JPS61275683A - Semiconductor radiation position detecting device - Google Patents

Semiconductor radiation position detecting device

Info

Publication number
JPS61275683A
JPS61275683A JP11805685A JP11805685A JPS61275683A JP S61275683 A JPS61275683 A JP S61275683A JP 11805685 A JP11805685 A JP 11805685A JP 11805685 A JP11805685 A JP 11805685A JP S61275683 A JPS61275683 A JP S61275683A
Authority
JP
Japan
Prior art keywords
signal processing
elements
processing circuit
groups
semiconductor radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11805685A
Other languages
Japanese (ja)
Other versions
JPH0627850B2 (en
Inventor
Yoshihiko Kumazawa
熊澤 良彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP11805685A priority Critical patent/JPH0627850B2/en
Publication of JPS61275683A publication Critical patent/JPS61275683A/en
Publication of JPH0627850B2 publication Critical patent/JPH0627850B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

PURPOSE:To improve counting rate characteristics by grouping radiation detecting elements arrayed in a matrix on condition that adjacent elements belong to different groups and providing independent signal processing circuits corresponding to the groups. CONSTITUTION:Many semiconductor radiation detecting elements in the semiconductor radiation detecting element array 1 are divided into groups A, B, C, and D on condition that mutually adjacent elements belong to different groups. Respectively elements in the group A are connected to a signal processing circuit 21 and elements in the group B are connected to a signal processing circuit 22; and elements in the group C are connected to a signal processing circuit 23, and elements in the group D are connected to a signal processing circuit 24 respectively. Output signals of the circuits 21-24 are sent to an image generating device 3 to constitute the whole image. Thus, counting rate characteristics are improved even on RI station condition as well as on uniform irradiation condition.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、半導体放射線位置検出装置の改良に関する
もので、この半導体放射線位置検出装置は、たとえば核
医学診断で通常使用されているシンチレーションカメラ
やエミッシ璽ンCTi9置(コンピュータ断層撮影装置
)のように特定のエネルギの放射線の2次元的位置を検
出することによって特定のRI(ラジオアイソトープ)
核種の分布イメージを得るのに有用であり、あるいは他
に理工学の分野等で使用される。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to an improvement in a semiconductor radiation position detection device, which can be used, for example, in a scintillation camera or an emissive seal commonly used in nuclear medicine diagnosis. A specific RI (radioisotope)
It is useful for obtaining distribution images of nuclides, and is also used in other fields such as science and engineering.

従来の技術 従来より、多数の半導体放射線検出素子をマトリクス状
に配列して放射線の2次元位置検出を行なう半導体放射
線位置検出装置が知られている(たとえば特願昭58−
247109、特願昭59−135493)、簡単に説
明すると、第3図のように、たとえばGeやStまたは
CdTeやHg1.等の化合物半導体を用いた半導体放
射線検出素子を多数マトリクス状に配列した半導体放射
線検出素子配列lを有する0図では簡単のため、素子が
8×8に配列された半導体放射線検出素子配列lを示す
、各素子からの信号は信号処理回路2に入力され、放射
線入射事象毎に、位置検出、エネルギ信号の波形整形処
理および波高分析等が行なわれ、位置信号x、Y、エネ
ルギ信号ZおよびUNBLANK信号が出力される。
2. Description of the Related Art Conventionally, semiconductor radiation position detection devices have been known that detect the two-dimensional position of radiation by arranging a large number of semiconductor radiation detection elements in a matrix (for example, Japanese Patent Application No. 1982-
247109, Japanese Patent Application No. 59-135493).To briefly explain, as shown in FIG. For simplicity, the diagram shows a semiconductor radiation detection element array l in which elements are arranged in an 8x8 arrangement. , the signals from each element are input to the signal processing circuit 2, where position detection, energy signal waveform shaping processing, wave height analysis, etc. are performed for each radiation incident event, and position signals x, Y, energy signal Z, and UNBLANK signal are processed. is output.

