JPS61275622A - Level meter - Google Patents

Level meter

Info

Publication number
JPS61275622A
JPS61275622A JP11674685A JP11674685A JPS61275622A JP S61275622 A JPS61275622 A JP S61275622A JP 11674685 A JP11674685 A JP 11674685A JP 11674685 A JP11674685 A JP 11674685A JP S61275622 A JPS61275622 A JP S61275622A
Authority
JP
Japan
Prior art keywords
light
level
optical axis
fiber
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11674685A
Other languages
Japanese (ja)
Inventor
Yuichi Sato
祐一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP11674685A priority Critical patent/JPS61275622A/en
Publication of JPS61275622A publication Critical patent/JPS61275622A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To perform maintenance of the titled meter efficiently by detecting a deviation of an optical axis in a vertical direction to a liquid level to be measured of a light irradiating and photodetecting optical system from the quantity of light of the output light outputted from an edge of an a photodetecting fiber and enabling to give a notice to urge to correct the deviation of the optical axis. CONSTITUTION:A signal corresponding to each selective light outputted after being converted into an electrical signal by a photodetection part 26 is detected by a detection part 219 of a level of the quantity of light as the level of the quantity of light and further, digitized by an A/D conversion part 220 and sent to a CPU 217. As to each light selected with a light selection part 24, when the optical axis of a detection head part 30 is located in the vertical direction to the liquid level 50 to be measured, almost the same level of the quantity of light is detected with the detection part 219 and further, when the optical axis is deviated, the level of the quantity of light is inclined to the specific photodetecting fiber 42 and becomes larger or smaller. Accordingly, the CPU 217 stores the level of the quantity of light in accordance with each selective light in a memory table or the like and decides the deviation of the optical axis from a distribution state of the level of the quantity of light and can urge to correct the optical axis.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、石油タンク等の液位を測定する場合に使用す
るレベル計に係わり、特に投受光光学系における前記測
定液面鉛直方向の光軸ずれを検出するレベル計に関する
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a level meter used for measuring the liquid level in an oil tank, etc., and in particular, the present invention relates to a level meter used for measuring the liquid level in an oil tank, etc. Related to level meters that detect deviations.

〔発明の技術的背景〕[Technical background of the invention]

従来、光波を利用した計測技術としては、第5図に示す
ような光波距離計がある。この距離計は、主に測量など
に使用されている技術であって、光信号を送受波する信
号処理部1と、測定対象位置に設定され信号処理部1か
ら入射される入射光をその入射角度に係わりなく同一方
向逆向きに反射させて送り返すコーナーキューブ等の反
射体2とにより構成されている。そして、前記信号処理
部1に内蔵された発光素子3を持った光N4がらの光信
号は投光ファイバ5を介して該ファイバ5他端側に設置
されるレンズ6を経て前記反射体2へ送出され、この反
射体2により反射されて送られてくる反射光は前記レン
ズ2および受光ファイバ7を通して受光素子8を持った
受光部9で受光して電気信号に変換され、前記信号処理
部1に内蔵された演算制御部10により投光と受光との
位相差を検出して反射体2までの距離を測定している。
Conventionally, as a measurement technique using light waves, there is a light wave distance meter as shown in FIG. This distance meter is a technology mainly used for surveying, etc., and includes a signal processing section 1 that transmits and receives optical signals, and an incident light set at a measurement target position and input from the signal processing section 1. It is composed of a reflector 2 such as a corner cube that reflects the light in the same direction and in the opposite direction regardless of the angle. Then, the optical signal from the light N4 having the light emitting element 3 built into the signal processing section 1 is transmitted to the reflector 2 via the light emitting fiber 5 and the lens 6 installed at the other end of the fiber 5. The reflected light that is sent out, reflected by the reflector 2, and sent through the lens 2 and the light-receiving fiber 7 is received by the light-receiving section 9 having a light-receiving element 8, and is converted into an electrical signal. The distance to the reflector 2 is measured by detecting the phase difference between the emitted light and the received light by an arithmetic and control unit 10 built into the reflector.

