JPS61272659A - Fluorescent immunoassay method - Google Patents

Fluorescent immunoassay method

Info

Publication number
JPS61272659A
JPS61272659A JP60114086A JP11408685A JPS61272659A JP S61272659 A JPS61272659 A JP S61272659A JP 60114086 A JP60114086 A JP 60114086A JP 11408685 A JP11408685 A JP 11408685A JP S61272659 A JPS61272659 A JP S61272659A
Authority
JP
Japan
Prior art keywords
antigen
antibody
film
water
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60114086A
Other languages
Japanese (ja)
Inventor
Teruaki Kobayashi
映章 小林
Daizo Tokinaga
時永 大三
Kenji Yasuda
健二 保田
Keiichi Nagai
啓一 永井
Kazunari Imai
一成 今井
Satoshi Takahashi
智 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60114086A priority Critical patent/JPS61272659A/en
Publication of JPS61272659A publication Critical patent/JPS61272659A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PURPOSE:To make quick and exact immune analysis by bringing the antigen or antibody in a sample together with an antibody or antigen labeled with a fluorescent material into reaction with the antibody (antigen) fixed to a porous film then the water in the porous film with a specific org. solvent and measuring the fluorescent intensity of the fluorescent material in the film. CONSTITUTION:The antigen or antibody is deposited on the porous film such as cellulose acetate film and the antigen (antibody) immobilized film is obtd. The film is grasped by a glass ball joint and a tris.glycine buffer soln. is filled on the film. The sample liquid contg. the antibody (antigen) such as human IgG is injected thereto and the antibody (antigen) in the sample is migrated by an electrophoretic method, etc. so as to react with the antigen (antibody) in the film. The water in the film is replaced with the org. solvent such as ethanol having small dipole moment after the reaction. The quantitive determination of a slight amt. of the antigen (antibody) in the sample with high sensitivity is made possible by the replacement even if the fluorescent material such as fluorescein isothiocyanate having the small quantum yield for an excitation wavelength is used. The range for selecting the labeling material is thus considerably expanded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、免疫学的定量法、更に詳しくは、抗原抗体反
応を利用して微量生体成分を迅速且つ正確に定量する方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an immunoassay method, and more particularly to a method for rapidly and accurately quantifying trace biological components using antigen-antibody reactions.

〔発明の背景〕[Background of the invention]

抗原抗体反応を利用して、血液中等に微量に存在するホ
ルモン、酵素等を定量する方法は医療診断等に広く応用
されている。従来この免疫学的定量法としては1251
  等の放射性同位元素を抗原又は抗体に標識した試薬
を用いるラジオイムノアッセイ法(RI A)が広く利
用されてきた。これに対し放射性物質を用いない免疫学
的定量法、すなわち、酵素、バクテリオファージ、フリ
ーラジカル、化学発光物質、蛍光物質等を標識として用
いる方法も研究され、一部実用化されている。
BACKGROUND ART Methods that utilize antigen-antibody reactions to quantify trace amounts of hormones, enzymes, etc. present in blood and the like are widely applied in medical diagnosis and the like. Conventionally, this immunoassay method is 1251
Radioimmunoassay (RIA), which uses reagents in which antigens or antibodies are labeled with radioactive isotopes, has been widely used. On the other hand, immunoassay methods that do not use radioactive substances, ie, methods that use enzymes, bacteriophage, free radicals, chemiluminescent substances, fluorescent substances, etc. as labels, have also been studied and some have been put into practical use.

