JPS61272988A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPS61272988A
JPS61272988A JP11406985A JP11406985A JPS61272988A JP S61272988 A JPS61272988 A JP S61272988A JP 11406985 A JP11406985 A JP 11406985A JP 11406985 A JP11406985 A JP 11406985A JP S61272988 A JPS61272988 A JP S61272988A
Authority
JP
Japan
Prior art keywords
semiconductor layer
layer
semiconductor
substrate
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11406985A
Other languages
Japanese (ja)
Inventor
Shinichi Nakatsuka
慎一 中塚
Yuichi Ono
小野 佑一
Takashi Kajimura
梶村 俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11406985A priority Critical patent/JPS61272988A/en
Publication of JPS61272988A publication Critical patent/JPS61272988A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/16Window-type lasers, i.e. with a region of non-absorbing material between the active region and the reflecting surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2231Buried stripe structure with inner confining structure only between the active layer and the upper electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3211Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures characterised by special cladding layers, e.g. details on band-discontinuities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/32308Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To prevent a crystal defect on crystal growth onto a substrate with a stepped section by previously forming a recess to the substrate and matching a waveguide, which is shaped to the upper section of a semiconductor laser and does not absorb laser beams, with an active layer on a laser end-surface. CONSTITUTION:An N-Ga0.55Al0.45As clad layer 9, an undoped Ga0.86Al0.14As active layer 10, a P-Ga0.55Al0.45As clad layer 11, a P-GA0.55Al0.45As layer 12, a P-Ga0.55Al0.45As layer 13 and a P-GaAs cap layer 14 are crystal-grown on an N-GaAs substrate 8, to which a groove is shaped, in succession. The layer 12 and the active layer 10 are superposed in the groove section in the substrate at that time. The outside of a stripe is etched while leaving the P-type clad layer in 0.1-0.4mum, and buried from the layer 13. In the structure, Cr/Au 14 as a P electrode and AuGeNi/Cr/Au 15 as an N electrode are evaporated, and the whole is cloven at the intervals of 300mum at the positions of broken lines, thus manufacturing laser chips.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の利用分野〕 本発、明は、安定な横モードで、高出力動作することの
できる半導体レーザの構造及び製造方法に係り、特に端
面をしiザ光に対し透明とすることにより高出力動作を