なお、投光ファイバ5および受光ファイバ7の各端部は
光信号を効率よく投受光するためにレンズ6の焦点位置
に設定されている。
Note that each end of the light emitting fiber 5 and the light receiving fiber 7 is set at the focal position of the lens 6 in order to efficiently emit and receive optical signals.

〔背景技術の問題点〕[Problems with background technology]

ところで、このような光波距離計は、その距離測定時に
光信号の投光方向を正確に反射体2に当てるために、測
定操作者が規準望遠鏡等を用いて信号処理部1の光軸が
調整されている。
By the way, in such a light wave distance meter, in order to accurately direct the direction of the optical signal onto the reflector 2 during distance measurement, the measurement operator adjusts the optical axis of the signal processing unit 1 using a reference telescope or the like. has been done.

しかし、上記のような光軸調整は、距離測定の場合に可
能であるとしても、石油タンク等のようなレベル測定の
場合には以上の様な手段により常時光軸合せを行うこと
は不可能なことである。また、光軸ずれが生じてもその
ずれの程度によっては測定精度にそれほど影響を与えな
い場合があり、またメンテナンス上からも光軸ずれを把
握しておくことが必要である。
However, even if the optical axis adjustment described above is possible for distance measurement, it is impossible to constantly align the optical axis using the above method when measuring levels such as in oil tanks. That's true. Furthermore, even if an optical axis misalignment occurs, it may not have much of an effect on measurement accuracy depending on the degree of the misalignment, and it is also necessary to understand the optical axis misalignment from the standpoint of maintenance.

〔発明の目的〕[Purpose of the invention]

本発明は以上のような要望に基づいてなされたもので、
設置等の時に光軸合せの調整が容易に行ない得、また光
軸ずれを把握して測定作業の継続の良否を判断できるよ
うにし、またメンテナンスの面からも有効なものとする
レベル計を提供することにある。
The present invention was made based on the above demands.
We provide a level meter that makes it easy to adjust the optical axis alignment during installation, etc., allows you to determine whether or not to continue measurement work by understanding the optical axis deviation, and is also effective in terms of maintenance. It's about doing.

〔発明の概要〕[Summary of the invention]

本発明は、少なくとも受光ファイバを複数本により構成
するとともに、これら受光ファイバの端部から出力され
る出力光の光量から投受光光学系の前記測定液面鉛直方
向への光軸ずれを検出可能にするものである。
The present invention comprises at least a plurality of light-receiving fibers, and is capable of detecting an optical axis deviation of a light emitting/receiving optical system in a direction perpendicular to the measurement liquid surface from the amount of output light outputted from the ends of these light-receiving fibers. It is something to do.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例について図面を参照して説明す
る。第1図はレベル計の全体構成を示す図であって、光
信号を投受光しかつその投光と受光の位相差を演算によ
って求めてレベルを測定する信号処理部20と、測定液
面上方に設置され液面鉛直方向に光信号を投受光する投
受光光学系としての検出ヘッド部30と、前記信号処理
部20と検出ヘッド部30の間に介在されて光信号を導
波する光フアイバ40等によって構成されている。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing the overall configuration of the level meter, which includes a signal processing section 20 that emits and receives an optical signal and calculates the phase difference between the emitted and received light signals to measure the level, and a detection head section 30 as a light emitting/receiving optical system that is installed in the liquid surface and emits and receives optical signals in a direction perpendicular to the liquid surface; and an optical fiber that is interposed between the signal processing section 20 and the detection head section 30 and guides the optical signals. 40 etc.

前記光ファイバ40は、例えば1本の投光ファイバ41
と6本の受光ファイバ42・・・によって構成され、そ
の配列方法は第2図に示すように投光ファイバ41を中
心にしてその外周に6本の受光ファイバ42・・・が等
間隔をもって配列されてなるものである。
The optical fiber 40 is, for example, one light emitting fiber 41.
and six light-receiving fibers 42..., and as shown in FIG. It is something that has been done.