本発明は非放射性定量法のうち、蛍光物質を標識として
用いる蛍光イムノアッセイ法 (Fluoroimmuno−assay : F I
 A )に関するものである。FIAがホルモンその他
の微量定量法として有効なことは公知である。しかし、
従来FIAの標識物質として用いられてきた蛍光物質の
励起光及び蛍光の波長は蛋白質その他の血液成分の吸収
波長及び蛍光波長に近接しているため、S/Nの向上に
限界があり、したがって、FIAの定量限界はRIAに
及ばないのが実情であった。例えば、標識蛍光物質とし
て代表的な、フルオレッセイン・イソチオシアナートの
極大励起波長は492nm、極大蛍光波長は518nm
であるのに対し、蛋白質はそれぞれ280nm、340
nmに極大値を持つ。また血液中には、非蛋白性成分で
、450〜470nmに極大を持つ蛍光を発するものも
存在している。これらは微量であっても、被検出成分が
極微量であると、顕著な妨害物質となる。更に、標識物
質の励起波長と蛍光波長の差、すなわちストークスシフ
トが小さいと、入射励起光の散乱が問題となる。
Among non-radioactive quantitative methods, the present invention relates to a fluorescence immunoassay method (FI) using a fluorescent substance as a label.
A). It is known that FIA is effective as a method for quantifying trace amounts of hormones and other substances. but,
The excitation light and fluorescence wavelengths of fluorescent substances conventionally used as labeling substances for FIA are close to the absorption wavelengths and fluorescence wavelengths of proteins and other blood components, so there is a limit to the improvement of S/N. The reality is that FIA's quantification limits are not as high as RIA's. For example, the maximum excitation wavelength of fluorescein isothiocyanate, which is a typical labeled fluorescent substance, is 492 nm and the maximum fluorescence wavelength is 518 nm.
On the other hand, proteins have wavelengths of 280 nm and 340 nm, respectively.
It has a maximum value at nm. Blood also contains non-protein components that emit fluorescence with a maximum wavelength of 450 to 470 nm. Even if these substances are present in trace amounts, if the detected component is in extremely trace amounts, they become significant interfering substances. Furthermore, if the difference between the excitation wavelength and fluorescence wavelength of the labeling substance, that is, the Stokes shift, is small, scattering of the incident excitation light becomes a problem.

一方、ヘテロジニアスイムノアツセイの抗原抗体反応物
と非反応物の分離を容易にし、また実質的に濃縮効果を
持たせて反応速度を高めるため、抗体を固定化した多孔
質膜を用いる方法が提案されている(特開昭6O−57
257)。この方法では膜内外に介在する標識物質、た
とえば蛍光物質などを効率良く測定しなければならない
On the other hand, in order to facilitate the separation of antigen-antibody reactants and non-reactants in heterogeneous immunoassays, and to substantially increase the reaction rate by having a concentration effect, a method using a porous membrane on which antibodies are immobilized has been proposed. It has been proposed (Japanese Unexamined Patent Publication No. 6O-57
257). This method requires efficient measurement of labeling substances, such as fluorescent substances, present inside and outside the membrane.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、抗原抗体反応の場として多孔性抗体固
定化膜を用いた、蛍光イムノアッセイにおける蛍光測光
を高感度化する方法を提供することにある。
An object of the present invention is to provide a method for increasing the sensitivity of fluorescence photometry in fluorescence immunoassay using a porous antibody-immobilized membrane as a site for antigen-antibody reactions.

〔発明の概要〕[Summary of the invention]

蛍光イムノアッセイの感度を向上させるためには、優れ
た標識蛍光物質を用いることが必要である。標識蛍光物
質に要求される特性として、まず蛍光の量子収率、蛍光
波長、ストークスシフト等の因子が挙げられる。量子収
率は最も基本的な因子で、1に近いことが望ましい。一
般に頻度高く使用されているフルオレツセインイソチオ
シアネートは水溶液中で0.65  (pH7,0) 
、0.92(0,IN  Na0H)という高い値を示
している。
In order to improve the sensitivity of fluorescent immunoassays, it is necessary to use superior labeled fluorescent substances. Characteristics required of labeled fluorescent substances include factors such as fluorescence quantum yield, fluorescence wavelength, and Stokes shift. Quantum yield is the most fundamental factor and is preferably close to 1. Generally, frequently used fluorescein isothiocyanate has a pH of 0.65 (pH 7.0) in aqueous solution.
, 0.92 (0, IN NaOH).

また蛍光波長は、試料中に含まれる共存物質の妨害蛍光
(一般に短波長蛍光が多い)の影響を避けるため、でき
るだけ長波長側にあることが望ましい。またストークス
シフトは励起光に起因する迷光を除去するためできる限
り大きい方が有利である。一般に、長波長側に蛍光をも
つもの、ストークスシフトの大きいものは量子収率が比
較的小さい。特に水を媒体とする場合に小さいことが問
題である。
Furthermore, it is desirable that the fluorescence wavelength be as long as possible in order to avoid the influence of interfering fluorescence (generally mostly short-wavelength fluorescence) from coexisting substances contained in the sample. Furthermore, it is advantageous for the Stokes shift to be as large as possible in order to remove stray light caused by excitation light. In general, those with fluorescence on the long wavelength side and those with a large Stokes shift have relatively low quantum yields. Particularly when water is used as a medium, small size is a problem.