可能にした半導体レーザの構造及び製造方法に関する。 〔発明の背景〕 従来の自己整合構造半導体レーザは、第1図に示すよう
にn型GaAt5基板1上にn−(GaAffi)As
クラッド層2、アンドープ(GaAQ)As活性層3.
P−(GaAjl)Asクラッド層4、n −G a 
A s光吸収層5を形成し、光吸収層の一部をエツチン
グによりストライプ状に取り除きP−(GaAjl)A
s6で埋込んだ後、電極形成の為のp −G a A 
s層7を結晶成長したもので、コールマン他“CVD自
己整合GaAQAs−GaAsダブルへテロ構造半導体
レーザの縦単−モード性′″アプライド フィジックス
 レター 第37巻。 1980  第262〜263頁(J、J、Colam
an at al“Single−1ongitudi
nal −mode  matalorganicch
emical−vapor−deposition  
self−alignedGaA nAs −G a 
A s double−haterostructur
alasers”Appl、Phys、Lett、 3
ユ、 1980. p、 282〜263)、光吸収層
により電流挟挿と導波路の形成を同時に行ったものであ
るが、この構造をMOCVDやMBEなどの熱非平衡状
態での結晶成長を用いて形成する場合、段差上への結晶
縁長に伴う結晶欠陥や、二回成長の成長界面が電気的、
光学的に活性な領域に有るため素子の信頼性を低下させ
ていた。また、レーザ端面におけるレーザ光の吸収によ
る端面の破壊が高出力動作の妨げになっていた。
[Field of Application of the Invention] The present invention relates to the structure and manufacturing method of a semiconductor laser that can operate at high output in a stable transverse mode, and in particular to a structure and manufacturing method for a semiconductor laser that can operate at high output in a stable transverse mode. The present invention relates to the structure and manufacturing method of a semiconductor laser that enables output operation. [Background of the Invention] As shown in FIG. 1, a conventional self-aligned structure semiconductor laser has n-(GaAffi)As on an n-type GaAt5 substrate 1.
Cladding layer 2, undoped (GaAQ)As active layer 3.
P-(GaAjl)As cladding layer 4, n-Ga
A s light absorption layer 5 is formed, and a part of the light absorption layer is removed in a stripe shape by etching to form P-(GaAjl)A.
After implantation with s6, p -G a A for electrode formation
Coleman et al., “Longitudinal single-mode property of CVD self-aligned GaAQAs-GaAs double heterostructure semiconductor laser,” Applied Physics Letters, Vol. 37. 1980 pp. 262-263 (J, J, Colam
an at al“Single-1ongitudi
nal-mode matalorganicch
chemical-vapor-deposition
self-alignedGaAs-Ga
A s double-haterostructure
alasers"Appl, Phys, Lett, 3
Yu, 1980. p, 282-263), current interpolation and waveguide formation are performed simultaneously using a light absorption layer, but when this structure is formed using crystal growth in a thermal non-equilibrium state such as MOCVD or MBE, , crystal defects due to the length of the crystal edge on the step, and the growth interface of the double growth are electrically
Since it is located in an optically active region, the reliability of the device is reduced. Furthermore, destruction of the end face due to absorption of laser light at the laser end face has been an obstacle to high output operation.

