JPS6127615Y2 - - Google Patents

Info

Publication number
JPS6127615Y2
JPS6127615Y2 JP13067880U JP13067880U JPS6127615Y2 JP S6127615 Y2 JPS6127615 Y2 JP S6127615Y2 JP 13067880 U JP13067880 U JP 13067880U JP 13067880 U JP13067880 U JP 13067880U JP S6127615 Y2 JPS6127615 Y2 JP S6127615Y2
Authority
JP
Japan
Prior art keywords
water
air compressor
dissolved oxygen
intake
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13067880U
Other languages
Japanese (ja)
Other versions
JPS5755531U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP13067880U priority Critical patent/JPS6127615Y2/ja
Publication of JPS5755531U publication Critical patent/JPS5755531U/ja
Application granted granted Critical
Publication of JPS6127615Y2 publication Critical patent/JPS6127615Y2/ja
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Treatment Of Biological Wastes In General (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)
  • Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)

Description

【考案の詳細な説明】 本考案は、空気圧縮機により圧縮空気を水中に
送り込み、もつてダム等における水中の溶存酸素
を補給せしめるための水中溶存酸素の補給装置に
関するものである。
[Detailed Description of the Invention] The present invention relates to an apparatus for replenishing dissolved oxygen in water at a dam or the like by sending compressed air into the water using an air compressor.

例えば、農業用水及び飲料水等を確保すべく多
目的に利用されるダム等の取水源においては、第
1図に示す如く、種々の条件から、水面近傍部位
の水を取水路1の取水口1aと送水口1bとの位
置差つまり位置エネルギーを利用して送水路2へ
と取水するよう設備されているが、近年このよう
な取水源の富栄養化が問題となつている。
For example, in a water intake source such as a dam that is used for multiple purposes to secure agricultural water, drinking water, etc., as shown in Figure 1, due to various conditions, the intake port 1a of the water intake channel 1 is The system is equipped to take water into the water supply channel 2 by utilizing the positional difference between the water supply port 1b and the water supply port 1b, that is, the potential energy, but in recent years, eutrophication of such water intake sources has become a problem.

すなわち、取水源に流入する有機物は水中の溶
存酸奏量が充分であるときには好気性バクテリア
により分解される。ところが、上記したように取
水が水面近傍部位でばかり行なわれていると、水
底近くの深層部では、水が流動されずそのまま滞
留せしめられていて酸素が補給され難く、したが
つて長期のうちには溶存酸素が欠乏して好気性バ
クテリアによる有機物の分解が行なわれなくなつ
て富栄養化し、取水源として甚だ不都合な事態が
生ずる。
That is, organic matter flowing into the water intake source is decomposed by aerobic bacteria when the amount of dissolved acid in the water is sufficient. However, as mentioned above, if water is taken only near the surface of the water, the water does not flow and stagnates in the deep layer near the bottom, making it difficult to replenish oxygen. Due to lack of dissolved oxygen, aerobic bacteria cannot decompose organic matter, resulting in eutrophication, which is extremely inconvenient as a water source.

そこで、ダム等の取水源においては、富栄養化
を防止する上からも、水中に適宜に空気を送り込
んで溶存酸素を補給してやることが必要である。
Therefore, at water intake sources such as dams, it is necessary to appropriately pump air into the water to replenish dissolved oxygen in order to prevent eutrophication.

従来からも、取水源に第1図に示す如き水中溶
存酸素の補給装置3を設備して、取水源に溶存酸
素を補給することが行なわれている。
Conventionally, a water intake source is provided with a water dissolved oxygen replenishment device 3 as shown in FIG. 1 to supply dissolved oxygen to the water intake source.

