JPS61273872A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPS61273872A
JPS61273872A JP60115646A JP11564685A JPS61273872A JP S61273872 A JPS61273872 A JP S61273872A JP 60115646 A JP60115646 A JP 60115646A JP 11564685 A JP11564685 A JP 11564685A JP S61273872 A JPS61273872 A JP S61273872A
Authority
JP
Japan
Prior art keywords
fuel
passage
fuel gas
cell
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60115646A
Other languages
Japanese (ja)
Inventor
Toshihiro Sugiyama
杉山 智弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP60115646A priority Critical patent/JPS61273872A/en
Publication of JPS61273872A publication Critical patent/JPS61273872A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0263Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant having meandering or serpentine paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To make as low as possible the poisoning of an electrode catalyst due to carbon monoxide included in a reformed gas, by disposing the fuel gas feed passages of each unit cell in a good state. CONSTITUTION:The concentration of carbon monoxide included in a reformed gas, which is used as fuel, the temperature of a fuel cell and the fall in the output of the cell are shown in the drawing. Separation plates 2 are provided on both the sides of a unit cell 1. A plurality of tunnels 5 for a coolant are provided in the inner portion of each of the separation plates 2. Other tunnels 3, 4 are provided over and under the tunnels 5 perpendicularly across them so that the tunnels 3, 4 function as fuel gas passages. A fuel gas inlet port and a fuel gas outlet port are provided near a coolant inlet port and a coolant outlet port, respectively, so that the temperature of the fuel gas near the fuel gas outlet port, at which the concentration of carbon monoxide is high because of the consumption of hydrogen, is higher than that of the fuel gas near the fuel gas inlet port. As a result, the fall in the output of the fuel cell due to the carbon monoxide is suppressed to be low.

Description

【発明の詳細な説明】[Detailed description of the invention] 【発明の属する技術分野】[Technical field to which the invention pertains]

この発明は例えばりん酸型燃料電池を対象に、石炭1石
油、天然ガス、メタノール等の炭化水素系の原料を改質
し、て得た水素リンチな改質ガスを燃料として発電を行
う燃料電池、特にその燃料ガスの供給方式に関する。
This invention is aimed at, for example, a phosphoric acid fuel cell, which generates electricity by reforming coal, petroleum, natural gas, methanol, or other hydrocarbon-based raw materials, and using the resulting hydrogen-rich reformed gas as fuel. , particularly regarding the fuel gas supply method.

【従来技術とその問題点】[Prior art and its problems]

周知のようにこの種燃料電池は、電解質層と該電解質層
を挟んで対向するアノードとカソードとの一対の電極と
からなる単位セルを多数積層してセルスタックを構成し
、このセルスタックに対して各単位セル毎にアノード侭
に頭記した水素リッチな改質ガスを、カソード側に酸化
剤としての空気ないし酸素を供給することによりその電
池反応で発電するものである。 ところでこの種の燃料電池はその運転温度が高い程高い
出力特性が得られるが、反面燃料電池本体を含む電池構
成部材の耐蝕性の面から運転温度をあまり高くすること
が困難であることから、一般には運転温度を200℃以
下に制限して運転を行・−ゝ    うようにしており
、かつこの運転温度範囲内で実パ・、 ;1、゛    用的な電流を得るために、アノード、
カソードの゛、゛ (:・(各電極での電池反応を促進するように通常は電
極・2′ら x、″     に例えば白金等の貴金属の触媒を添加
して構成し;):1 、・    ている。 □      一方、頭記のように燃料電池に供給する
燃料と:1、 □゛・シての水素ガスは炭化水素系の原料を例えば水蒸
2) l□ 気改質装置で改質して得た水素リンチな改質ガス
As is well known, in this type of fuel cell, a cell stack is constructed by laminating a large number of unit cells each consisting of an electrolyte layer and a pair of electrodes, an anode and a cathode, facing each other with the electrolyte layer in between. The hydrogen-rich reformed gas described above is supplied to the anode side of each unit cell, and air or oxygen as an oxidizing agent is supplied to the cathode side, thereby generating electricity through the cell reaction. By the way, this type of fuel cell can obtain higher output characteristics as its operating temperature is higher, but on the other hand, it is difficult to increase the operating temperature too high due to the corrosion resistance of the cell components including the fuel cell main body. In general, operation is carried out by limiting the operating temperature to 200°C or less, and in order to obtain a practical current within this operating temperature range, the anode,
The cathode ゛,゛(:・(Usually, a noble metal catalyst such as platinum is added to the electrodes 2' and 2' to promote the cell reaction at each electrode.):1,・□ On the other hand, as mentioned above, the fuel supplied to the fuel cell is: 1. □゛・The hydrogen gas is a hydrocarbon-based raw material that is reformed in a steam reformer. hydrogen lynch reformed gas obtained by