前記信号処理部20は、演算制御部21、この演算制御
′I!S21からの指令信号を受けて発光素子22を発
光させて前記投光ファイバ41へ光を入射する発光素子
駆動源としての光源2゛3、測定液面50により反射さ
れて各受光ファイバ42・・・を通って送られてくる反
射光を所定の順序により選択的に取込む光選択部24、
この光選択部24で選択された光を受光する受光素子2
5を持った受光部26等よりなっている。
The signal processing section 20 includes an arithmetic control section 21, and this arithmetic control 'I! A light source 2-3 serves as a light-emitting element drive source that causes the light-emitting element 22 to emit light in response to a command signal from S21 and enters the light into the light-emitting fiber 41, and the light is reflected by the measuring liquid surface 50 and passes through each light-receiving fiber 42... - a light selection unit 24 that selectively takes in reflected light sent through it in a predetermined order;
A light receiving element 2 that receives the light selected by the light selection section 24
It consists of a light receiving section 26 having a 5-inch diameter.

また、検出ヘッド部30は、例えば断面凹部形状のヘッ
ド本体31を有し、この凹部31aの所定位置にレンズ
32が支持されてなるものである。
Further, the detection head section 30 has a head main body 31 having, for example, a concave cross section, and a lens 32 is supported at a predetermined position of the concave section 31a.

なお、この検出ヘッド部30において前記光ファイバ4
0の端面とレンズ32とは次のような関係をもって設定
されている。例えばレンズ32が収差のない理想的なレ
ンズであり、かつ各光ファイバ41.42・・・の端面
がレンズ32の焦点位置にあるとすれば、投光ファイバ
41から投光された光は、レンズ32→測定液面50→
レンズ32の経路を通って再び投光ファイバ41に入射
され1、受光ファイバ42・・・には入射されないこと
になる。
Note that in this detection head section 30, the optical fiber 4
The end face of 0 and the lens 32 are set in the following relationship. For example, if the lens 32 is an ideal lens with no aberrations and the end faces of each optical fiber 41, 42, etc. are at the focal position of the lens 32, then the light projected from the projection fiber 41 will be: Lens 32 → Measured liquid level 50 →
The light passes through the path of the lens 32 and enters the light emitting fiber 41 again, but does not enter the light receiving fibers 42 .

そこで、かかる不具合が生じないように光ファイバ40
の端面としてはレンズ32の焦点位置から多少ずらした
位置関係に設定し、投光ファイバ41からの光が液面5
0で反射されて光ファイバ40の端面に結ぶスポット径
が投光ファイバ41を中心として全ての受光ファイバ4
2・・・に均一に入射されるような位置関係をもって設
定するものである。
Therefore, in order to prevent such problems from occurring, the optical fiber 40
The end face of the lens 32 is set at a position slightly shifted from the focal position of the lens 32, so that the light from the light emitting fiber 41 reaches the liquid level 5.
The diameter of the spot that is reflected at
2. The positional relationship is such that the light is uniformly incident on the light beams.

第3図は前記演算制御部21の一興体例を示す構成図で
ある。即ち、この演算制御部21は、スタート信号を受
けて基準周波数信号を発生する基準信号発生部211を
有し、ここから出力された基準信号が駆動制御信号とし
て光源23に与えられる。また、基準信号発生部211
の出力端と局部発振器212の出力端はそれぞれ混合器
213に接続され、ここで基準信号周波数よりも充分小
さいある周波数信号を得て位相差検出部214に入力す
る。215は受光部26で受光されて電気信号に変換さ
れた前記基準信号に相応する信号と局部発振器212か
らの前記ある周波数の信号とを混合して前記位相差検出
部214に入力する混合器である。この位相差検出部2
14は両混合器213.215の両出力の位相差を検出
するものであって、ここで検出された位相差は後続の信
号変換手段216に導入され、ここでレベルが求められ
る。217は演算制御処理ユニット(以下、CPUと指
称する)を示し、これは信号変換手段216の機能を含
み、また必要な構成部分を制御し、さらに遠隔地のプロ
セス制御室等51に所望のパルス信号を送出する機能を
有し、表示部218に必要な情報を表示する等の機能を
持っている。
FIG. 3 is a configuration diagram showing an example of an integrated unit of the arithmetic and control section 21. As shown in FIG. That is, this arithmetic control section 21 has a reference signal generation section 211 that receives a start signal and generates a reference frequency signal, and the reference signal output from this section is given to the light source 23 as a drive control signal. In addition, the reference signal generation section 211
The output terminal of the local oscillator 212 and the output terminal of the local oscillator 212 are respectively connected to a mixer 213, where a certain frequency signal sufficiently lower than the reference signal frequency is obtained and input to the phase difference detection section 214. 215 is a mixer that mixes a signal corresponding to the reference signal received by the light receiving section 26 and converted into an electric signal with the signal of a certain frequency from the local oscillator 212 and inputs the mixed signal to the phase difference detection section 214; be. This phase difference detection section 2
Reference numeral 14 detects the phase difference between both outputs of both mixers 213 and 215, and the phase difference detected here is introduced into the subsequent signal conversion means 216, where the level is determined. Reference numeral 217 denotes an arithmetic and control processing unit (hereinafter referred to as CPU), which includes the function of the signal conversion means 216, controls necessary components, and sends desired pulses to a remote process control room 51, etc. It has a function of transmitting a signal, and has a function of displaying necessary information on the display section 218.