【発明の目的】[Purpose of the invention]

本発明は、従来構造の自己整合型半導体レーザにおいて
問題であった0段差のある基板上への結晶成長に伴う結
晶欠陥と、二回成長の成長界面の欠陥による素子寿命の
低下を防止するとともにレーザ端面をレーザ光に対し透
明にすることにより高出力動作が可能な半導体レーザを
提供することにある。 〔発明の概要〕 従来構造の自己整合型半導体レーザにおいて問題であっ
た、段差のある基板上への結晶成長に伴う結晶欠陥と、
二回成畏の成長界面の欠陥による素子寿命の低下を防止
するため1本発明においては、電流と光の密度が大きい
ストライプの内を(GaAΩ)Asで埋めるかわりに、
ストライプ外部のp型りラッド層を部分的に除去してG
 a A sもしくはクラッド層よりも屈折率の小さな
(G a A 5)Asにより埋込んだ構造において、
半導体レーザの上部に設けたレーザ光を吸収しない導波
路を、レーザ端面に予め基板に凹みを設けておくことに
より端面において、活性層と整合するようにした・〔発
明の実施例〕 以下本発明の実施例を図に従い説明する。 実施例1 あらかじめ第2図のような溝を設けたn−GaAs基板
8上にMOCVD法によりn−G a 01.$ A 
Q 、、、5 A sクラッド層9、アンドープG 6
.、、A fio、1.A s活性層10、p−G a
 、 、B A n 、 、4sA Bクララド層11
、p−G a@、siA Q6,3@A s層12、p
−G a 6 、ss A na 、<s A 8層1
3、p −G a A sキャップ層14を順次結晶成
長した。このとき、基板の溝の部分では、溝の深さの分
だけ各層の位置が下がるため、p−G a、、、、A 
jl、、、、A s層12とアンドープG a 11.
11! A II a 、t4A 8活性層10が第3
図(b)のようにかさなる0次に1通常のフォトリソグ
ラフ技術を用いてS i O,マスクを設はリン酸系の
エツチング液を用いて、ストライプ外部をp型りラッド
層を0.1〜0.4μm残してエツチングし、n−G 
a、、、、A (1,0,、A s 13により埋込ん
だ、このときSin、膜の上に析出物ができにくいMO
CVD法の特性のためSin、膜は露出したままとなり
、埋込成長後にフッ酸系のエツチング液により取り除く
ことができた。この構造にp電極としてCr/Au14
をn電極としてA u G e N i / Cr /
 A u 15を蒸着し第1図の破線の位置で300μ
m間隔にへきかいしてレーザチップとした1本発明によ
る半導体レーザは、しきい値電流30mA、発振波長7
80nmで室温連続発振し、、5mW定光出力での70
℃加速寿命試験の結果、300時間まで顕著な劣化は見
られなかった。 実施例2 第2の実施例として、p形りラッド層をp −G a 
a 、ss A n a 、as A s層11と活性
層の間にp−G a a 、t A ne 、s A 
s層18を設けた第3図のような構造の素子を試作した
。ここで、p −G ao、7A Jla、aA s層
18の厚みを0.1〜0.31mとした、この構造では
、沃素系のエツチング液を用いる事により、p−Q B
、、、A fill、4gA 8層18をp  G a
 @ 、7 A n @ 0g A s層11に対して
選択的に取り除く事ができるのでストライプ内外の屈折
率差の制御が容易となる。
The present invention prevents a decrease in device life due to crystal defects caused by crystal growth on a substrate with a zero-step difference and defects at the growth interface during double growth, which were problems in self-aligned semiconductor lasers with a conventional structure. An object of the present invention is to provide a semiconductor laser capable of high output operation by making the laser end face transparent to laser light. [Summary of the Invention] Crystal defects associated with crystal growth on a stepped substrate, which were problems in conventional self-aligned semiconductor lasers,
In order to prevent a decrease in device life due to defects at the growth interface caused by double formation, in the present invention, instead of filling the inside of the stripe where the current and light density is high with (GaAΩ)As,
By partially removing the p-type rad layer outside the stripe,
In a structure embedded with a As or (G a A 5) As having a smaller refractive index than the cladding layer,
A waveguide provided above the semiconductor laser that does not absorb laser light is aligned with the active layer at the end face of the laser by previously providing a recess in the substrate at the end face of the laser. [Embodiments of the Invention] Hereinafter, the present invention An example will be explained according to the drawings. Example 1 An n-Ga 01. $A
Q,,,5 A s cladding layer 9, undoped G 6
.. ,,A fio,1. As active layer 10, p-Ga
, , B A n , , 4sA B Clarad layer 11
, p-G a@, siA Q6,3@A s layer 12, p
-G a 6 , ss A na , <s A 8 layer 1
3. A p-GaAs cap layer 14 was successively crystal-grown. At this time, in the groove part of the substrate, the position of each layer is lowered by the depth of the groove, so p-G a, ..., A