【5□ G’(’> ・     が使用される。この改質ガスは水素を主成
分とし″・、□ 、、     て、これに二酸化炭素および微量な一酸
化炭素濃度・、 ″     を含むが、このうち−酸化炭素の成分は電
極触媒”5 1、    の活性を低下させる被毒作用のあることが
知られ;1□゛・    ている、しかもこの−酸化炭
素による触媒の被毒全 一:り     作用は第9図のように燃料電池の運転
温度が低く、゛     かつ濃度が高い程大きく作用
して電池の出力を低−、、下させる。しかもその出力の
低下量は運転温度に、     依存して2次曲線的に
増大する傾向を示す、また□     アノード側に供
給された改質ガスは電池反応によって水素が消費される
ために、燃料電池の反応ガ・□゛    ス排出側では
導入側に比べて相対的に一酸化炭素の濃度が高くなる。 ここで−例を示すと、例えば成分が水素80 so1%
、二酸化炭素19 mo1%、−酸化炭素1  mo1
%の改質ガスを燃料電池へ供給した場合に、発電により
燃料電池内部で80%の水素を消費したとすると、燃料
電池のガス排出側でのガス成分は水素44%、二酸化炭
素53%、−酸化炭素3%となり、−酸化炭素の濃度が
大幅に高くなる。 一方、燃料電池は運転時には電池反応に伴う発熱がある
ことから、電池を前記した運転温度以下に抑えるには発
生熱を系外へ除去するための強制冷却が必要となる。こ
の場合の冷却方式としては反応ガスとしての空気を過剰
に供給し、電池内部の発生熱を余剰空気と一緒に系外に
排熱する方法もあるが、この方法ではりん酸等の電解質
の飛散逸出量が多くなる欠点がある。このために反応ガ
ス通路と独立してセルスタック内に介装した冷却板ない
しはセパレート板に水あるいは空気等の冷却媒体を専用
に供給する冷却通路を形成し、該冷却通路を通じてその
一方の開口端から冷却媒体を導入し、他方の開口端から
排出して電池本体の冷却を行う水冷方式、空冷方式が多
く採用されてい為 る。 、      しかして上記のように冷却通路を通じて
冷却媒+2 it’     体を通流する場合に、通路入口より導
入された低嘘 パ    温の冷却媒体は燃料電池側から熱を奪って次
第に′     温度が高くなる。この結果、第10図
に示すように□     冷却媒体の通流方向Cに沿っ
て単位セル1の内部では冷却媒体入口側に近い面域の温
度が低く、逆−1に冷却媒体の出口側に近い面域では温
度が高くな゛     るような温度分布を示す、ここ
で図示は単位セル之 ゛     の温度を最高で200℃以内に抑えるよう
に冷却し゛     ている場合の各地点の温度分布を
表している。な′    お、燃料電池の発電効率を高
めるためには単位セ11.     ル内の面方向での
温度差をできる限り小さく抑え1     るのが好ま
しいが、一方ではこのために多量の冷、パ 却媒体を通流することは冷却媒体送流のためのプ1パ ゛°”     ロア、ポンプ等の動力が大となるので
燃料電池の°゛□    綜合効率が低下することから
、実際の運転では冷□    却媒体の供給流量を成る
程度抑えて供給するために単位セルの面域温度分布は図
示のような値となる。 ところで上記した第9図および第10図の説明がら判る
ように、燃料電池の運転時には最高温度を200℃以下
に抑えるように冷却媒体を供給して強制冷却を行うため
に、セルスタックを構成している各単位セルでは冷却媒
体の通流方向に沿ってその面域に高低温度差のあろ温度
分布が生じ、一方では燃料ガスの一酸化炭素濃度が反応
ガス供給通路に沿ってその入口側から出口側に向けて次
第に高くなる。このために各単位セル毎に温度差分布の
ある面域へ燃料ガスを一様に供給すると、特に温度の低
い面域に高濃度の一酸化炭素を含むガスの通流する領域
が生じ、どの結果としてこの領域で電極触媒の被毒作用
が大きく作用し、電池出力が大幅に低下する問題が派生
することになる。 【発明の目的】 この発明は上記の点に、かんがみなされたものであり、
冷却媒体を通流して強制冷却を行う燃料電池に対し、各
単位セルに形成した燃料ガスの供給通路を巧みにレイア
ウトすることにより改質ガスに含まれる一酸化炭素によ
る電極触媒の被毒作用をできる限り低く抑えて高い燃料
電池の出力特性が維持できるようにした燃料電池を提供
することを目的とする。
[5□ G'('> ・ is used. This reformed gas is mainly composed of hydrogen, and also contains carbon dioxide and a trace concentration of carbon monoxide, Of these, the carbon oxide component is known to have a poisoning effect that reduces the activity of the electrode catalyst. As shown in Figure 9, the lower the operating temperature of the fuel cell and the higher the concentration, the greater the effect, lowering the cell's output.Furthermore, the amount of decrease in output depends on the operating temperature. □ The reformed gas supplied to the anode side tends to increase in a quadratic curve, and since hydrogen is consumed by the cell reaction, the reaction gas □゛ discharge side of the fuel cell shows a tendency to increase in a quadratic curve. The concentration of carbon monoxide is relatively high compared to the above.Here, to give an example, for example, if the component is hydrogen 80 SO1%
, carbon dioxide 19 mo1%, -carbon oxide 1 mo1
% of reformed gas is supplied to the fuel cell, and if 80% of the hydrogen is consumed inside the fuel cell due to power generation, the gas components on the gas discharge side of the fuel cell will be 44% hydrogen, 53% carbon dioxide, - 3% carbon oxide, - the concentration of carbon oxide becomes significantly higher. On the other hand, since a fuel cell generates heat due to cell reactions during operation, forced cooling is required to remove the generated heat to the outside of the system in order to keep the battery below the above-mentioned operating temperature. In this case, one cooling method is to supply excess air as a reaction gas and exhaust