すなわち、従来の補給装置3にあつては、空気
圧縮機4を電動機、エンジン等の原動機5により
駆動させ、この空気圧縮機4から水底近傍部位に
配置した曝気装置6へと圧縮空気管7を導き、こ
の曝気装置6から水中に空気を泡状に流出させ、
もつて水中の溶存酸素を補給させるようなされて
いるのである。
That is, in the conventional replenishment device 3, an air compressor 4 is driven by a prime mover 5 such as an electric motor or an engine, and a compressed air pipe 7 is connected from the air compressor 4 to an aeration device 6 located near the bottom of the water. and cause air to flow out into the water from this aeration device 6 in the form of bubbles,
It is designed to replenish dissolved oxygen in the water.

しかしながら、空気圧縮機4の駆動源として原
動機5を用いているため、いわゆるランニングコ
ストが高くつき、しかも省エネルギー化が要求さ
れる近年においては甚だ不都合なものであつた。
However, since the prime mover 5 is used as a driving source for the air compressor 4, the so-called running cost is high, and this is extremely inconvenient in recent years when energy saving is required.

本考案は、上記した実情に鑑み、空気圧縮機を
駆動させるための手段として、取水源から取水す
るための取水路における流水エネルギーを利用す
ることを提案し、水中溶存酸素の補給をランニン
グコストの低減及び省エネルギ化を図りながら行
ないうるよう工夫した水中溶存酸素の補給装置を
提供するものである。
In view of the above-mentioned circumstances, this invention proposes the use of flowing water energy in an intake channel for taking water from a water intake source as a means to drive an air compressor, and reduces running costs by replenishing dissolved oxygen in water. The object of the present invention is to provide a device for replenishing dissolved oxygen in water, which is devised so as to be able to perform the operation while reducing oxygen consumption and saving energy.

以下、本考案の実施例を第2図を参照して具体
的に説明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to FIG.

図において、11は取水源つまりダムの側壁1
2を経過して送水路13へと導かれた取水路で、
この取水路11の取水口11aはダムの水面近傍
部位に臨ませてあり、その送水口11bは前記取
水口11aよりはるかに下位に位置させてあつ
て、この取水口11aと送水口11bとの位置差
つまり位置エネルギーを利用して、ダムから送水
路13へと取水するようなされている。
In the figure, 11 is the water intake source, which is the side wall 1 of the dam.
2, the intake channel led to the water supply channel 13,
The water intake port 11a of this intake channel 11 faces the area near the water surface of the dam, and the water supply port 11b is located far below the water intake port 11a, and the water intake port 11a and the water supply port 11b are connected to each other. Water is taken from the dam to the water supply channel 13 by utilizing the positional difference, that is, potential energy.

そして、14が本考案に係る水中溶存酸素の補
給装置であるが、この補給装置14は、前記取水
路11の下流側の適所に、取水路11から送水路
13に至る比較的短距離の導水路15を接続し、
該導水路15の適所に適宜の水車装置16を介装
して、該装置16を送水路13上に支持させ、さ
らに水車装置16に隣接して空気圧縮機17を支
持させて、水車装置16の回転軸と空気圧縮機1
7の駆動軸とを連動連結し、該空気圧縮機17か
らダムの深層部位に配置した曝気装置18へ圧縮
空気管19を導いて構成されている。
Reference numeral 14 indicates a replenishment device for dissolved oxygen in water according to the present invention. Connect waterway 15,
An appropriate water turbine device 16 is interposed at an appropriate position in the water supply channel 15, and the device 16 is supported on the water channel 13. Furthermore, an air compressor 17 is supported adjacent to the water turbine device 16. rotating shaft and air compressor 1
The compressed air pipe 19 is connected to the drive shaft of the dam 7 in an interlocking manner, and a compressed air pipe 19 is guided from the air compressor 17 to an aeration device 18 disposed in a deep part of the dam.