信号処理回路2は1種々のものが考えられるが、たとえ
ばIs4図のように構成される。X方向に並べられた各
行毎の信号が前置増幅器11を経てディスクリミネータ
およびエンコーダ13に送られ、スレッショルドレベル
より大きな信号を発生した行に対応する位置信号X(デ
ジタル信号)が出力される。他方、Y方向に並べられた
各列毎の信号が前置増幅器12を経てディスクリミネー
タおよびエンコーダ14に送られ、スレッショルドレベ
ルより大きな信号を発生した列に対応する位置信号Y(
デジタル信号)が出力される。前置増幅器11を経た行
の信号が遅延およびマルチプレクサ16に送られ、ディ
スクリミネータおよびエンコーダ13の出力信号に基づ
き、スレッシ覆ルドレベルより大きな信号を発生した行
の信号が選択される。この信号は主増幅器17で増幅さ
れてエネルギ信号Zとされ、波高分析器18で波高分析
される。この波高分析結果に基づきタイミング制御回路
15がUNBLANK信号を出力する。
Although various types of signal processing circuit 2 are conceivable, for example, the signal processing circuit 2 is configured as shown in diagram Is4. The signals for each row arranged in the X direction are sent to the discriminator and encoder 13 via the preamplifier 11, and a position signal X (digital signal) corresponding to the row generating a signal greater than the threshold level is output. . On the other hand, the signals for each column arranged in the Y direction are sent via the preamplifier 12 to the discriminator and encoder 14, and a position signal Y (
digital signal) is output. The row signal that has passed through the preamplifier 11 is sent to a delay and multiplexer 16, and based on the output signal of the discriminator and encoder 13, the row signal that has generated a signal greater than the threshold override level is selected. This signal is amplified by the main amplifier 17 to become an energy signal Z, and the pulse height is analyzed by the pulse height analyzer 18. Based on this wave height analysis result, the timing control circuit 15 outputs the UNBLANK signal.

なお、ここでは、各行、各列毎に前置増幅器ll、12
を設けたが、各素子毎に前置増幅器を設けることもでき
る。
Note that here, preamplifiers ll and 12 are provided for each row and each column.
However, a preamplifier can also be provided for each element.

発明が解決しようとする問題点 ところで、信号処理回路2が1個だけの場合、計数率特
性が低いという問題がある。そのため、従来より、第5
図に示すように、マトリクス状の半導体放射線検出素子
配列lを複数の領域(図ではA、B、C,Dの4つの領
域)に分割し、その各々に独立の信号処理回路を設ける
ことが考えられている。
Problems to be Solved by the Invention By the way, when there is only one signal processing circuit 2, there is a problem that the count rate characteristic is low. Therefore, conventionally, the fifth
As shown in the figure, it is possible to divide the matrix-like semiconductor radiation detection element array l into multiple regions (four regions A, B, C, and D in the figure) and provide an independent signal processing circuit in each region. It is considered.

このように領域分割してその各領域に独立の信号処理回
路を設けると、たしかに、放射線の均一照射条件下では
、全体での計数率特性は、見かけ上、分割数に対応する
倍率だけ改善される。
By dividing the area in this way and providing an independent signal processing circuit for each area, it is true that under uniform radiation irradiation conditions, the overall count rate characteristics will apparently be improved by a magnification corresponding to the number of divisions. Ru.

しかしながら、核医学診断、特に心臓検査等の用途では
、高濃度のRIが局在していることが多く、そのような
条件下では、特定の領域についての信号処理回路のみが
主に動作することになり。
However, in applications such as nuclear medicine diagnosis, especially cardiac examination, high concentration of RI is often localized, and under such conditions, only the signal processing circuit for a specific region operates mainly. become.

計数率特性は改善されない。Count rate characteristics are not improved.

この発明は、簡単な回路構成で、高濃度のRIが局在し
ている条件下での計数率特性も、均一照射条件下と同様
に改善することのできる半導体放射線位置検出装置を提
供することを目的とする。
An object of the present invention is to provide a semiconductor radiation position detection device that can improve count rate characteristics under conditions where high concentration RI is localized in the same way as under uniform irradiation conditions with a simple circuit configuration. With the goal.