219は光量レベル検出部、220はA/D変換部であ
る。
219 is a light amount level detection section, and 220 is an A/D conversion section.

次に、以上のように構成されたレベル計の作用を説明す
る。スタート信号により基準信号発生部211から所定
の基準周波数信号が発生すると、光源23はその基準信
号を受けて発光素子22を所定の周波数で駆動して発光
せしめる。この発光素子22から出力された光信号は投
光ファイバ41を通って該ファイバ41の他端に設置さ
れた検出ヘッド部30のレンズ32により平行光として
測定液面50に投光される。そして、検出ヘッド部30
によって投光された光は測定液面50によって反射され
て再びレンズ32を通って受光ファイバ42に入射され
、これらの受光ファイバ42・・・によって導波されて
信号処理部20に供給される。
Next, the operation of the level meter configured as above will be explained. When a predetermined reference frequency signal is generated from the reference signal generator 211 in response to a start signal, the light source 23 receives the reference signal and drives the light emitting element 22 at a predetermined frequency to emit light. The optical signal outputted from the light emitting element 22 passes through the light projection fiber 41 and is projected onto the measurement liquid surface 50 as parallel light by the lens 32 of the detection head section 30 installed at the other end of the fiber 41. Then, the detection head section 30
The light projected is reflected by the measurement liquid surface 50, passes through the lens 32 again, enters the light receiving fiber 42, is guided by these light receiving fibers 42, and is supplied to the signal processing section 20.

この信号処理部20においては、受光ファイバ42・・
・から出力された光が光選択部24に導入され、ここで
例えばCPu217からの選択指令を受けて例えば回転
チョッパ装置が回転されて各受光ファイバ42.42か
らの光を順次選択して出力するものである。そして、こ
の選択光は受光部26で受光されて電気信号に変換され
、演算制御部21に送られる。この演算制御部21では
、受光部26から出力された信号と前記基準信号とがそ
れぞれ混合器213.215で逓減されて低い周波数信
号として位相差検出部214に供給され、ここで両信号
の位相比較を行って位相差が求められ、信号変換手段2
16を含んでCPU217によりレベルが測定される。
In this signal processing section 20, the light receiving fiber 42...
The light outputted from the optical fibers 42 and 42 is introduced into the light selection section 24, where a rotary chopper device, for example, is rotated upon receiving a selection command from the CPU 217, and sequentially selects and outputs the light from each of the light receiving fibers 42 and 42. It is something. This selection light is then received by the light receiving section 26, converted into an electrical signal, and sent to the arithmetic control section 21. In this arithmetic control section 21, the signal output from the light receiving section 26 and the reference signal are respectively attenuated by mixers 213 and 215 and supplied as low frequency signals to the phase difference detection section 214. A comparison is made to determine the phase difference, and the signal conversion means 2
16, the level is measured by the CPU 217.

また、受光部26により電気信号に変換されて出力され
る各選択光に対応する信号は光量レベル検出部219に
より光量レベルとして検出され、ざらにA/D変換部2
20によりディジタル化されてCPU217に送られる
Further, the signal corresponding to each selected light that is converted into an electric signal and outputted by the light receiving section 26 is detected as a light amount level by a light amount level detection section 219, and roughly the A/D converter 2
20 and sent to the CPU 217.