したがつて、位置エネルギーにより取水路11
を取水口11aから送水口11bへと流れる流水
は、その一部が導水路15から水車装置16を経
過して送水路13へと流れるが、このとき水車装
置16の水車したがつてその回転軸を回転せしめ
るから、この回転軸に連結された駆動軸をして空
気圧縮機17が駆動されるようになされている。
なお、水車装置16の上流側の導水路15部位に
は、水車の回転速度を空気圧縮機17の駆動速度
に適合させるための流量調節弁20を介装してあ
る。また、水車装置16は、導水路15の水流条
件に合せて適宜の形式のものを選定しておくが、
ポンプ装置をも逆利用して用いることができるも
のである。すなわち、ポンプの吸込口及び吐出口
を導水路15に接続し、ポンプ軸を空気圧縮機1
7の駆動軸に連結する。
Therefore, due to potential energy, the intake channel 11
A part of the water flowing from the water intake port 11a to the water supply port 11b flows from the headrace 15 to the water supply channel 13 through the water turbine device 16, but at this time, the water wheel of the water turbine device 16 and its rotation axis Since the rotary shaft is rotated, the air compressor 17 is driven by a drive shaft connected to the rotary shaft.
Note that a flow control valve 20 for adjusting the rotational speed of the water turbine to the driving speed of the air compressor 17 is interposed at a portion of the water conduit 15 on the upstream side of the water turbine device 16 . Further, the water turbine device 16 is selected to be of an appropriate type according to the water flow conditions of the water headrace 15.
The pump device can also be used in reverse. That is, the suction port and discharge port of the pump are connected to the water conduit 15, and the pump shaft is connected to the air compressor 1.
Connected to the drive shaft of 7.

そして、空気圧縮機17が水車装置16によつ
て駆動されると、従来のものと同様に、圧縮空気
管19から曝気装置18へと圧縮空気が送込ま
れ、該曝気装置18から空気が泡状となつて流出
され、ダムの深層部の溶存酸素が補給されるので
ある。なお、前記曝気装置18は、公知であるた
めその詳細は省略するが、ダムの深層部の所定位
置にフロート(図示せず)及び浮上防止チエン2
1によつて保持されているものであり、溶存酸素
の補給を必要とする水源の条件次第では必ずしも
必要とされるものではなく、圧縮空気管19から
直接水中に空気を送り込んでも所期の目的を達成
しうることもある。
Then, when the air compressor 17 is driven by the water turbine device 16, compressed air is sent from the compressed air pipe 19 to the aeration device 18, and the air is bubbled from the aeration device 18, similar to the conventional one. The dissolved oxygen in the deep layer of the dam is replenished. Although the aeration device 18 is well known and its details will be omitted, it is equipped with a float (not shown) and a flotation prevention chain 2 at a predetermined position in the deep part of the dam.
1, and depending on the conditions of the water source that requires replenishment of dissolved oxygen, it may not necessarily be necessary, and even if air is sent directly into the water from the compressed air pipe 19, it will not meet the intended purpose. Sometimes it is possible to achieve.

このように、本考案の水中溶存酸素の補給装置
は、空気圧縮機の駆動源として、取水路したがつ
て導水路における流水エネルギーにより作動され
る水車装置を利用したものであるから、冒頭に述
べた従来装置に比してランニングコストを低減で
き、しかも省エネルギー化を図ることができるも
のである。
As described above, the underwater dissolved oxygen replenishment device of the present invention utilizes a water turbine device operated by the energy of flowing water in the intake channel and therefore the headrace channel as the drive source for the air compressor, and therefore, it is not as described at the beginning. Compared to conventional devices, running costs can be reduced and energy savings can be achieved.