jl,..., As layer 12 and undoped Ga 11.
11! A II a, t4A 8 active layer 10 is the third
As shown in Figure (b), an SiO mask was formed using the normal photolithography technique, and the outside of the stripe was etched into a p-type layer by 0.1% using a phosphoric acid-based etching solution. Etch leaving ~0.4 μm, n-G
a, , , , A (embedded by 1, 0,, A s 13, at this time Sin, MO which is difficult to form precipitates on the film)
Due to the characteristics of the CVD method, the Sin film remained exposed and could be removed using a hydrofluoric acid-based etching solution after buried growth. In this structure, Cr/Au14 is used as a p-electrode.
A u G e N i /Cr /
Deposit A u 15 to 300μ at the position of the broken line in Figure 1.
A semiconductor laser according to the present invention, which is made into a laser chip by dividing it at intervals of m, has a threshold current of 30 mA and an oscillation wavelength of 7.
Continuous oscillation at room temperature at 80 nm, 70 nm at constant light output of 5 mW.
As a result of the °C accelerated life test, no significant deterioration was observed up to 300 hours. Example 2 As a second example, a p-shaped rad layer is formed by p −Ga
a , ss A na , as A p-G a a , t A ne , s A between the s layer 11 and the active layer
An element having a structure as shown in FIG. 3, in which the s-layer 18 was provided, was fabricated as a prototype. Here, in this structure in which the thickness of the p-Gao, 7A Jla, aAs layer 18 is set to 0.1 to 0.31 m, by using an iodine-based etching solution, the p-Q B
,,,A fill, 4gA 8 layer 18 p Ga
@ , 7 A n @ 0 g Since the A s layer 11 can be selectively removed, the difference in refractive index inside and outside the stripe can be easily controlled.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は基板結晶の構造を示す図、第2図は、従来の自
己整合形半導体レーザの断面構造を示す図、第3図は実
施例1の半導体レーザの断面構造を示す図、第4図は、
実施例2の半導体レーザの断面構造図である。 1− n型G a A s基板、2−n−(GaAl)
Asクラッド層、3・・・アンドープ(GaAn)As
活性層、 4− p −(G a A n ) A s
クラッド層、5− n −G a A s光吸収層、6
− P −(GaA n)As。 7− p −G a A s層、8−n−GaA15基
板、9− n  G A6.ssA A6.ssA 8
クラッド層、10−・・アンドープG a、、、@A 
11B、14A s活性層、11・・・p  G a、
、、、A a、、、、A sクラッド層、12 ・p−
〇 all、7A 416.3A s層、13−P−G
 a 1) 、ss A Q o 、41 A 8層、
14− p −G a A sキャップ層、l 5−1
l−Ga、、4.Ajl。6.、As、16−Cr/A
u、 17− A u G e N i / Cr /
Au、18−p−Ga、、、、Al、、3.As層、1
9百  1  図 ■ J 図
FIG. 1 is a diagram showing the structure of the substrate crystal, FIG. 2 is a diagram showing the cross-sectional structure of a conventional self-aligned semiconductor laser, FIG. 3 is a diagram showing the cross-sectional structure of the semiconductor laser of Example 1, and FIG. The diagram is
3 is a cross-sectional structural diagram of a semiconductor laser of Example 2. FIG. 1-n-type GaAs substrate, 2-n-(GaAl)
As cladding layer, 3... undoped (GaAn) As
Active layer, 4-p-(GaAn) As
Cladding layer, 5-n-Ga As light absorption layer, 6
-P-(GaAn)As. 7-p-GaAs layer, 8-n-GaA15 substrate, 9-n-GaA6. ssA A6. ssA 8
Cladding layer, 10-... undoped Ga a, , @A
11B, 14A s active layer, 11...p Ga,
,,,A a, ,,A s cladding layer, 12 ・p-
〇 all, 7A 416.3A s layer, 13-P-G
a1), ss A Q o, 41 A 8 layers,
14- p -Ga As cap layer, l 5-1
l-Ga, 4. Ajl. 6. , As, 16-Cr/A
u, 17- A u G e N i / Cr /
Au, 18-p-Ga, , Al, 3. As layer, 1
900 1 Figure ■ J Figure