本発明は水中で量子収率が低下する蛍光体を標識した場
合でも高効率で蛍光測光を可能とする方法を提供するも
のである。
The present invention provides a method that enables highly efficient fluorescence photometry even when labeled with a fluorescent substance whose quantum yield decreases in water.

多孔質膜中で抗原抗体反応を行わせ、膜中に捕捉された
標識蛍光物質の量を蛍光測光により測定する場合、多孔
質膜の光散乱による測定精度の低下を妨止するため、屈
折率の大きい液体により膜の空孔を満たすことが必要で
ある。蛍光イムノアツセイは水を媒体として遂行される
ため、」二記液体としては水が適している。しかし前記
のように多くの蛍光物質は水のような極性媒体中ではよ
り極性の小さい媒体に比して量子収率が低い。第1表に
生物科学分野でしばしば用いられている蛍光物質の蛍光
特性を示した。表でλ68は励起波長、λ1.は蛍光波
長を示す。表には媒体として水及びエタノールを用いた
ときの蛍光波長と量子収率が比較して示されている。若
干の例外はあるが、水をエタノールに変えると量子収率
が著しく改善される。
When performing an antigen-antibody reaction in a porous membrane and measuring the amount of labeled fluorescent substance captured in the membrane by fluorescence photometry, the refractive index is It is necessary to fill the pores of the membrane with a large liquid. Since fluorescent immunoassay is carried out using water as a medium, water is suitable as the liquid. However, as mentioned above, many fluorescent materials have lower quantum yields in polar media such as water than in less polar media. Table 1 shows the fluorescence properties of fluorescent substances often used in the biological science field. In the table, λ68 is the excitation wavelength, λ1. indicates the fluorescence wavelength. The table shows a comparison of fluorescence wavelength and quantum yield when using water and ethanol as the medium. With some exceptions, replacing water with ethanol significantly improves quantum yield.

第1表 蛍光物質の特性 Xλ、ヨ(エタノール)=370nm (略号)BOPM: N−(p−(2−ペンゾクカゾリ
ル)フェニル)マレイミド、BTPMS N −(p 
−(2−ベンツイミダゾリル)フェニル)マレイミド、
PNM:N−(3−フェナンスリル)マレイミド、PR
,M:N−(ピレン)マレイミド、BTPM:N−(p
−(2−ベンゾチアゾリル)フェニル)マレイミド、C
8M:N−(6−クリシル)マレイミド、ACM:N−
(3−アクリジル)マレイミド、PNA:N−フェニル
−1−−ナフチルアミン、FAM:N−(3−フルオラ
ンシル)マレイミド、DACM:N−(7−シメチルア
ミノー4−メチルクマリニル)マレイミド、TNS:2
−p−トルイソニルナフタレン−6−スルホン酸、AN
S:1−アニリノナフタレン−8−スルホン酸、IAE
ANS : 5−(ヨードアセトアミドエチル)アミノ
ナフタレン−1−スルホン酸、ANM:N−(1−アニ
リノナフチル−4)マレイミド。
Table 1 Characteristics of fluorescent substance
-(2-benzimidazolyl)phenyl)maleimide,
PNM: N-(3-phenanthryl)maleimide, PR
, M: N-(pyrene)maleimide, BTPM: N-(p
-(2-benzothiazolyl)phenyl)maleimide, C
8M: N-(6-crisyl)maleimide, ACM: N-
(3-acridyl)maleimide, PNA: N-phenyl-1-naphthylamine, FAM: N-(3-fluorancyl)maleimide, DACM: N-(7-dimethylamino-4-methylcoumarinyl)maleimide, TNS: 2
-p-toluisonylnaphthalene-6-sulfonic acid, AN
S: 1-anilinonaphthalene-8-sulfonic acid, IAE
ANS: 5-(iodoacetamidoethyl)aminonaphthalene-1-sulfonic acid, ANM: N-(1-anilinonaphthyl-4)maleimide.