さらに、本考案の補給装置によれば、空気圧縮
機の駆動源として必要な取水路の設備されていな
い水源においても、ダム等の取水路を設備せる取
水源が近在するならば、その取水路を利用して空
気圧縮機を上記利点を維持しながら駆動させて水
中溶存酸素の補給を行なうことができ、極めて多
目的な利用を可能とする。
Furthermore, according to the replenishment device of the present invention, even if a water source is not equipped with an intake channel required as a driving source for an air compressor, if there is a water intake source equipped with an intake channel such as a dam nearby. It is possible to replenish dissolved oxygen in the water by driving an air compressor while maintaining the above-mentioned advantages using the air passage, making it possible to use the air compressor for extremely versatile purposes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の水中溶存酸素の補給装置を示す
側面図であり、第2図は本考案に係る水中溶存酸
素の補給装置を示す側面図である。 11……取水路、11a……取水口、11b…
…送水口、14……水中溶存酸素の補給装置、1
5……導水路、16……水車装置、17……空気
圧縮機。
FIG. 1 is a side view showing a conventional underwater dissolved oxygen replenishment device, and FIG. 2 is a side view showing an underwater dissolved oxygen replenishment device according to the present invention. 11...Intake channel, 11a...Water intake, 11b...
... Water supply port, 14 ... Replenishment device for dissolved oxygen in water, 1
5... Headrace, 16... Water turbine device, 17... Air compressor.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 空気圧縮機から水面下へ圧縮空気管を導いてな
る水中溶存酸素の補給装置であつて、取水口と送
水口との位置差を利用して取水源から取水するた
めの取水路の下流側の適所に、水車装置を介装せ
る導水路を接続し、該水車装置を前記空気圧縮機
の駆動源に構成してあることを特徴とする、水中
溶存酸素の補給装置。
It is a replenishment device for dissolved oxygen in water, which is formed by guiding a compressed air pipe from an air compressor to below the water surface. 1. An apparatus for replenishing oxygen dissolved in water, characterized in that a conduit in which a water turbine device is installed is connected at a suitable location, and the water turbine device is configured as a driving source for the air compressor.
JP13067880U 1980-09-12 1980-09-12 Expired JPS6127615Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13067880U JPS6127615Y2 (en) 1980-09-12 1980-09-12

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13067880U JPS6127615Y2 (en) 1980-09-12 1980-09-12

Publications (2)

Publication Number Publication Date
JPS5755531U JPS5755531U (en) 1982-04-01
JPS6127615Y2 true JPS6127615Y2 (en) 1986-08-18

Family

ID=29490984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13067880U Expired JPS6127615Y2 (en) 1980-09-12 1980-09-12

Country Status (1)

Country Link
JP (1) JPS6127615Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002282888A (en) * 2001-03-26 2002-10-02 Okinawa Kaihatsuchiyou Okinawa Sogo Jimukiyokuchiyou Improvement system for water quality

Also Published As

Publication number Publication date
JPS5755531U (en) 1982-04-01

Similar Documents

Publication Publication Date Title
CN103204592A (en) Water body aeration and oxygen-increasing device with low power consumption and high efficiency
KR20150067659A (en) Prevent algae and green algae in lake water purification devices for removing
JPS6127615Y2 (en)
CN108069525A (en) A kind of self-propelled micro-nano oxygen increasing equipment
CN206375737U (en) One kind centrifugation supercharging plugflow aeration machine
KR100380185B1 (en) Fan-driven oxygen supply system for water improvement
CN208883563U (en) A kind of hydrodynamic(al) biomembrane is from aerator
JPS607526B2 (en) Replenishment device for dissolved oxygen in water
JPH10249380A (en) Underwater aerator
CN108516615B (en) Oxidation ditch adopting pump type impeller surface aerator
KR102365005B1 (en) A Method For Water Purifying Using Ultrafine Bubble
CN214781336U (en) MBBR integration sewage treatment device
CN108911118A (en) A kind of hydrodynamic(al) biomembrane is from aerator
JP2589340Y2 (en) Pump device using flowing water power
JPS635830Y2 (en)
CN101613154A (en) Novel wetland technology and equipment
CN209259770U (en) A kind of aeration strains water integrated device
CN208487021U (en) A kind of floatation type sewage pump
CN2364683Y (en) Efficient aeration pump
CN202971330U (en) Waterway circulating structure of water pump
JP2000130987A (en) Hydraulic driving device for cooling fan of water cooling tower
JPH0321355Y2 (en)
JPS6330555Y2 (en)
JPS57119193A (en) Underwater pump driven by pneumatic motor
JPS588393Y2 (en) Aeration device