JPS61272655A - Quantitative discrimination method for platelet agglutination power - Google Patents

Quantitative discrimination method for platelet agglutination power

Info

Publication number
JPS61272655A
JPS61272655A JP11617285A JP11617285A JPS61272655A JP S61272655 A JPS61272655 A JP S61272655A JP 11617285 A JP11617285 A JP 11617285A JP 11617285 A JP11617285 A JP 11617285A JP S61272655 A JPS61272655 A JP S61272655A
Authority
JP
Japan
Prior art keywords
curve
reagent
agglutination
standard
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11617285A
Other languages
Japanese (ja)
Other versions
JPH0514870B2 (en
Inventor
Michio Oota
道男 太田
Yoriyoshi Kumagai
熊谷 頼佳
Yukio Kosugi
幸夫 小杉
Jun Ikebe
池辺 潤
Yoriaki Kumagai
熊谷 頼明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IRYO KOGAKU KENKYUSHO KK
Original Assignee
IRYO KOGAKU KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IRYO KOGAKU KENKYUSHO KK filed Critical IRYO KOGAKU KENKYUSHO KK
Priority to JP11617285A priority Critical patent/JPS61272655A/en
Publication of JPS61272655A publication Critical patent/JPS61272655A/en
Publication of JPH0514870B2 publication Critical patent/JPH0514870B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Abstract

PURPOSE:To make possible the exact quantitative determination of the platelet agglutination power suitable for discrimination, etc. of the therapeutic effect of the cerebral infraction by measuring the agglutination patterns of the platelet by the concn. of a reagent for the platelet agglutination by using the platelets of m,any normal persons, forming a standard agglutination curve group and comparing the curve group and the agglutination curve with respect to the patient's reagent quantity. CONSTITUTION:An adenosine diphosphate (ADP) is added to the platelets of many normal persons within the 0.5-20mu mole range by changing said range at very slight intervals and 30 platelet agglutination patterns corresponding to the respective concns. are measured. The standard curve group with the ADP quantity as a parameter is obtd. from such data as the mathematical expression curve group of the time (unit in minute) after the addition of the ADP and light transmittivity (%) P. The patient's platelet agglutination power is first measured in 4 ways of the equal-ratio intervals within 0.5-20mu mole ADP and is compared with the above-mentioned standard curve group. Said power is then measured with 4 ways of the reagent quantities of equal-ratio intervals between the two points exclusive of the two little and too much reagent. The fine adjustment of the reagent quantity is further repeated if necessary until the reagent quantity matching the standard curve is known. The patient's platelet agglutination power is thus exactly and quantitatively discriminated.

Description

【発明の詳細な説明】 【産業上の利用分野l この弁明(よ、血小板凝集能の定量的判定方法に関し、
さらに詳しくは、脳梗塞、心筋梗塞などの治療効果判定
、あるいは、治療管理に適した面小数凝集能の定量的判
定方法に関する。
[Detailed description of the invention] [Industrial field of application] This defense (with regard to the quantitative determination method of platelet aggregation ability)
More specifically, the present invention relates to a method for quantitatively determining area fractional aggregation ability suitable for determining therapeutic effects on cerebral infarction, myocardial infarction, etc., or for therapeutic management.

(従来の技術) 脳梗塞、心筋梗塞、さらには、老人性痴呆症などの治療
に抗面小板剤が用いられることは周知であって、その効
力の判定、治療の管理に患者の面小板凝集能の検査が広
く行われている。
(Prior art) It is well known that antiplatelet agents are used to treat cerebral infarction, myocardial infarction, and even senile dementia. Testing of plate aggregation ability is widely performed.

[発明が解決しようとする問題点l この面小板凝集能判定には、検査者の経験や主観が影響
して、客観的な判定結果を得る適当な方法がないのが現
状である。
[Problems to be Solved by the Invention I] Currently, there is no suitable method for obtaining objective judgment results because the tester's experience and subjectivity influence the judgment of platelet aggregation ability.