ところで、光選択部24で選択された多光は、検出ヘッ
ド部30の光軸が測定液面50に対して鉛直方向にあれ
ば、前記検出部219ではほぼ同一の光量レベルを検出
することになり、また、光軸がずれていれば特定の受光
ファイバ42に偏って光量レベルが大きくなったり、あ
るいは小さくなったりする。また、測定液面50が波立
っていれば、各受光ファイバ42・・・からの選択光の
光量レベルは不連続に変動することになる。従って、C
PU217は、各選択光に伴う光量レベルを例えばメモ
リテーブル等に記憶しその光量レベル分布状態から光軸
ずれを判断し、そのずれ量がある値を越えたと判断した
とき、ランプ、表示部218または音声発生手段等によ
り報知し、光軸の修正を促すものである。
By the way, if the optical axis of the detection head section 30 is perpendicular to the measurement liquid level 50, the multiple lights selected by the light selection section 24 will be detected by the detection section 219 at almost the same light intensity level. Moreover, if the optical axis is deviated, the light intensity level will be biased towards a particular light receiving fiber 42 and will become larger or smaller. Furthermore, if the measurement liquid surface 50 is undulating, the light intensity level of the selected light from each light receiving fiber 42 will fluctuate discontinuously. Therefore, C
The PU 217 stores the light intensity level associated with each selected light in a memory table, for example, and determines the optical axis deviation from the distribution state of the light intensity level. When the PU 217 determines that the amount of deviation exceeds a certain value, the lamp, display unit 218 or This notification is made by means of a sound generating means, etc., and prompts correction of the optical axis.

従って、以上のような実施例の構成によれば、次のよう
な種々の効果を有する。
Therefore, the configuration of the embodiment as described above has the following various effects.

(1) 先ず、光軸合せが容易でかつ多少の光軸ずれが
生じても確実にレベルを測定できる。
(1) First, the optical axis alignment is easy and the level can be reliably measured even if some optical axis deviation occurs.

従来の光波距離計では、投・受光ファイバはそれぞれ1
本であり、それらのファイバ端面はレンズ6の焦点位置
に設定されていた。そのため、熟練を要する測定操作者
によって慎重に光軸合せを行う必要があった。これに対
し、本発明のレベル計は、投光ファイバ41の周囲に複
数本の受光ファイバ42・・・が配置され、測定液面5
0からの反射光のスポットが全ての受光ファイバ42・
・・と結合するようなレンズ32との位置関係をもって
設定しているので、光軸が僅かにずれても一方向側の受
光ファイバ42への結合光量が減少しても、反対方向側
の受光ファイバ42への結合光量が増大しているので、
測定には支障がなく、確実に測定対象のレベルを測定す
ることができる。
In conventional light wave distance meters, the transmitting and receiving fibers each have one
The fiber end faces of the fibers were set at the focal point of the lens 6. Therefore, it was necessary for a measurement operator who requires skill to carefully align the optical axis. On the other hand, in the level meter of the present invention, a plurality of light receiving fibers 42 are arranged around the light emitting fiber 41, and the measuring liquid level 5
The spot of the reflected light from 0 is all the receiving fiber 42.
..., so even if the optical axis is slightly shifted or the amount of light coupled to the receiving fiber 42 in one direction decreases, the light receiving fiber 42 in the opposite direction will Since the amount of light coupled into the fiber 42 is increasing,
There is no problem with measurement, and the level of the object to be measured can be reliably measured.

(2) 光軸ずれが検出できる。(2) Optical axis misalignment can be detected.

受光部26は、各受光ファイバ42・・・への結合光量
をそれぞれ独立して測定しているために、その光量分布
から光軸ずれが容易に判断できるとともに、例えば検出
ヘッド部30に光軸調整機構を備えておけば、上記判断
結果に基づいて光軸の修正を比較的容易に行うことがで
き、メンテナンス上非常に有効なものとなる。
Since the light receiving section 26 independently measures the amount of light coupled to each light receiving fiber 42, it is possible to easily determine the optical axis deviation from the light amount distribution, and for example, the optical axis shift can be determined by the detection head section 30. If an adjustment mechanism is provided, the optical axis can be relatively easily corrected based on the above judgment result, which is very effective for maintenance.