Claims (1)

【特許請求の範囲】 1、少なくとも第一の半導体層と、該第一の半導体層を
はさむように設けた、該半導体層より広い禁制帯幅で導
電型の互いに異なる第二、及び第三の半導体層を有する
構造において、第三の半導体層のストライプ状の部分を
除いて第三の半導体層を、0.1〜0.4μm残して取
り除き、第三の半導体層よりも屈折率の小さな第四の半
導体層により置きかえる半導体レーザにおいて、第三の
半導体層の上に第三の半導体層よりも大きな屈折率を有
し、第一の半導体層よりも広い禁制帯幅を有する第五の
半導体層と、第五の半導体層よりも小さな屈折率を有す
る第六の半導体層を設け、半導体レーザの端面付近で基
板結晶にあらかじめ凹みを設けることにより端面付近に
おいて第五の半導体層が他の部分の第一の半導体層と整
合させたことを特徴とする半導体レーザ装置。 2、上記基板結晶に設ける凹みの深さを第三の半導体層
の厚さよりも深く、第一、第三、第五の半導体層の厚さ
の和よりも浅くしたことを特徴とする特許請求の範囲第
1項記載の半導体レーザ装置。 3、上記基板結晶の形状を保存して結晶成長するMOC
VD法やMEB法などの熱非平衡状態での結晶成長技術
により形成された半導体レーザ装置。
[Claims] 1. At least a first semiconductor layer, and second and third semiconductor layers, which are provided to sandwich the first semiconductor layer and have a wider forbidden band width than the semiconductor layer and different conductivity types. In a structure having a semiconductor layer, the third semiconductor layer is removed except for the striped portion of the third semiconductor layer, leaving 0.1 to 0.4 μm, and a third semiconductor layer having a refractive index smaller than that of the third semiconductor layer is removed. In the semiconductor laser which is replaced by the fourth semiconductor layer, a fifth semiconductor layer is provided on the third semiconductor layer and has a larger refractive index than the third semiconductor layer and a wider forbidden band width than the first semiconductor layer. Then, a sixth semiconductor layer having a refractive index smaller than that of the fifth semiconductor layer is provided, and by providing a depression in advance in the substrate crystal near the end facet of the semiconductor laser, the fifth semiconductor layer is formed near the end facet to form a recess in other parts. A semiconductor laser device characterized by being aligned with a first semiconductor layer. 2. A patent claim characterized in that the depth of the recess provided in the substrate crystal is deeper than the thickness of the third semiconductor layer and shallower than the sum of the thicknesses of the first, third, and fifth semiconductor layers. The semiconductor laser device according to item 1. 3. MOC that grows crystals while preserving the shape of the substrate crystal
A semiconductor laser device formed using crystal growth technology in a thermal non-equilibrium state, such as the VD method or MEB method.
JP11406985A 1985-05-29 1985-05-29 Semiconductor laser device Pending JPS61272988A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11406985A JPS61272988A (en) 1985-05-29 1985-05-29 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11406985A JPS61272988A (en) 1985-05-29 1985-05-29 Semiconductor laser device

Publications (1)

Publication Number Publication Date
JPS61272988A true JPS61272988A (en) 1986-12-03

Family

ID=14628255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11406985A Pending JPS61272988A (en) 1985-05-29 1985-05-29 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPS61272988A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4959839A (en) * 1988-07-25 1990-09-25 Kabushiki Kaisha Toshiba Rib waveguide type semiconductor laser

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4959839A (en) * 1988-07-25 1990-09-25 Kabushiki Kaisha Toshiba Rib waveguide type semiconductor laser

Similar Documents

Publication Publication Date Title
JPS6343908B2 (en)
JPH06181363A (en) Semiconductor laser and manufacture thereof
JPS62257783A (en) Semiconductor laser element
JPH0856045A (en) Semiconductor laser device
JP2001244560A (en) Semiconductor light emitting device and its manufacturing method
JPS61272988A (en) Semiconductor laser device
JP3063684B2 (en) Semiconductor laser and manufacturing method thereof
JP3472739B2 (en) Manufacturing method of semiconductor laser
JP2687495B2 (en) Manufacturing method of semiconductor laser
JPS6254987A (en) Semiconductor laser
JPH0437598B2 (en)
JP2751699B2 (en) Semiconductor laser
JPH03185889A (en) Semiconductor laser element and manufacture thereof
JPH11195837A (en) Manufacture of semiconductor laser
JP3328933B2 (en) Semiconductor laser device and method of manufacturing the same
JPH11284276A (en) Semiconductor laser device and its manufacture
JP2500588B2 (en) Semiconductor laser and manufacturing method thereof
JP3228258B2 (en) Semiconductor laser and manufacturing method thereof
JPH08307010A (en) Semiconductor laser
JPS61284985A (en) Manufacture of semiconductor laser device
JPH0730188A (en) Semiconductor laser element
JP2000012953A (en) Semiconductor laser element and its manufacture
JPS63166284A (en) Semiconductor laser device and manufacture thereof
JPH04260388A (en) Semiconductor laser device
JP2004134770A (en) Semiconductor laser device and manufacturing method therefor