すなわち、多孔質膜を使用する蛍光イムノアッセイにお
いては、抗原抗体反応終了後、膜中の水を、水よりも極
性の小さい媒体で置換して蛍光を測定すると極めて良好
な結果が得られる。さらにこの媒体は極性が小さいと共
に屈折率が大きいことが望ましい。
That is, in a fluorescence immunoassay using a porous membrane, very good results can be obtained if the water in the membrane is replaced with a medium less polar than water after the antigen-antibody reaction is completed and the fluorescence is measured. Furthermore, it is desirable that this medium has low polarity and high refractive index.

水の20℃、D(Na)線に対する屈折率は1.33:
3 、双極子能率は1.94である。水は相溶性の大き
いアセトン、アルコール等で容易に置換さしている。
The refractive index of water at 20°C for the D(Na) line is 1.33:
3, the dipole efficiency is 1.94. Water is easily replaced with highly compatible acetone, alcohol, etc.

水と容易に置換し、かつ本発明に適した物性値を有する
ものとしてエタノールを挙げたが、勿論このような性質
を持つものはエタノールに限らない。他のアルコールそ
の他の有機溶媒で前記の性能を有するものは同様に使用
可能である。
Ethanol has been mentioned as a substance that easily replaces water and has physical properties suitable for the present invention, but of course, substances having such properties are not limited to ethanol. Other alcohols and other organic solvents having the above-mentioned properties can be similarly used.

水を目的とする媒体で直接置換するのではなく、水に相
溶性のある液体を経由して置換すれば、さらに多くの有
機溶媒が本発明に適したものとして利用される。たとえ
ば、デカリン、クロロホルム、シクロヘキサン、シクロ
ヘキセン、その他多くの有機溶媒が利用できる。
Even more organic solvents are suitable for use in the present invention if the water is not replaced directly with the target medium, but via a water-compatible liquid. For example, decalin, chloroform, cyclohexane, cyclohexene, and many other organic solvents are available.

水と置換される有機溶媒が、本発明に適したものとして
使用されるためには、上記の性能を有すると共に、測定
対象物である多孔質膜を溶解又は変形させるなどの損傷
を与えるものであってはならないことは勿論である。
In order for the organic solvent that replaces water to be used as one suitable for the present invention, it must have the above-mentioned properties and must not cause damage such as dissolving or deforming the porous membrane that is the object to be measured. Of course, this should not happen.

〔発明の実施例〕[Embodiments of the invention]

以下実施例に基づき本発明の構成をさらに詳しく説明す
る。
The structure of the present invention will be explained in more detail below based on Examples.

電気泳動用セルロースアセテート膜(厚さ約120μm
)を抗ヒトIgG抗体(ウサギ)溶液に約1時間浸漬し
たあと、2.5 %グルタルアルデヒド溶液(P B 
S 、つまり1 / 15 M NaCQを含む0.1
 Mリン酸緩衝液p、H7,4で希釈したもの)に30
分間浸漬する操作を3回繰り返したあと、さらに抗ヒト
IgG抗体溶液に約1時間浸漬してから、PBSで十分
に洗うことにより、抗ヒトIgG抗体固定化セルロース
アセテート膜を作った。この膜から直径8III11の
円形膜を切り出し反応膜とし、ヒトIgGを測定対象物
としてサンドイツチ法によりイムノアッセイを行なった
Cellulose acetate membrane for electrophoresis (thickness approx. 120 μm)
) in an anti-human IgG antibody (rabbit) solution for about 1 hour, and then soaked in a 2.5% glutaraldehyde solution (P B
S, i.e. 0.1 containing 1/15 M NaCQ
30% in M phosphate buffer p, diluted with H7,4)
After repeating the immersion operation for 3 minutes, the membrane was further immersed in an anti-human IgG antibody solution for about 1 hour, and then thoroughly washed with PBS to prepare an anti-human IgG antibody-immobilized cellulose acetate membrane. A circular membrane with a diameter of 8III11 was cut out from this membrane and used as a reaction membrane, and an immunoassay was performed using the Sand-Deutsch method using human IgG as a measurement target.

イムノアッセイ法は公知の方法(特開昭60−5725
7 )に従った。すなわち、内径4mlのガラス製ボー
ルジヨイント2つで膜をはさみ、膜の上、下にトリス・
グリシン緩衝液(pH8,6)を満たした。
The immunoassay method is a known method (Japanese Patent Application Laid-Open No. 60-5725
7) was followed. That is, the membrane was sandwiched between two glass ball joints with an inner diameter of 4 ml, and Tris was placed on top and bottom of the membrane.
Filled with glycine buffer (pH 8,6).