問題点を解決するための手段 この発明による半導体放射線位置検出装置では、多数の
半導体放射線検出素子が、互いに隣接する素子または素
子群同士は異なるグループに属するという規則で、複数
のグループに分けられ、これらグループの各々に対応し
て互いに独立な信号処理回路が設けられている。
Means for Solving the Problems In the semiconductor radiation position detection device according to the present invention, a large number of semiconductor radiation detection elements are divided into a plurality of groups according to the rule that mutually adjacent elements or element groups belong to different groups, Mutually independent signal processing circuits are provided corresponding to each of these groups.

作    用 多数の半導体放射線検出素子が、互いに隣接する素子ま
たは素子群同士は異なるグループに属するという規則で
、複数のグループに分けられているので、RI分布が局
在していても、領域を分けた場合と異なり大部分が常に
1つのグループにだけ入射するということがなくなって
、各グループに平均して入射する。そこで、各グループ
に設けた信号処理回路が同程度の頻度で動作することに
なり、高濃度のRIが局在している条件下での計数率特
性も、均一照射条件下と同様に改善することができる。
Function: A large number of semiconductor radiation detection elements are divided into multiple groups according to the rule that adjacent elements or element groups belong to different groups, so even if the RI distribution is localized, it is difficult to separate the areas. Unlike in the previous case, most of the light does not always enter only one group, but instead enters each group on average. Therefore, the signal processing circuits provided in each group operate at the same frequency, and the count rate characteristics under conditions where high concentration of RI is localized are improved to the same extent as under uniform irradiation conditions. be able to.

実施例 第1図において、半導体放射線検出素子配列1の多数の
半導体放射線検出素子の各々が、互いに隣接する素子同
士は異なるグループに属するという規則で、複数のグル
ープ、この図では4個のグループA、B、C,Dに分け
られている。そして、グループAに属する各素子が信号
処理回路21に、グループBに属する各素子が信号処理
回路22に、グループCに属する各素子が信号処理回路
23に、グループDに属する各素子が信号処理回路24
に、それぞれ接続される。信号処理回路21〜24とし
ては、上記の第4図で示したような信号処理回路やある
いは他の信号処理回路を用いることができる。これらの
信号処理回路21〜24の各出力信号は画像作成装置3
に送られ、全体の画像が構成される。この画像作成装置
3はたとえばイメージメモリ(RAM)や画像表示装置
などからなる。なお、各グループ毎に独立なイメージメ
モリを備えて、適当な時間間隔で各イメージメモリの内
容を別の全体のイメージメモリに転送するよう構成する
こともできる。
Embodiment In FIG. 1, each of the large number of semiconductor radiation detection elements in the semiconductor radiation detection element array 1 is divided into a plurality of groups, four groups A in this figure, according to the rule that adjacent elements belong to different groups. , B, C, and D. Each element belonging to group A is connected to the signal processing circuit 21, each element belonging to group B is connected to the signal processing circuit 22, each element belonging to group C is connected to the signal processing circuit 23, and each element belonging to group D is connected to the signal processing circuit 21. circuit 24
are connected to each other. As the signal processing circuits 21 to 24, the signal processing circuit shown in FIG. 4 above or other signal processing circuits can be used. Each output signal of these signal processing circuits 21 to 24 is sent to the image creation device 3.
The entire image is constructed. This image creation device 3 includes, for example, an image memory (RAM), an image display device, and the like. Note that it is also possible to provide an independent image memory for each group and to transfer the contents of each image memory to another overall image memory at appropriate time intervals.

このように、半導体放射線検出素子配列1を構成する多
数の半導体放射線検出素子が、互いに隣接する素子また
は素子群同士は異なるグループに属するという規則で、
4つのグループA−Dに分けられているので、RI力分
布局在していても、常に1つのグループにだけ入射する
ということがなくなって、各グループに平均して入射す
る。そこで、各グループA−Dに設けた信号処理回路2
1〜24が同程度の頻度で動作することになり。
In this way, a large number of semiconductor radiation detection elements constituting the semiconductor radiation detection element array 1 are arranged according to the rule that adjacent elements or element groups belong to different groups.
Since it is divided into four groups A to D, even if the RI force distribution is localized, it will not always be incident on only one group, but will be incident on each group on average. Therefore, the signal processing circuit 2 provided in each group A to D
1 to 24 will operate at about the same frequency.

