JPS61272679A - Measuring container for radioactive gas - Google Patents

Measuring container for radioactive gas

Info

Publication number
JPS61272679A
JPS61272679A JP11411985A JP11411985A JPS61272679A JP S61272679 A JPS61272679 A JP S61272679A JP 11411985 A JP11411985 A JP 11411985A JP 11411985 A JP11411985 A JP 11411985A JP S61272679 A JPS61272679 A JP S61272679A
Authority
JP
Japan
Prior art keywords
rays
tank
lining
thickness
braking radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11411985A
Other languages
Japanese (ja)
Other versions
JPH052115B2 (en
Inventor
Hiroshi Kitaguchi
博司 北口
Akihisa Kaihara
明久 海原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11411985A priority Critical patent/JPS61272679A/en
Publication of JPS61272679A publication Critical patent/JPS61272679A/en
Publication of JPH052115B2 publication Critical patent/JPH052115B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

PURPOSE:To ignore the influence of braking radiation and to improve measurement precision by lining a container where radio-active gas is run and reserved with a material with a low atomic number to thickness larger than the maximum range of beta rays. CONSTITUTION:The tank 1 for radioactive gas measurement is lined 6 with the material with a low atomic number to thickness (range) with which beta rays are cut off to suppress the generation of braking radiation. When the thickness of this lining 6 is less than the range of beta rays, the beta rays reach stainless steel as the material of the tank 1 to generate braking radiation, so the thicker the lining 6, the better so as to cut off the braking radiation. When the thickness is extremely large, on the other hand, the attenuation of gamma rays to be measured themselves become extreme, causing a decrease in precision. Thus, the lining 6 is provided to ignore the influence of braking radiation and also improve the measurement precision.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、原子力発電所等の放射性ガス分析に係り、特
に、γ線放出率の極単に小さい放射性核種を正確に定量
するのに好適な放射性ガス測定用タンク(通称ガスサン
プラ)に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to the analysis of radioactive gases from nuclear power plants, etc., and in particular to radioactive gas analysis suitable for accurately quantifying radionuclides with extremely low gamma ray emission rates. Regarding gas measurement tanks (commonly known as gas samplers).

〔発明の背景〕[Background of the invention]

従来の放射性ガス測定用タンク(γ線の測定を対象した
タンク)を第2図に示す。このタンク1は全体がステン
レスでできており、下部の試料入口2から放射性ガスを
流入させ、上部側面の試料出口3から流出させる構造に
なっている。タンクの中央にウェル構造4を作り、その
中に放射線検出器5を設ける。タンク1内の放射性ガス
がら放出する放射線はステンレス製のタンク1を透過し
、NaI(TQ)等による放射線検出器5に到達する。
A conventional radioactive gas measurement tank (tank for gamma ray measurement) is shown in Fig. 2. This tank 1 is made entirely of stainless steel, and has a structure in which radioactive gas is allowed to flow in from a sample inlet 2 at the bottom and out from a sample outlet 3 at the upper side. A well structure 4 is created in the center of the tank, and a radiation detector 5 is provided therein. Radiation emitted from the radioactive gas in the tank 1 passes through the stainless steel tank 1 and reaches a radiation detector 5 made of NaI (TQ) or the like.

タンク1に入射する放射線がγ線で、かつ、その核種の
γ線放出率が大きい場合は、正確にその放射線量を測定
できる。しかし、γ線放出率が小さい場合(1−%以下
)は、γ線と同時に放出するβ線とタンク1材料との相
互作用で生じるX線の影響が相対的に大きくなり、正確
な放射線の測定ができない。代表的な放射性ガスの該デ
ータを表1に示す。多くのγ線放出核種はβ線の放出を
伴っている。表1にはγ線エネルギーγ(E)、その放
出率B(γ)と同時に放出するβ線のエネルギB(E)
、その放出率B(β)を示す。第1表からもわかるよう
に、85Krのγ線放出率は0.43%と非常に小さい
If the radiation incident on the tank 1 is gamma rays and the nuclide has a high gamma ray emission rate, the radiation dose can be measured accurately. However, when the gamma ray emission rate is small (below 1%), the influence of the X-rays generated by the interaction between the beta rays emitted at the same time as the gamma rays and the tank 1 material becomes relatively large, and the accurate radiation Unable to measure. The data for representative radioactive gases are shown in Table 1. Many gamma-ray-emitting nuclides are accompanied by the emission of beta-rays. Table 1 shows the γ-ray energy γ(E), its emission rate B(γ), and the energy of β-rays emitted at the same time B(E).
, its release rate B(β). As can be seen from Table 1, the gamma ray emission rate of 85Kr is very small at 0.43%.