the heat generated inside the battery to the outside of the system together with the excess air. The disadvantage is that the amount of escape is large. For this purpose, a cooling passage is formed that exclusively supplies a cooling medium such as water or air to a cooling plate or a separate plate installed in the cell stack independently of the reaction gas passage, and the cooling passage is passed through the cooling passage to one open end thereof. Water-cooling systems and air-cooling systems are widely used, in which a cooling medium is introduced through the opening end and discharged through the other open end to cool the battery body. However, when the coolant+2' body is passed through the cooling passage as described above, the low temperature cooling medium introduced from the passage entrance absorbs heat from the fuel cell side and gradually becomes hotter. Become. As a result, as shown in Fig. 10, inside the unit cell 1 along the flow direction C of the cooling medium, the temperature is low in the area near the cooling medium inlet side, and conversely -1, the temperature is low in the area near the cooling medium outlet side. The temperature distribution shows a temperature distribution in which the temperature increases in the near area.The figure shows the temperature distribution at each point when the unit cell is cooled to keep the temperature within 200℃ at maximum. ing. Note that in order to increase the power generation efficiency of fuel cells, unit cell 11. It is preferable to suppress the temperature difference in the plane direction within the tube as small as possible1, but on the other hand, it is necessary to pass a large amount of cooling and cooling medium for this purpose. °” Since the power of the lower, pump, etc. becomes large, the overall efficiency of the fuel cell decreases. Therefore, in actual operation, the unit cell is The area temperature distribution has the values shown in the figure. By the way, as can be seen from the explanations in Figures 9 and 10 above, when the fuel cell is in operation, the cooling medium is supplied to keep the maximum temperature below 200°C. In order to perform forced cooling, each unit cell that makes up the cell stack has a temperature distribution with high and low temperature differences in its area along the flow direction of the cooling medium, and on the other hand, carbon monoxide in the fuel gas The concentration gradually increases from the inlet side to the outlet side along the reactant gas supply passage.For this reason, if the fuel gas is uniformly supplied to an area with a temperature difference distribution for each unit cell, the temperature A region where a gas containing a high concentration of carbon monoxide flows occurs in a low surface area, and as a result, the poisoning effect of the electrode catalyst acts strongly in this region, resulting in a problem of a significant decrease in battery output. [Object of the invention] This invention has been made in consideration of the above points,
For fuel cells that are forcedly cooled by passing a cooling medium through them, we have successfully laid out the fuel gas supply passages formed in each unit cell to prevent the poisoning of the electrode catalyst by carbon monoxide contained in the reformed gas. It is an object of the present invention to provide a fuel cell in which high output characteristics of the fuel cell can be maintained by suppressing the output characteristics as low as possible.