[問題点を解決するための手段1 そこで、この発明は面小板凝集能判定を、客観的に行い
得るようにしようとするもので、白液から採取した血漿
にADP(^denosine Di−Phospha
te)を試薬として加え、その光透過度を時間の経過と
共に測定する。この場合、ADPの量によって異なった
パターンが得られるので、基本的な標準凝集曲線群を作
成し、これを凝集能の定量的判定に用いることを特徴と
するものである。
[Means for Solving the Problems 1] Therefore, the present invention aims to make it possible to objectively judge the platelet aggregation ability by adding ADP (^denosine Di-Phospha) to plasma collected from white fluid.
te) is added as a reagent and its light transmittance is measured over time. In this case, since different patterns are obtained depending on the amount of ADP, a basic standard aggregation curve group is created and used for quantitative determination of agglutination ability.

[実 施 例) 以下、この発明の構成を添イ」シた線図と共に説明する
。先ず、多数の正常者について、ある量のA!”)Pに
対する面小板凝集曲線を求めて、これらの平均的パター
ンを定め、これをこの量のAI’)Pに対する標2i!
凝集曲線とづる。
[Example] Hereinafter, the configuration of the present invention will be explained with accompanying diagrams. First, for a large number of normal people, a certain amount of A! ``) Determine the surface platelet agglomeration curve for P, define these average patterns, and define this as the standard 2i! for this amount of AI')P!
Spelled out as an agglomeration curve.

そして、AI)PIを過少から適φへ、さらに適量から
過多へと微小間隔で変化させて、それぞれのADP量に
対応した凝集曲線の平均的パターンを定め、これらを集
めてAIIPの量をパラメータとする標準凝集曲線群を
作成覆る。
Then, by changing AI)PI from too little to proper φ and then from proper to too much, the average pattern of the agglomeration curve corresponding to each ADP amount is determined, and these are collected to determine the amount of AIIP as a parameter. Create a set of standard agglomeration curves with overlapping.

次に、コンピュータを用いた凝集能判定の自動化の1方
法を示寸ことにする。先ず、判定過程を単純化するため
に、標準凝集曲線を数式により近似的に表わす。
Next, one method of automating agglutination ability determination using a computer will be described. First, in order to simplify the determination process, a standard agglomeration curve is approximately expressed using a mathematical formula.

時間1 (分)にお(プる光透過率p(%)に対してa
、(i=1〜6)を定数どじで、 1次反応: p−(1−a1cos’(a2 tニーa3 ) )x
(eχp(−a4t:) +as )・・・(1)2次
反応: p=(1−eχl’)(aet:)) x(eχl) (−a4 t) +a5 )・・・(a
)を求める。
time 1 (min) (a for light transmittance p (%))
, (i = 1 to 6) as a constant, first-order reaction: p-(1-a1cos'(a2 tnee a3) ) x
(eχp(-a4t:) +as)...(1) Secondary reaction: p=(1-eχl')(aet:)) x(eχl) (-a4t) +a5)...(a
).

この定数a、を適当に変えて30種の曲線をコンピユー
タに記憶させる。これらを曲線で表わすと、第2図のよ
うになり、各曲線に数値yを何しである(y−1〜30
)。
By appropriately changing this constant a, 30 types of curves are stored in the computer. If these are represented by curves, it will look like Figure 2, and each curve will have a numerical value y (y-1 to 30
).

つぎに、正常者の標準曲線と、この数式の曲線のパター
ン・マツチングを行うと、正常者におけるパラメータχ
(μM01)と、数式曲線のy数値との間には、 y=、4.14χ+2.21  ・・・ (3)の関係
があり、この(3)式をコンビコータに記憶させる。パ
ターン・マツチングには、例えば両曲線のずれの2乗和
を最小にする手法が用いられる。
Next, by pattern matching the standard curve for normal people and the curve of this formula, we find that the parameter χ for normal people
There is a relationship between (μM01) and the y value of the mathematical curve as follows: y=,4.14χ+2.21 (3), and this equation (3) is stored in the combicoater. For pattern matching, for example, a method of minimizing the sum of squares of deviations between both curves is used.