(3) 設置時の光軸合せが可能である。(3) It is possible to align the optical axis during installation.

例えば石油タンク等に設置する際に検出ヘッド部30の
光軸合せを必要とする場合、各受光ファイバ42・・・
から出力される受光量の分布状態に基づいて光軸を容易
に鉛直方向に向くように設置することができる。
For example, when it is necessary to align the optical axis of the detection head section 30 when installing it in an oil tank or the like, each light receiving fiber 42...
The optical axis can be easily oriented vertically based on the distribution of the amount of received light output from the optical system.

なお、上記実施例は、受光部26が光選択部24を介し
て各受光ファイバ42・・・の受光量ごとに受光する構
成としたが、例えば各受光ファイバ42ごとに受光部2
6を設けて受光する構成でもよい。この場合には光選択
部24は不要となる。また、光ファイバ40の配置例は
第2図に限定されるものではなく、例えば投光ファイバ
41を複数本とし、第4図に示すように投光ファイバ4
1・・・と受光ファイバ42・・・とを交互に配置する
構成としてもよい。また、光選択部24により各受光フ
ァイバ42・・・の出力光を選択するようにしたが、例
えば常時は全ての受光ファイバ42の出力光を受光部2
6で受光し、所定時間間隔または光軸ずれを確認したい
時だけ光選択部24に駆動制御信号を与えて各受光ファ
イバごとに出力光を分離して取込んでもよいものである
。その他、本発明はその要旨を逸脱しない範囲で種々変
形して実施できる。
In the above embodiment, the light receiving section 26 receives light for each amount of light received by each light receiving fiber 42 via the light selecting section 24.
6 may be provided to receive light. In this case, the light selection section 24 becomes unnecessary. Furthermore, the arrangement example of the optical fibers 40 is not limited to that shown in FIG.
1... and the light receiving fibers 42... may be arranged alternately. In addition, although the light selection section 24 selects the output light of each light receiving fiber 42..., for example, the output light of all the light receiving fibers 42 is normally sent to the light receiving section 24.
6, and only when it is desired to check a predetermined time interval or optical axis deviation, a drive control signal may be given to the light selection section 24 to separate and capture the output light for each light receiving fiber. In addition, the present invention can be implemented with various modifications without departing from the gist thereof.