【発明の要点】[Key points of the invention]

上記目的を達成するために、この発明は各単位セル毎に
形成した反応ガス通路と別に分離独立して冷却媒体を専
用に供給する冷却通路をセルスタック内に形成した燃料
電池に対し、冷却通路を燃料ガス用の反応ガス通路と直
交して形成するとともに、燃料ガスを冷却通路の入口側
に近い面域から導入し、かつ冷却通路の出口側に近い面
域から排出するように燃料ガスの反応ガス通路を形成し
たものである。 、       かかる構成により各単位セルにおける
温度の低□      い面域には一酸化炭素濃度の低
い水素リッチな燃料ガスが流れ、温度の高い面域には一
酸化炭素濃度の高い排出側の燃料ガスが流れることにな
り、したがって単位セルの全面域で一酸化炭素による電
極触媒の被毒作用を低く抑えて電池出力の低下を良好に
防止することができるようになる。
In order to achieve the above object, the present invention provides a cooling passage for a fuel cell in which a cooling passage is formed in a cell stack for exclusive use of supplying a cooling medium separately and independently from a reaction gas passage formed for each unit cell. is formed perpendicular to the reaction gas passage for fuel gas, and the fuel gas is introduced from a surface area close to the inlet side of the cooling passage and discharged from a surface area close to the exit side of the cooling passage. A reaction gas passage is formed therein. With this configuration, hydrogen-rich fuel gas with a low carbon monoxide concentration flows in the low-temperature surface area of each unit cell, and exhaust-side fuel gas with a high carbon monoxide concentration flows in the high-temperature surface area. Therefore, the poisoning effect of carbon monoxide on the electrode catalyst by carbon monoxide can be suppressed to a low level over the entire area of the unit cell, and a decrease in battery output can be effectively prevented.

【発明の実施例】[Embodiments of the invention]