高濃度のRIが局在している条件下での計数率特性も、
均一照射条件下と同様に改善することができる。
The count rate characteristics under conditions where high concentration of RI is localized are also
Improvements can be made similar to those under uniform irradiation conditions.

第2図は第2の実施例を示す、この図においては、半導
体放射線検出素子配列lの多数の半導体放射線検出素子
が、互いに隣接する素子群(図では1行単位の素子群)
同士は異なるグループに属するという規則で、複数の、
ここでは4つの、グループA、B、C,Dに分類されて
いる。そして、各グループA−Dの出力信号を互いに独
立な4つの信号処理回路に送ることなどの構成は第1図
と同様である。
FIG. 2 shows a second embodiment. In this figure, a large number of semiconductor radiation detection elements of a semiconductor radiation detection element array l are arranged in element groups adjacent to each other (element groups in units of one row in the figure).
With the rule that they belong to different groups, multiple
Here, they are classified into four groups A, B, C, and D. The configuration, such as sending the output signals of each group A to D to four mutually independent signal processing circuits, is the same as that in FIG. 1.

この第2図では、RI力分布行方向に局在している場合
に計数率特性が第1図に比べて劣るという欠点を有する
が、第2図のような信号処理回路を用いる場合に、各検
出素子の電極からの信号取り出しが簡単化され、容易に
適用できるという利点を持つ。
In Fig. 2, the count rate characteristic is inferior to that in Fig. 1 when the RI force distribution is localized in the longitudinal direction, but when using a signal processing circuit as shown in Fig. 2, This has the advantage that signal extraction from the electrodes of each detection element is simplified and can be easily applied.

なお1本発明はその趣旨を逸脱しない範囲で種々に変更
が可能である。たとえば、第1図や第2図に示したグル
ープ分は以外のグループ分けも可能である。また、上記
では説明の便宜のため、8×8のマトリクスの場合につ
いて説明したが、他の配列の場合も同様に適用できるこ
とはもちろんである。さらに、信号処理回路としては第
4図のような信号処理回路以外の回路構成も可能である
Note that the present invention can be modified in various ways without departing from the spirit thereof. For example, other groupings than those shown in FIGS. 1 and 2 are also possible. Moreover, for convenience of explanation, the case of an 8×8 matrix has been described above, but it goes without saying that the case of other arrangements can be similarly applied. Further, as the signal processing circuit, circuit configurations other than the signal processing circuit shown in FIG. 4 are also possible.

また、本発明は1通常のガンマカメラなどの2次元放射
線検出装置以外に多層スライスのエミツションCT装置
などに適用できる。
Further, the present invention can be applied not only to a two-dimensional radiation detection device such as a normal gamma camera but also to a multilayer slice emission CT device.

発明の効果 この発明によれば、簡単な回路構成で、位置分解能やエ
ネルギ分解能などの緒特性の劣化を伴なわずに、計数率
特性を改善できる。RI力分布均一な条件下ではもちろ
んのこと、RI局在条件下でも高計数率特性が得られる
Effects of the Invention According to the present invention, count rate characteristics can be improved with a simple circuit configuration without deterioration of physical characteristics such as position resolution and energy resolution. High count rate characteristics can be obtained not only under conditions of uniform RI force distribution but also under conditions of localized RI.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例のブロック図、第2図は第
2の実施例のブロック図、第3図、144図、第5図は
それぞれ従来例のブロック図である。 l・・・半導体放射線検出素子配列 2.21〜24・・・信号処理回路 3・・・画像作成装置  11.12・・・前置増幅器
13.14・・・ディスクリミネータおよびエンコーダ
15・・・タイミング制御回路 16・・・遅延およびマルチプレクサ 17・・・主増幅器     18・・・波高分析器答
1目 箋Z目
FIG. 1 is a block diagram of one embodiment of the present invention, FIG. 2 is a block diagram of a second embodiment, and FIGS. 3, 144, and 5 are block diagrams of conventional examples. l...Semiconductor radiation detection element array 2.21-24...Signal processing circuit 3...Image creation device 11.12...Preamplifier 13.14...Discriminator and encoder 15...・Timing control circuit 16... Delay and multiplexer 17... Main amplifier 18... Pulse height analyzer Answer 1 note Z