次に、40%しよ糖溶液で2倍に希釈したヒトIgG標
準試料10μQをマイクロシリンジを用いて、静かに反
応膜上部に注入した。次に印加電圧50Vで15分間電
気泳動を行なった。次に、ANS (第1表)で標識し
た抗ヒトIgG抗体(ヤギ)溶液(マイルス社)を40
%しよ糖溶液で倍量に希釈したもの10μQを反応膜上
部に注入してから、印加電圧50Vで15分間電気泳動
を行なった。このあと、反応膜を取り出し、P B−3
で簡単にリンスしたあと、反応膜中に存在するANSの
蛍光をλ、、350nrn、λ、−51−5nmで測定
した。次いでこの膜を50%エタノール、75%エタノ
ール、純エタノールに順次浸漬して水をエタノールで置
換してから、λ。、370nm、λ、468nmで蛍光
測定を行った。面測定の蛍光強度比は約1:8であった
。比較のために、ANS標識抗体の代りに抗ヒトIgG
抗体を注入した以外は全<−h記と同様の操作を施した
試料片を作り、上記と同様の蛍光測光を行った。両者の
蛍光強度は側定装W(日立分光蛍光光度計M P F−
4)のノイズレベルを若干越える程度で、有意差は認め
られなかった。
Next, 10 μQ of a human IgG standard sample diluted 2 times with a 40% sucrose solution was gently injected onto the top of the reaction membrane using a microsyringe. Next, electrophoresis was performed for 15 minutes at an applied voltage of 50V. Next, an anti-human IgG antibody (goat) solution (Miles) labeled with ANS (Table 1) was added to the
% sucrose solution and injected onto the top of the reaction membrane, electrophoresis was performed for 15 minutes at an applied voltage of 50 V. After this, take out the reaction membrane and PB-3
After rinsing briefly with water, the fluorescence of ANS present in the reaction membrane was measured at λ, 350nrn and λ, -51-5nm. Next, this membrane was sequentially immersed in 50% ethanol, 75% ethanol, and pure ethanol to replace water with ethanol, and then λ. , 370 nm, λ, 468 nm. The fluorescence intensity ratio in area measurement was about 1:8. For comparison, anti-human IgG was used instead of ANS-labeled antibody.
A sample piece was prepared in the same manner as described above except that the antibody was injected, and fluorescence photometry was performed in the same manner as above. The fluorescence intensity of both was measured using a side-mounted W (Hitachi spectrofluorometer MPF-
4), and no significant difference was observed.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明によれば、水中で量子収率が著し
く低下する蛍光物質を蛍光イムノアッセイの標識物質と
して利用することができ、標識蛍光物質の探索範囲を大
巾に拡大することができる。
As described above, according to the present invention, a fluorescent substance whose quantum yield significantly decreases in water can be used as a labeling substance for fluorescence immunoassay, and the search range for labeled fluorescent substances can be greatly expanded. .

Claims (1)

【特許請求の範囲】 1、試料中の抗原を多孔質膜に固定化された抗体と抗原
抗体反応により固定させ、上記固定化させた抗原に蛍光
物質を標識した抗体を反応させるか、又は上記固定化さ
れた抗体の未反応部に蛍光物質を標識した抗原を反応さ
せるかのいずれかの反応を行わせることにより、上記抗
原の濃度を測定する蛍光イムノアツセイ法において、抗
原抗体反応を全て終了後、多孔質膜中の水を双極子能率
が水よりも小さい有機溶媒により置換した後、多孔質膜
中の標識蛍光物質の蛍光強度を測定することを特徴とす
る蛍光イムノアツセイ法。 2、水と置換する有機溶媒が、水よりも光の屈折率が大
きいことを特徴とする特許請求の範囲第1項記載のイム
ノアツセイ法。 3、水と置換する有機溶媒が、水と相溶性を有すること
を特徴とする特許請求の範囲第1項又は第2項記載のイ
ムノアツセイ法。 4、水と置換する有機溶媒が、エタノールであることを
特徴とする特許請求の範囲第1項記載のイムノアツセイ
法。
[Scope of Claims] 1. The antigen in the sample is immobilized by an antigen-antibody reaction with an antibody immobilized on a porous membrane, and the immobilized antigen is reacted with an antibody labeled with a fluorescent substance, or In the fluorescent immunoassay method, which measures the concentration of the antigen by reacting the unreacted portion of the immobilized antibody with the antigen labeled with a fluorescent substance, after all the antigen-antibody reactions are completed. A fluorescence immunoassay method, which comprises replacing water in the porous membrane with an organic solvent having a dipole efficiency lower than that of water, and then measuring the fluorescence intensity of a labeled fluorescent substance in the porous membrane. 2. The immunoassay method according to claim 1, wherein the organic solvent that replaces water has a higher optical refractive index than water. 3. The immunoassay method according to claim 1 or 2, wherein the organic solvent to be replaced with water is compatible with water. 4. The immunoassay method according to claim 1, wherein the organic solvent to be replaced with water is ethanol.
JP60114086A 1985-05-29 1985-05-29 Fluorescent immunoassay method Pending JPS61272659A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60114086A JPS61272659A (en) 1985-05-29 1985-05-29 Fluorescent immunoassay method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60114086A JPS61272659A (en) 1985-05-29 1985-05-29 Fluorescent immunoassay method