第1図はこの発明の原理を示す単位セルの燃料ガスおよ
び冷却媒体の供給経路を表した略示図、第2図は第1図
に対応する燃料ガス通路に沿った燃料ガス中の一酸化炭
素濃度分布図、第3図ない    ′し第6図は第1図
に対応する単位セルの具体的な実施例の構成図、第7図
、第8図はそれぞれ第1図をさらに発展させた別な実施
例の略示図を示すものである。 すなわち第1図において、方形状をなす単位セルlに対
して冷却媒体は矢印Cのようにセルの互、いに対向し合
う二辺a、bの側面にまたがって独立的に形成された冷
却通路を通じてその一方の開口端から他方の開口端へ向
けて通流される。これに対して燃料ガス用の反応ガス通
路は、前記した辺a、bと直交する辺C側に入口、出口
が開口して前記冷却通路と直交する方向に蛇行状に画成
されており、ここで燃料ガスは矢印Fで示すように前記
の反応ガス通路を通じて冷却媒体の入口側に近い面域か
ら導入され、冷却媒体の出口側に近い面域を通って排出
されるように供給される。なお図中の符合Wは蛇行状反
応ガス通路の往路と復路との間を画成する仕切を表して
いる。したがってこの反応ガス通路内を通流する燃料ガ
スの一酸化゛□     炭素濃度分布は電池反応によ
る水素ガスの消費に□ 、     より第2図に示すようになる。ここで第2
図の一酸化炭素濃度分布図に第10図に示した単位セル
の強制冷却による温度分布図を重畳することにより明ら
かなように、単位セル内では低温の面域に一酸化炭素濃
度の低い導入側の燃料ガスが通流し、1、、     
iAi′L771m9″−″(fs * T: tl 
a o * b1$ till(7)tM゛料ガスが通
流することになる。この条件に第9図の特性図を突き合
わせることにより理解されるように、セル内の低温面域
では一酸化炭素濃度の低、      い燃料ガスが流
れるので被毒作用の影響は小さく、゛     また−
酸化炭素濃度の高い燃料ガスの通流する面1・ ′□     域は温度が高いので同様に被毒作用の影
響は小さ゛     い、この結果、単位セルの面域全
体として見ても4;   ヨゎ93.−ゎ6−ヤ1.ヮ
8.よ、−一。 被毒作用の影響は小さく、電池出力の低下を良好に防止
できることになることが判る。 次に第1図に示した原理図に対応する燃料電池の具体的
な構成を第3図ないし第6図に示す、すなわち単位セル
1は電解質を含浸保持したマトリックス層1aと、該マ
トリックス層を挟んでその両側に重ね合わせたアノード
電極1bとカソード電極    lcとからなり、この
単位セルの上下にリプ付きセ     )バレート板2
が積層されている。ここで方形状の     ゛セパレ
ート板2は、第4図に示すようにその四辺のうちの互い
に対向する二辺a、bには、その側面の間にまたがって
開口する−ように板肉中層部に     ゛複数条の平
行に配列するトンネル状の冷却媒体を専用に供給する冷
却通路5が穿孔され、1IvAで示    )L fs
 ? 、?−オー7゜)’ 6 fil e74flR
1(D□□□  i系から冷却媒体としての空気が矢印
Cのように押    □込み送風されるように構成され
ている。 一方、セパレート板2の上下両面には、単位セルのアノ
ード電極1bに対向する側に燃料ガスの反応ガス通路3
が、またカソード電極1cに対向する−側には酸化剤の
反応ガス通路4が形成されている。 ここで各反応ガス通路3.4はそれぞれセパレー、  
   ト板2の面上に並ぶ複数条の凹溝としてなり、そ
の反応ガス供給、排出口が前記した冷却通路5の開口す
る辺a+bと直交する他の二辺C1dの側、゛。 □゛′     面に開口するように形成されている。 また図示実さ 施例では、燃料ガスの反応ガス通路3はその供給。 排出口が共に同じ辺Cの側面に(第5図)、もう/ご:
゛ ・)、     一方の空気の反応ガス通路4の供給、
排出口が同□゛i゛;     じ辺dの側面に(第6
図)それぞれ開口するよう□、( 11゛]     に反応ガス供給口と排出口との間を
連ねてU字形2.ン) “1    に蛇行して形成され、各反応ガス供給路3
,4に゛、:′ −・::    対応して燃料電池の側面に配備された
鎖線で示す;%gJ°   q=*−t、F 7 、8
 、ilB−cM11ヨ”)JF!lFi* X#、童
−: ′。 −1よび空気の反応ガスが供給されるように構成され、
;゛ □     ている、なお第5図において中央に斜線を
付した;・ □     リプが第1図に示した仕切Wに対応する。 なお図1゜ 示例はセパレート板2に冷却通路を形成した例を・  
   示したが、複数セルごとに挿入した冷却板に例え
゛     ば水冷却管を配管して構成してもよい。 次に第7図および第8図に第1図の実施例をさらに発展
させた別な実施例を示す、すなわち第1図の実施例では
燃料ガスの反応ガス通路がU字形に形成されているのに
対し、第7図、第8図の実施例では、反応ガス通路を蛇
行状に画成する仕切Wの数を増して単位セルにおける温
度分布と一酸化炭素濃度分布との対応面域をさらに細か
く分割し、より高い被毒作用防止の効果が発揮できるよ
うにしたものである。また各図示例では、冷却通路に対
して反応ガス通路を蛇行状に形成した例を示したが、こ
の相対関係を逆にして反応ガス通路を直線状に、冷却通
路を蛇行状に形成したものについても同様に実施できる
Fig. 1 is a schematic diagram showing the supply route of fuel gas and cooling medium of a unit cell showing the principle of this invention, and Fig. 2 is a monoxide in the fuel gas along the fuel gas passage corresponding to Fig. 1. Carbon concentration distribution diagrams, Figures 3 and 6 are block diagrams of specific examples of unit cells corresponding to Figure 1, and Figures 7 and 8 are further developments of Figure 1. Figure 3 shows a schematic diagram of another embodiment; In other words, in Fig. 1, for a rectangular unit cell l, the cooling medium is formed independently across two opposite sides a and b of the cell, as shown by arrow C. Flow is conducted through the passage from one open end to the other open end. On the other hand, the reaction gas passage for fuel gas is defined in a meandering manner in a direction perpendicular to the cooling passage, with an inlet and an outlet opening on the side C side perpendicular to the sides a and b, Here, the fuel gas is introduced through the reaction gas passage as shown by arrow F from a region near the inlet side of the cooling medium, and is discharged through a region near the exit side of the cooling medium. . Note that the reference numeral W in the figure represents a partition that defines the outgoing path and the incoming path of the meandering reaction gas passage. Therefore, the carbon monoxide concentration distribution of the fuel gas flowing through this reaction gas passage becomes as shown in FIG. 2 due to the consumption of hydrogen gas by the cell reaction. Here the second
