or lower part of the furnace,
This is a shaft-type reducing furnace that has a reduced iron discharge port at the bottom of the furnace, and by blowing reducing gas through the reducing gas inlet, the ore charged through the ore charging port is reduced while descending in a countercurrent to the reducing gas. In the method for producing reduced iron; a downward reduced iron conduit is provided below the reduced iron discharge port, a non-oxidizing gas is blown from the lower part of the reduced iron conduit, and the reduced iron conduit descends within the reduced iron conduit. A method for producing reduced iron, which is characterized in that fine particles in reduced iron are removed by raising the iron in a countercurrent flow and extracting it from the upper part of a reduced iron conduit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60118394A JPS61276909A (en) | 1985-05-31 | 1985-05-31 | Reduced iron manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60118394A JPS61276909A (en) | 1985-05-31 | 1985-05-31 | Reduced iron manufacturing method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61276909A true JPS61276909A (en) | 1986-12-06 |
Family
ID=14735587
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60118394A Pending JPS61276909A (en) | 1985-05-31 | 1985-05-31 | Reduced iron manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61276909A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997047773A1 (en) * | 1996-06-12 | 1997-12-18 | Deutsche Voest-Alpine Industrieanlagenbau Gmbh | Device for producing sponge iron |
-
1985
- 1985-05-31 JP JP60118394A patent/JPS61276909A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997047773A1 (en) * | 1996-06-12 | 1997-12-18 | Deutsche Voest-Alpine Industrieanlagenbau Gmbh | Device for producing sponge iron |
CN1067107C (en) * | 1996-06-12 | 2001-06-13 | 沃斯特-阿尔派因工业设备制造有限公司 | Device for producing sponge iron |
US6379423B1 (en) | 1996-06-12 | 2002-04-30 | Deutsche Voest-Alpine Industrieanlagenbau Gmbh | Device and method for producing sponge iron |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4588437A (en) | Method for producing molten pig iron or steel pre-products in a melt-down gasifier | |
CA1223740A (en) | Method for the production of iron | |
EP1034311B1 (en) | Direct smelting process for producing metals from metal oxides | |
RU2077595C1 (en) | Method and apparatus (alternatives) for producing iron and/or alloys thereof from iron oxide materials | |
CN85106200A (en) | The direct method of the ferric oxide of reduction in the raw material | |
CN101724721A (en) | Process for producing molten hot molten iron | |
JP3543837B2 (en) | Method for directly reducing iron oxide-containing raw materials using a solid carbon-containing reducing agent | |
JP5039945B2 (en) | Method and apparatus for producing pig iron or fluid primary iron from charges containing iron ore | |
JPS62185813A (en) | Production of molten pig iron | |
JPH11504392A (en) | Smelting and reducing apparatus and method for producing molten pig iron using the same | |
RU2133780C1 (en) | Method of producing liquid iron or liquid steel semiproducts and plant for its embodiment | |
JPS61276909A (en) | Reduced iron manufacturing method | |
JPS61221315A (en) | Production of pig iron | |
CA2211942C (en) | Method for injecting fine iron ore in smelting reducing process | |
JPH073314A (en) | Process and apparatus for melt reduction of ore or pre-reduced metal | |
JP2000212620A (en) | Reduced iron production method | |
US6197088B1 (en) | Producing liquid iron having a low sulfur content | |
CN110257105A (en) | A kind of technique of superfine powder low-temperature airflow bed gasification production synthesis gas | |
RU2165984C2 (en) | Method of charging metal carriers into melting-gasifying zone and plant for method embodiment | |
KR100321051B1 (en) | Apparatus for manufacturing pig iron and method therefor | |
JPS5849622A (en) | Concentration method of titanium oxide | |
EP0968311A1 (en) | Two step twin-single fluidized bed type pre-reduction apparatus for pre-reducing fine iron ore, and method therefor | |
CN114015897B (en) | A kind of method for extracting antimony and gold from antimony gold concentrate | |
TW505700B (en) | Method for the production of liquid pig iron | |
JP3980427B2 (en) | Waste plastic gasification gas cooling method and apparatus |