第1表 第3図には、各γ線エネルギーと放射能濃度換算係数(
γμCi/cm”・Cp8)の関係を示す。実線が計算
値であり、X印が実験(測定)結果から求めた値である
。この結果から明らかなように”Kr(7線エネルギー
514KeV)は、計算値と大きな差があることがわか
る。この原因は、上述したように、タンク1の材料であ
るステンレスとe5Krのβ線が相互作用を起こし、制
動X線を放出することによる。β線自体はタンクの表面
層で阻止されるが、相互作用で生じるX線は透過力が大
きくタンク1を透過して、放射線検出器に到達する。第
3図の実測結果は、この制動放射線が影響して、見かけ
上、放射能濃度換算係数(γμci/cm’・cps)
が小さい値となっている。
Table 1, Figure 3 shows each gamma ray energy and radioactivity concentration conversion coefficient (
γμCi/cm"・Cp8). The solid line is the calculated value, and the X mark is the value obtained from the experimental (measured) results. As is clear from this result, "Kr (7-ray energy 514KeV) is , it can be seen that there is a large difference from the calculated value. The cause of this is, as described above, that the stainless steel, which is the material of the tank 1, interacts with the beta rays of e5Kr, and the bremsstrahlung X-rays are emitted. Although the β-rays themselves are blocked by the surface layer of the tank, the X-rays generated by the interaction have a large penetrating power and pass through the tank 1, reaching the radiation detector. The actual measurement results in Figure 3 appear to be radioactive concentration conversion coefficients (γμci/cm'・cps) due to the influence of this bremsstrahlung radiation.
is a small value.

以」二のごとく、従来の放射性ガス測定用タンクでは、
γ線放出率が小さい放射性ガスの測定で精度の高いγ線
測定が不可能である。
As mentioned in Section 2, in conventional radioactive gas measurement tanks,
It is impossible to measure gamma rays with high precision when measuring radioactive gases with low gamma ray emission rates.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、γ線放出率の小さい放射性ガス測定の
測定精度を大幅に向上した放射性ガス測定用タンクを提
供することにある。
An object of the present invention is to provide a tank for measuring radioactive gases that greatly improves the measurement accuracy of radioactive gases having a low gamma ray emission rate.

〔発明の概要〕[Summary of the invention]

本発明は、γ線と同時に放出するβ線と、タンク材料の
相互作用を検討し、β線とタンク材料の相互作用で生ず
るX線の主要な発生要因が、β線の制動放射であること
を見い出したことによる。
The present invention examines the interaction between β rays, which are emitted at the same time as γ rays, and the tank material, and has determined that the main factor in the generation of X-rays caused by the interaction between β rays and tank material is bremsstrahlung radiation of β rays. This is due to the discovery of

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図により説明する。放射
性ガス測定用タンク1の下部から放射性ガスを流入させ
、上部側面から流出させる。タンク1の中央にウェル構
造4を作り、その中に放射線検出器5を設ける。タンク
1の内面にはベリリウム金属、あるいは、ポリテトラフ
ルオロエチレン(テフロン)等の原子番号の低い材料で
内張り6をする。内張りの厚さは、”Krのβ線最大飛
程と同じか、それ以上の寸法とする。β線の最大飛程R
は、次式で決定する。
An embodiment of the present invention will be described below with reference to FIG. Radioactive gas is caused to flow in from the lower part of the radioactive gas measurement tank 1 and flowed out from the upper side surface. A well structure 4 is created in the center of the tank 1, and a radiation detector 5 is provided therein. The inner surface of the tank 1 is lined with a lining 6 of a material with a low atomic number such as beryllium metal or polytetrafluoroethylene (Teflon). The thickness of the lining shall be the same as or greater than the maximum range of β-rays of Kr.The maximum range of β-rays R
is determined by the following formula.

R(m g/cm2) =407 ・E””E:β線の
最大エネルギー(MeV) β線の最大エネルギーは、687 K e V (0,
687M e V )であり、最大飛程は242mg/
cm2となる。このβ線の最大飛程に内張りに用いる材
料の密度ρ−を乗することによって、内張りの厚さを決
定できる。ベリリウムでは、約4.5mm、テフロンで
は、約5.5mmとなる。制動放射線の放出割合は、β
線が入射する材料の原子番号に依存する。
R (m g/cm2) = 407 ・E””E: Maximum energy of β ray (MeV) The maximum energy of β ray is 687 K e V (0,
687M e V), and the maximum range is 242mg/
cm2. The thickness of the lining can be determined by multiplying the maximum range of this β ray by the density ρ- of the material used for the lining. For beryllium, it is approximately 4.5 mm, and for Teflon, it is approximately 5.5 mm. The emission rate of bremsstrahlung radiation is β
It depends on the atomic number of the material the ray is incident on.