As can be seen by superimposing the temperature distribution diagram due to forced cooling of the unit cell shown in Figure 10 on the carbon monoxide concentration distribution diagram in Figure 10, it is clear that a low concentration of carbon monoxide is introduced into the low-temperature area within the unit cell. The fuel gas on the side is flowing, 1,,
iAi′L771m9″-″(fs * T: tl
ao*b1$till(7)tM' Source gas will flow. As can be understood by comparing this condition with the characteristic diagram in Figure 9, fuel gas with a low concentration of carbon monoxide flows in the low-temperature area within the cell, so the effect of poisoning is small. −
The temperature of the area 1, where fuel gas with a high concentration of carbon oxide flows is high, so the effect of poisoning is also small.As a result, even when looking at the area of the unit cell as a whole,ゎ93. -ゎ6-ya1.ヮ8. Yo, -1. It can be seen that the influence of poisoning is small and that a decrease in battery output can be effectively prevented. Next, the specific structure of a fuel cell corresponding to the principle diagram shown in FIG. 1 is shown in FIGS. It consists of an anode electrode 1b and a cathode electrode lc which are sandwiched and overlapped on both sides, and there are lips on the top and bottom of this unit cell.
are layered. Here, as shown in FIG. 4, the rectangular separate plate 2 has openings on two opposing sides a and b of its four sides extending between the sides.゛Cooling passages 5 dedicated to supplying a plurality of tunnel-shaped cooling medium arranged in parallel are drilled, and are indicated by 1IvA) L fs
? ,? -O7゜)' 6 fil e74flR
1 (D □□□ The structure is such that air as a cooling medium is forced in and blown from the i system in the direction of arrow C. On the other hand, the anode electrode 1b of the unit cell is placed on both the upper and lower surfaces of the separate plate 2. Reactant gas passage 3 for fuel gas on the side opposite to
However, a reaction gas passage 4 for the oxidizing agent is also formed on the - side facing the cathode electrode 1c. Here, each reaction gas passage 3.4 is a separate,
The grooves are formed as a plurality of concave grooves lined up on the surface of the top plate 2, and the reaction gas supply and discharge ports thereof are on the other two sides C1d that are perpendicular to the side a+b where the cooling passage 5 is opened. It is formed to open on the □゛′ plane. In the illustrated embodiment, the reaction gas passage 3 for fuel gas is also used for supplying fuel gas. Both outlets are on the same side C (Fig. 5).
゛・), Supply of one air to the reaction gas passage 4,
The outlet is the same □゛i゛; on the side of the same side d (6th
Figure) Each reaction gas supply passage 3 is formed in a meandering manner by connecting the reaction gas supply port and the discharge port in a U-shape 2.
, 4 ゛, :′ −・:: Correspondingly indicated by the dashed line arranged on the side of the fuel cell; %gJ° q=*−t, F 7 , 8
, ilB-cM11yo") JF!lFi*
;゛□ Note that the hatched line in the center in FIG. 5 corresponds to the partition W shown in FIG. 1. The example shown in Figure 1 is an example in which cooling passages are formed in the separate plate 2.
Although shown, for example, a water cooling pipe may be installed in the cooling plate inserted for each of a plurality of cells. Next, FIGS. 7 and 8 show another embodiment that is a further development of the embodiment shown in FIG. 1. In the embodiment shown in FIG. On the other hand, in the embodiments shown in FIGS. 7 and 8, the number of partitions W defining the reaction gas passage in a meandering manner is increased to increase the corresponding surface area between the temperature distribution and the carbon monoxide concentration distribution in the unit cell. It is further divided into smaller pieces to achieve even higher effectiveness in preventing poisoning effects. In addition, in each illustrated example, the reaction gas passage is formed in a meandering shape with respect to the cooling passage, but this relative relationship can be reversed, and the reaction gas passage is formed in a straight line and the cooling passage is formed in a meandering shape. This can also be done in the same way.