〔発明の効果〕〔Effect of the invention〕

以上詳記したように本発明によれば、光軸合せが比較的
容易に行ない得、多少光軸ずれが生じても正確にレベル
を測定でき、また全部の受光ファイバの受光量がある値
を越えた時または偏った分布となった時、光軸ずれの修
正を促す報知を行うことが可能であるのでメンテナンス
上非常に有効であるレベル計を提供できる。
As described in detail above, according to the present invention, optical axis alignment can be performed relatively easily, the level can be accurately measured even if the optical axis is slightly shifted, and the amount of light received by all optical receiving fibers can be adjusted to a certain value. It is possible to provide a level meter that is very effective in terms of maintenance because it is possible to issue a notification to prompt correction of the optical axis deviation when the optical axis exceeds the level or when the distribution becomes uneven.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第3図は本発明に係わるレベル計の一実施
例を説明するためのもので、第1図はレベル計全体の概
略構成図、第2図は光ファイバの配置側図、第3図は第
1図の演算制御部の具体的構成を示す図、第4図は光フ
ァイバの他の配置例を示す図、第5図は従来の光波距離
計の概略構成図である。 20・・・信号処理部、21・・・演算制御部、23・
・・光源、24・・・光選択部、26・・・受光部、3
0・・・検出ヘッド部、32・・・レンズ、40・・・
光ファイバ、41・・・投光ファイバ、42・・・受光
ファイバ。 出願人代理人 弁理士 鈴江武彦 第2図    第4図 ム 第5図
Figures 1 to 3 are for explaining one embodiment of the level meter according to the present invention. Figure 1 is a schematic configuration diagram of the entire level meter, Figure 2 is a side view of the arrangement of optical fibers, and Figure 2 is a side view of the arrangement of optical fibers. FIG. 3 is a diagram showing a specific configuration of the arithmetic and control unit shown in FIG. 1, FIG. 4 is a diagram showing another example of the arrangement of optical fibers, and FIG. 5 is a schematic configuration diagram of a conventional optical distance meter. 20... Signal processing section, 21... Arithmetic control section, 23.
...Light source, 24... Light selection section, 26... Light receiving section, 3
0...Detection head section, 32...Lens, 40...
Optical fiber, 41... Light emitting fiber, 42... Light receiving fiber. Applicant's agent Patent attorney Takehiko Suzue Figure 2 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 光源から出力された光を投光ファイバを用いて伝送して
測定液面に投光し、その測定液面からの反射光を受光フ
ァイバで受けて該受光ファイバ他端側に設置する信号処
理部の受光部で検出し前記測定液面の液位を測定するレ
ベル計において、前記受光ファイバが複数本により構成
され、これら受光ファイバ他端から出力される出力光の
光量から投受光光学系の前記測定液面鉛直方向への光軸
ずれを検出することを特徴とするレベル計。
A signal processing unit that transmits the light output from the light source using a light-emitting fiber and projects it onto the measurement liquid surface, receives the reflected light from the measurement liquid surface with a light-receiving fiber, and is installed at the other end of the light-receiving fiber. In a level meter that measures the level of the measured liquid by detecting it with a light receiving section, the light receiving fiber is composed of a plurality of light receiving fibers, and the light emitting/receiving optical system determines the level of the light emitting and receiving optical system based on the amount of output light outputted from the other end of these light receiving fibers. A level meter that detects optical axis deviation in the vertical direction of the measured liquid level.
JP11674685A 1985-05-31 1985-05-31 Level meter Pending JPS61275622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11674685A JPS61275622A (en) 1985-05-31 1985-05-31 Level meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11674685A JPS61275622A (en) 1985-05-31 1985-05-31 Level meter

Publications (1)

Publication Number Publication Date
JPS61275622A true JPS61275622A (en) 1986-12-05

Family

ID=14694741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11674685A Pending JPS61275622A (en) 1985-05-31 1985-05-31 Level meter

Country Status (1)

Country Link
JP (1) JPS61275622A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008309560A (en) * 2007-06-13 2008-12-25 Ricoh Elemex Corp Ultrasonic liquid level meter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008309560A (en) * 2007-06-13 2008-12-25 Ricoh Elemex Corp Ultrasonic liquid level meter

Similar Documents

Publication Publication Date Title
US6894767B2 (en) Light wave distance-measuring system
EP0790515B1 (en) Optical apparatus for controlling divergence angle of ring-like ray
JP3731021B2 (en) Position detection surveying instrument
EP0722080B1 (en) Laser levelling device
US5218770A (en) Surveying machine for construction work
EP0829702B1 (en) Laser reference line setting system
JP4531965B2 (en) Vibration detection device, rotating laser device with vibration detection device, and position measurement setting system with vibration detection correction device
US6493067B1 (en) Rotary laser irradiating system
EP2664943B1 (en) Optical signal transmission structure of laser distance measuring device
US6803593B2 (en) Distance measuring system
JP2000275042A (en) Automatic survey machine
JPS61275622A (en) Level meter
JPS62269010A (en) Building accuracy measuring method for steel column using laser vertical gauge and apparatus therefor
JPS61260113A (en) Detector for tilt angle of plane
JPS6033004A (en) Height measuring device
JPH07117414B2 (en) Automatic collimating lightwave rangefinder
JP2840951B2 (en) Automatic collimation device
JP2788281B2 (en) Remote displacement measuring device
JPS608727B2 (en) Direction measurement control device for shield excavator
JPS6138416A (en) Display device for position
JPS60205383A (en) Tracking method of fixed point of object of measurement of distance measuring device
JP3633829B2 (en) Deviation measuring device
KR0176438B1 (en) Laser light leveler detector
JP4072241B2 (en) Ray refractor
KR970005337Y1 (en) Light fo laser detector