すなわち、低原子番号の材料になるほど制動放射線の発
生は少ない。この制動放射線の発生量は材料、入射β線
のエネルギーで異なるが、”Krのβ線とステンレスと
の間で発生する制動放射線の量は、γ線放出数と同程度
となる。
In other words, the lower the atomic number of the material, the less bremsstrahlung radiation is generated. The amount of bremsstrahlung radiation generated differs depending on the material and the energy of the incident β rays, but the amount of bremsstrahlung radiation generated between the β rays of Kr and stainless steel is approximately the same as the number of γ rays emitted.

以上のことから、放射性ガス測定用タンクに、低原子番
号材料(ベリリウムの原子番号(2)=4、テフロン(
Z)−8−8)を”Krのβ線を阻止できる厚さく飛程
)に内張すすることによって、制動放射線の発生を抑え
ることができるようになる。この内張りの厚さがβ線の
飛程以下の場合に゛は:・、タンク1の材料であるステ
ンレス(主成分の鉄の原子番号(Z)=26)にβ線が
到達し、制動放射線を発生することになる。また、内張
りの厚さは、制動放射線の発生防止と云う面で厚い方が
望ましい。しかし、極端に厚すぎる場合は、逆に測定対
象のγ線自体の減衰が著しくなり、測定精度の低下を起
こすことになる。この点から、内張り材料の厚さは、β
線の飛程と同程度が良いといえる。
Based on the above, the radioactive gas measurement tank should be made of low atomic number materials (atomic number (2) of beryllium = 4, Teflon (
Bremsstrahlung radiation can be suppressed by lining Z)-8-8) with a thickness that can block Kr's β-rays. If the range is below the range, β rays will reach the stainless steel (atomic number (Z) of the main component iron = 26), which is the material of tank 1, and generate bremsstrahlung radiation. The thickness of the lining is preferably thicker in order to prevent the generation of bremsstrahlung radiation.However, if it is too thick, the attenuation of the gamma rays itself to be measured will be significant, resulting in a decrease in measurement accuracy. From this point, the thickness of the lining material is β
It can be said that it is good to have the same range as the line.

第4図には、本発明の放射性ガス測定用タンクを用いた
ときのγ線エネルギーと放射能濃度換算係数(γμci
/cm”・cpm)の関係を示す。第3図と同様に、実
線が計算値で、X印は実測値である。第3図の従来法に
比べ、信頼性の高い結果が得られる。
FIG. 4 shows the γ-ray energy and radioactivity concentration conversion coefficient (γμci) when using the radioactive gas measurement tank of the present invention.
/cm''·cpm).Similar to FIG. 3, the solid line is the calculated value, and the X mark is the actually measured value.Compared to the conventional method shown in FIG. 3, more reliable results can be obtained.

本発明の変形例としてウェル構造の囲りだけに低原子番
号の材料で内張すする場合、あるいは、ウェル構造以外
のタンクや配管などを同材料で内張すする場合などが考
えられる。また、本発明は、”Krだけを対象にした実
施例で説明しているが他のγ線放出率が小さく、制動放
射線が問題となる放射性物質についても、同様に適用で
きるもの−である。
As a modification of the present invention, it is possible to line only the area surrounding the well structure with a material having a low atomic number, or to line a tank or piping other than the well structure with the same material. Furthermore, although the present invention has been described with reference to an embodiment that deals only with Kr, it can be similarly applied to other radioactive substances that have a low gamma ray emission rate and pose a problem in terms of bremsstrahlung radiation.

□〔発明の効果〕 本発明によれば、”Krなどのγ線放出率の小さい放射
性ガスの測定に対し、制動放射線の影響が無視でき、従
来の測定用タンクに比べ50%以上の精度向上を図るこ
とができる。
□ [Effect of the invention] According to the present invention, the influence of bremsstrahlung radiation can be ignored when measuring radioactive gases such as Kr that have a low gamma ray emission rate, and the accuracy is improved by more than 50% compared to conventional measurement tanks. can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す図、第2図は従来の放
射性ガス測定用タンクを示す図、第3図は従来の放射性
ガス測定用タンクによるγ線エネルギーと放射能濃度換
算係数の関係を示す図、第4図は本発明のタンクによる
γ線エネルギーと放射能濃度換算係数の関数を示す図で
ある。 1・・・タンク、2・・・試料入口、3・・・試料出口
、4・・・ウェル構造、5・・・放射線検出器、6・・
・低原子番号材料の内張り。
Fig. 1 shows an embodiment of the present invention, Fig. 2 shows a conventional radioactive gas measurement tank, and Fig. 3 shows the gamma ray energy and radioactivity concentration conversion coefficient of a conventional radioactive gas measurement tank. FIG. 4 is a diagram showing the function of γ-ray energy and radioactivity concentration conversion coefficient by the tank of the present invention. DESCRIPTION OF SYMBOLS 1...Tank, 2...Sample inlet, 3...Sample outlet, 4...Well structure, 5...Radiation detector, 6...
- Lining made of low atomic number material.