【発明の効果】【Effect of the invention】

以上述べたようにこの発明によれば、冷却通路を燃料ガ
ス用の反応ガス通路と直交して形成するとともに、燃料
ガスを冷却通路の人口側に近い面域から導入し、かつ冷
却通路の出口側に近い面域から排出するように燃料ガス
の反応ガス通路を形成したことにより、改質された一酸
化炭素濃度の低い燃料ガスは単位セル内の温度の低い面
域から・・j ・・・、     導入して流れ、−酸化炭素濃度の高
まった排出側、゛パ ゛     の燃料ガスは逆に温度の高い面域側から排
出されるように流れることになるので、これにより電池
曇 1、     の運転温度を高々200℃程度に抑える
ように強制冷却を行う燃料電池に対して燃料ガスに含ま
れる一酸化炭素による電極触媒の被毒の影響を低く抑゛
えて燃料電池の出力特性向上を図ることができるように
なる。
As described above, according to the present invention, the cooling passage is formed perpendicular to the reactant gas passage for fuel gas, the fuel gas is introduced from a surface area close to the population side of the cooling passage, and the exit of the cooling passage is By forming the reaction gas passage for the fuel gas so that it is discharged from the area close to the side, the reformed fuel gas with a low concentration of carbon monoxide is discharged from the area with a low temperature within the unit cell.・、Since the fuel gas flows from the exhaust side where the carbon oxide concentration has increased, conversely, it flows to be discharged from the high temperature side, which causes battery fogging 1, The aim is to improve the output characteristics of fuel cells by suppressing the effects of poisoning of the electrode catalyst by carbon monoxide contained in the fuel gas, in which fuel cells are forcedly cooled to keep the operating temperature to around 200°C at most. You will be able to do this.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の原理を示す単位セルに対す′L: 
    る冷却媒体および燃料ガスの通流経路を表す略
示九     図、第2図は第1図に対応する燃料ガス
通路に沿9゛、。 □IJ、、     った燃料ガスの一酸化炭素濃度分
布図、第3図は′]ジ・: 、    第1図実施例の単位セルの具体的な構成を示
す側・1“ 面図、第4図は第3図における矢視EV−fV断面図、
第5図および第6図はそれぞれ第3図におけるセパレー
ト板に形成された燃料および酸化剤の反応ガス通路を示
す平面図、第7図、第8図はそれぞれ第1図と興なる実
施例の略示図、第9図は一酸化炭素濃度、電池温度、1
!を演出力低下量の相互関係を表した燃料電池の特性図
、第1O図は強制冷却による単位セルの面域温度分布図
である0図において、 1:単位セル、3:燃料ガスの反応ガス通路、5:冷却
媒体供給用の冷却通路、C:冷却媒体の供給方向、F:
燃料ガスの供給方向、W:燃料ガス用の蛇行通路を画成
する仕切。 第1図 第2図 第3図 第8図
FIG. 1 shows the principle of the invention for a unit cell 'L:
FIG. 2 is a schematic diagram showing the flow path of the cooling medium and fuel gas, and FIG. 2 is along the fuel gas passage corresponding to FIG. 1. □IJ,, Fig. 3 is a carbon monoxide concentration distribution diagram of the fuel gas, Fig. 1 is a side view showing the specific configuration of the unit cell of the embodiment, Fig. 4 The figure is a cross-sectional view taken along the arrow EV-fV in Fig. 3.
5 and 6 are plan views respectively showing the reaction gas passages for the fuel and oxidizer formed in the separate plate in FIG. Schematic diagram, Figure 9 shows carbon monoxide concentration, battery temperature, 1
! Figure 1 is a characteristic diagram of a fuel cell showing the interrelationship of the amount of reduction in production power. Passage, 5: Cooling passage for supplying cooling medium, C: Supply direction of cooling medium, F:
Supply direction of fuel gas, W: partition defining a meandering passage for fuel gas. Figure 1 Figure 2 Figure 3 Figure 8

Claims (1)