Publications (1)

Publication Number Publication Date
JPS61272659A true JPS61272659A (en) 1986-12-02

Family

ID=14628731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60114086A Pending JPS61272659A (en) 1985-05-29 1985-05-29 Fluorescent immunoassay method

Country Status (1)

Country Link
JP (1) JPS61272659A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010507796A (en) * 2006-10-24 2010-03-11 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Detection of target molecules in a sample

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010507796A (en) * 2006-10-24 2010-03-11 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Detection of target molecules in a sample
US10101321B2 (en) 2006-10-24 2018-10-16 Koninklijke Philips N.V. Detecting target molecules in a sample
US10670589B2 (en) 2006-10-24 2020-06-02 Koninklijke Philips N.V. Detecting target molecules in a sample

Similar Documents

Publication Publication Date Title
JP2002303629A (en) Immune chromatography device and method for determining substance to be tested using the same
CN102520192B (en) Fluorescence immunochromatographic assay and kit for quantitative detection of troponin I/creatine kinase isoenzyme/myohemoglobin
CN101339196A (en) Rapid checking method for bladder cancer by quantum dot mark immunity-chromatography test paper
Anderson et al. Development of an evanescent wave fiber optic biosensor
CN106153927A (en) A kind of fast quantification detects time-resolved fluoroimmunoassay chromatography reagent and the preparation method of cTnI, CKMB, Myo simultaneously
CN101241140A (en) Quantum dot mark based immune blotting detection method
CN104849452A (en) PLA2R antibody quantitative detection test strip and manufacturing and detection methods
JP2012247188A (en) Clinical examination using nanocarbon
CN109187981A (en) A kind of quantum dot immune chromatograph test strip of quick detection beta-amyloid protein and application
US20200333337A1 (en) Method for re-using test probe and reagents in an immunoassay
CN102636651A (en) Method, system and chip test paper for parallel detection on various cardiac markers
CN104880560A (en) PLA2R (phospholipase A2 receptor) antibody detection strip and preparation method and detection method thereof
CN108181287A (en) A kind of magnetic bead time-resolved fluoroimmunoassay quantitatively detects H-FABP kits
JPS61272661A (en) Immunoassay method
CN104849264A (en) Chemiluminiscence immune test strip and preparation method thereof
JPS6057257A (en) Immunoassay method
CN107490699A (en) A kind of Blood glycated haemoglobin fluorescence immunoassay detection method
JPH0792460B2 (en) Kit for detecting microorganisms associated with periodontal disease using surfactant mixture as extraction composition and method for detecting the same
CN108333370A (en) A kind of magnetic bead time-resolved fluoroimmunoassay quantitatively detects cTnI kits
US4433060A (en) Chemiluminescent immunoassays with triphenylmethane dyes activated by H.sub. O2 and a chloramine
JPS61272659A (en) Fluorescent immunoassay method
Kessler et al. Nonimmunological assay of urinary albumin based on laser-induced fluorescence
CN112698027B (en) Hapten immunochromatography detection reagent
KR102330837B1 (en) Biosensor and analyzing method using the same
CN111024940B (en) Time-resolved fluorescence immunoassay method based on gold magnetic particles