Claims (1)

【特許請求の範囲】[Claims] 1、放射性ガスを通気、貯留する容器の外側あるいはウ
ェル構造の内部に放射線検出器を設けて、γ線を測定す
る容器において、容器内部に低原子番号の材料を測定対
象のγ線と同時放出するβ線の最大飛程以上の厚さに内
張りすることを特徴とした放射性ガス測定容器。
1. In a container that measures gamma rays by installing a radiation detector outside the container that ventilates and stores radioactive gas or inside the well structure, a material with a low atomic number is released into the container simultaneously with the gamma rays to be measured. A radioactive gas measuring container characterized by being lined with a thickness greater than the maximum range of β rays.
JP11411985A 1985-05-29 1985-05-29 Measuring container for radioactive gas Granted JPS61272679A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11411985A JPS61272679A (en) 1985-05-29 1985-05-29 Measuring container for radioactive gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11411985A JPS61272679A (en) 1985-05-29 1985-05-29 Measuring container for radioactive gas

Publications (2)

Publication Number Publication Date
JPS61272679A true JPS61272679A (en) 1986-12-02
JPH052115B2 JPH052115B2 (en) 1993-01-11

Family

ID=14629610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11411985A Granted JPS61272679A (en) 1985-05-29 1985-05-29 Measuring container for radioactive gas

Country Status (1)

Country Link
JP (1) JPS61272679A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004286548A (en) * 2003-03-20 2004-10-14 Matsushita Electric Ind Co Ltd Radiation measuring instrument
WO2017110682A1 (en) * 2015-12-22 2017-06-29 株式会社東芝 β-RAY GAS MONITOR AND METHOD FOR MONITORING GAS CONTAINING NUCLIDES EMITTING β-RAYS

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004286548A (en) * 2003-03-20 2004-10-14 Matsushita Electric Ind Co Ltd Radiation measuring instrument
WO2017110682A1 (en) * 2015-12-22 2017-06-29 株式会社東芝 β-RAY GAS MONITOR AND METHOD FOR MONITORING GAS CONTAINING NUCLIDES EMITTING β-RAYS

Also Published As

Publication number Publication date
JPH052115B2 (en) 1993-01-11

Similar Documents

Publication Publication Date Title
Chan et al. Design aspects of gamma densitometers for void fraction measurements in small scale two-phase flows
EP0216526B1 (en) Multi-component flow measurement and imaging
Andersson et al. A neutron rem counter
GB2128736A (en) Apparatus and method for determining the hydrogen content of a substance
Böhm et al. ISO recommended reference radiations for the calibration and proficiency testing of dosemeters and dose rate meters used in radiation protection
Jewell et al. Polarization of Photoneutrons Produced from Deuterium by 2.75-MeV Gamma Rays
Varga et al. Towards a multipurpose radiotracer method for the investigation of sorption phenomena on constructional material samples
Mannhart et al. Absolute calibration of well-type NaI-detector to an accuracy of 0.3-0.1%
Dastjerdi et al. The quality assessment of radial and tangential neutron radiography beamlines of TRR
JPS61272679A (en) Measuring container for radioactive gas
JP2000284052A (en) GAS-FILLED LAYER TYPE DETECTOR FOR DISCRIMINATING BETWEEN beta-RAY AND gamma-RAY
Kull et al. Guidelines for gamma-ray spectroscopy measurements of $ sup 235$ U enrichment
Marinelli Radiation dosimetry and protection
Savidou et al. Natural radioactivity and radon exhalation from building materials used in Attica region, Greece
Dragnev Intrinsically calibrated gamma and x-ray measurements of plutonium
Lassahn et al. X-ray and gamma ray transmission densitometry
JPS58211682A (en) Nondestructive measurement device for nuclear substance
Swinth et al. Status and trends in the external counting of inhaled heavy elements deposited in vivo
Liu et al. Tritium analysis in zirconium film with BIXS and EBS: Generality test of Al thin film as the β-ray stopping layer in BIXS
Oishi et al. Determination of detection efficiency curve for a gas monitor with a built-in germanium detector
Konstantinov et al. Determination of X-ray and gamma-ray emission probabilities of 51Cr and 88Y
JPH0226754B2 (en)
KR20220100394A (en) The calculation method of calibration factors for portable tritium-in-air-monitor using gamma rays
Tola An expert system for the conception of industrial gauges based on beta, gamma or X-rays transmission (JANU)
Boot et al. A counter for measuring neutron dose equivalent from thermal energies to 10 keV

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term