Claims (1)

【特許請求の範囲】[Claims] (1)多数の半導体放射線検出素子をマトリクス状に配
列して放射線の2次元位置検出を行なう半導体放射線位
置検出装置において、上記各検出素子を、互いに隣接す
る素子または素子群同士は異なるグループに属するとい
う規則で、複数のグループに分け、これらグループの各
々に対応して互いに独立な信号処理回路を設けたことを
特徴とする半導体放射線位置検出装置。
(1) In a semiconductor radiation position detection device that performs two-dimensional position detection of radiation by arranging a large number of semiconductor radiation detection elements in a matrix, each of the above-mentioned detection elements is classified into adjacent elements or element groups that belong to different groups. A semiconductor radiation position detection device characterized in that it is divided into a plurality of groups according to the rule, and a mutually independent signal processing circuit is provided corresponding to each of these groups.
JP11805685A 1985-05-31 1985-05-31 Semiconductor radiation position detector Expired - Lifetime JPH0627850B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11805685A JPH0627850B2 (en) 1985-05-31 1985-05-31 Semiconductor radiation position detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11805685A JPH0627850B2 (en) 1985-05-31 1985-05-31 Semiconductor radiation position detector

Publications (2)

Publication Number Publication Date
JPS61275683A true JPS61275683A (en) 1986-12-05
JPH0627850B2 JPH0627850B2 (en) 1994-04-13

Family

ID=14726922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11805685A Expired - Lifetime JPH0627850B2 (en) 1985-05-31 1985-05-31 Semiconductor radiation position detector

Country Status (1)

Country Link
JP (1) JPH0627850B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5120960A (en) * 1991-04-25 1992-06-09 Westinghouse Electric Corp. Infrared image detecting device and method
JP2014522118A (en) * 2011-08-03 2014-08-28 アイシス イノヴェイション リミテッド Semiconductor detector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5120960A (en) * 1991-04-25 1992-06-09 Westinghouse Electric Corp. Infrared image detecting device and method
JP2014522118A (en) * 2011-08-03 2014-08-28 アイシス イノヴェイション リミテッド Semiconductor detector
US9698181B2 (en) 2011-08-03 2017-07-04 Oxford University Innovation Limited Semiconductor detector device

Also Published As

Publication number Publication date
JPH0627850B2 (en) 1994-04-13

Similar Documents

Publication Publication Date Title
JP2890553B2 (en) X-ray imaging device
US20030160175A1 (en) Readout system for solid-state detector arrays
US4759047A (en) Baggage inspection system
US10153856B2 (en) Channel multiplexing method for reading out detector signal
JPS60250280A (en) Positron radiation tomographic radiation camera
US3594577A (en) Indicating or detecting apparatus for nuclear radiation such as gamma rays
JPH05504001A (en) Large solid-state sensor assembly formed from small sensors
US6326624B1 (en) Device and method for determining the assumed position of a phenomenon relative to a set of photodetectors, and application to gamma-cameras
US6576907B1 (en) High count rate gamma camera system
US4395635A (en) Gamma ray coincidence analysis system
US6774370B1 (en) Positron imaging device
US11703604B2 (en) Detection device and method for detecting sensor signals in a grid of sensor elements
JPS61275683A (en) Semiconductor radiation position detecting device
GB2052207A (en) Positron emission transaxial tomography apparatus
US7659515B2 (en) Electromagnetic and particle detector with reduced number of connections
JP4371723B2 (en) γ-ray activity distribution imaging method and γ-ray activity distribution imaging apparatus
US4075482A (en) Gamma-radiation tomography system
JPH07117586B2 (en) Radiation image pickup device
JP2000180551A (en) Radiation-detecting device
JPH0627855B2 (en) Semiconductor radiation position detector
EP3063559B1 (en) Solid-state photomultiplier device with high spatial resolution and control method for said photomultiplier device.
JPS6335426Y2 (en)
JPS60135883A (en) Semiconductor radiation position detecting apparatus
US20080011955A1 (en) Method and Apparatus for Treatment of Signals Obtained from Photomultiplier Tubes
JPH05264736A (en) Positron ct apparatus