【特許請求の範囲】 1)単位セルの積層体としてなるセルスタックに対し、
各単位セル毎に燃料および酸化剤の反応ガスを供給する
反応ガス通路と、該反応ガス通路と分離独立して冷却媒
体を専用に通流する冷却通路とを形成した燃料電池にお
いて、前記冷却通路を燃料ガス用の反応ガス通路と直交
して形成するとともに、燃料ガスを冷却通路の入口側に
近い面域から導入し、かつ冷却通路の出口側に近い面域
から排出するように燃料ガスの反応ガス通路を形成した
ことを特徴とする燃料電池。 2)特許請求の範囲第1項記載の燃料電池において、冷
却通路がセルスタックの互いに対向し合う二辺の側面の
間にまたがって形成され、これに対して燃料ガス用反応
ガス通路が前記冷却通路と直交する方向に蛇行して形成
されていることを特徴とする燃料電池。
[Claims] 1) For a cell stack that is a laminate of unit cells,
In a fuel cell in which a reaction gas passage for supplying a reaction gas of a fuel and an oxidizing agent for each unit cell, and a cooling passage through which a cooling medium exclusively flows separately and independently from the reaction gas passage, the cooling passage is provided. is formed perpendicular to the reaction gas passage for fuel gas, and the fuel gas is introduced from a surface area close to the inlet side of the cooling passage and discharged from a surface area close to the exit side of the cooling passage. A fuel cell characterized by forming a reactive gas passage. 2) In the fuel cell according to claim 1, the cooling passage is formed across two opposing side surfaces of the cell stack, whereas the reaction gas passage for fuel gas is formed between the cooling passages. A fuel cell characterized by being formed in a meandering manner in a direction perpendicular to a passage.
JP60115646A 1985-05-29 1985-05-29 Fuel cell Pending JPS61273872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60115646A JPS61273872A (en) 1985-05-29 1985-05-29 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60115646A JPS61273872A (en) 1985-05-29 1985-05-29 Fuel cell

Publications (1)

Publication Number Publication Date
JPS61273872A true JPS61273872A (en) 1986-12-04

Family

ID=14667789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60115646A Pending JPS61273872A (en) 1985-05-29 1985-05-29 Fuel cell

Country Status (1)

Country Link
JP (1) JPS61273872A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1722436A3 (en) * 1997-12-18 2009-04-08 Toyota Jidosha Kabushiki Kaisha Fuel cell and bipolar separator for the same
US7572537B2 (en) 1997-12-18 2009-08-11 Toyota Jidosha Kabushiki Kaisha Fuel cell and separator for the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56168364A (en) * 1980-04-28 1981-12-24 Westinghouse Electric Corp Fuel battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56168364A (en) * 1980-04-28 1981-12-24 Westinghouse Electric Corp Fuel battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1722436A3 (en) * 1997-12-18 2009-04-08 Toyota Jidosha Kabushiki Kaisha Fuel cell and bipolar separator for the same
US7572537B2 (en) 1997-12-18 2009-08-11 Toyota Jidosha Kabushiki Kaisha Fuel cell and separator for the same

Similar Documents

Publication Publication Date Title
RU2531912C2 (en) Combined schemes of flows in packet of fuel elements or in packet of electrolytic elements
JP3098871B2 (en) Internal reforming fuel cell device and method of operating the same
US9461314B2 (en) Fuel cell interconnect
JPH03210774A (en) Internally improved quality system molten carbonate type fuel cell
JPH03105865A (en) Inside reformed type fuel cell and power plant using it
JPH06310158A (en) Internally reformed fuel cell device and fuel cell power generating system
JP2019528376A (en) A system for regulating the temperature and pressure of a high temperature electrolyzer (SOEC) operating irreversibly as a fuel cell stack (SOFC)
EP2643876B1 (en) Co-flow / counter-flow fuel cell or electrolysis cell
JP2004247305A (en) Ventilation device, fuel cell, and fuel cell stack
JP2000090943A (en) Fuel cell
US7097929B2 (en) Molten carbonate fuel cell
JPS63232275A (en) Fuel cell of lamination type
JPS61273872A (en) Fuel cell
JPH1167258A (en) Fuel cell
JP2928251B2 (en) Fuel cell with internal reforming
JPS6298567A (en) Fuel cell
EP0108467A1 (en) Fuel cell systems
JP2009129701A (en) Fuel cell module
US8753784B2 (en) Separator for molten carbonate fuel cell
JPS63236265A (en) Fuel cell
JPS63181271A (en) Fused carbonate fuel cell
US20050214622A1 (en) Fuel cell
JPS62268062A (en) Cooling device for fuel cell
JPS6273568A (en) Fuel cell
JPS62287576A (en) Fuel cell