凝集能判定には、普通、0.5〜20μMolのADP
fflで十分であって、判定時間短縮のために、例えば
、0.5〜20μMO+を等比感覚(比:0.5.1,
7.5,8.20  μMOI  ・(4)とし、一度
にそれぞれの凝集曲線を求める。
For agglutination ability determination, 0.5 to 20 μMol of ADP is usually used.
ffl is sufficient, and in order to shorten the determination time, for example, 0.5 to 20μMO+ is used in a geometric sense (ratio: 0.5.1,
7.5, 8.20 μMOI · (4), and obtain each aggregation curve at once.

これらをパターン・マツチングにより数式曲線と比較し
てy1〜y4の数式曲線を得たと仮定する。
Assume that these are compared with mathematical curves by pattern matching to obtain mathematical curves y1 to y4.

すると、(3)式から対応するAr)P量χ1〜χ4を
知ることができる。
Then, the corresponding Ar)P amounts χ1 to χ4 can be found from equation (3).

χは正常者にお(プる試薬の過少や、過多を示す吊であ
るので、例えば、χ1.χ2は過少、χ3゜χ4は過多
であると仮定すると、(4)式の1,7〜5.8μMO
+の間をさらに等比に、例えば、5分割2.2.2.8
.3.6.4.6. 、czMol  ・(5)の如く
試薬量を微調整し、再度試験を行い、前回と同様にして
試薬量の適否を調べる。
χ is a value that indicates whether the amount of reagent applied to a normal person is too little or too much, so for example, assuming that χ1.χ2 is too little and χ3°χ4 is too much, then 5.8μMO
+ further divide into 5 equal ratios, for example, 2.2.2.8
.. 3.6.4.6. , czMol - Finely adjust the reagent amount as shown in (5), perform the test again, and check whether the reagent amount is appropriate in the same manner as the previous time.

必要ならば、試薬けをさらに微調整して再検査を行う。If necessary, make further adjustments to the reagents and retest.

そして、最終検査の試薬量をχp1〜χp4として、そ
れぞれのパターン・マツチングによって数式曲線Vl)
t〜yp4を得ICと仮定する。
Then, the reagent amount for the final test is set as χp1 to χp4, and the mathematical curve Vl) is calculated by pattern matching.
Assume that t~yp4 is obtained and IC.

これらに対する正常者の試薬量χnl 〜χn4は、前
記(3)式により求めることができ、これらのχはすべ
て適量の近くに存在する筈である。そこで、 に  −χpi/χn1(i=l、2.3.4)・・・
(6)■ を求め、に の平均値にを患者の面小板凝集能とする。
The reagent amounts .chi.nl to .chi.n4 for a normal person can be determined by the above equation (3), and all of these .chi. should be close to appropriate amounts. Therefore, −χpi/χn1 (i=l, 2.3.4)...
(6) Calculate ■, and use the average value of as the patient's platelet aggregation ability.

に=−(に1+に2+に3+に4) ・・・ (7)に
く1は正常省より少ない試薬帛で凝集1ノ、K〉1はそ
の逆である。
ni=-(to 1+ to 2+ to 3+ to 4)... (7) Niku 1 is agglutinated with less reagent cloth than normal concentration, and K>1 is the opposite.

このにを見易い数字で表現するために、対数面小板凝集
能係数I P A C(logarith+l1ic 
Platelel^grigability Coef
ficient)を次式で定義する。
In order to express this in easy-to-read numbers, the logarithmic platelet aggregation coefficient I P A C (logarith+l1ic
Plateel^grigability Coef
ficient) is defined by the following equation.

1−PAC−[−0,45Jogに+0.5]・・・(
8)但し、WはG auss記号であって、Wを越えな
い最大整数を表わづ。
1-PAC-[-0,+0.5 to 45Jog]...(
8) However, W is a Gauss symbol and represents the largest integer not exceeding W.

その結果、下記表の係数により凝集能を見易い数値で表
示することが可能になる。
As a result, it becomes possible to display the aggregation ability in easy-to-read numerical values using the coefficients in the table below.

[発明の効果1 以上の説明から明らかなように、この発明の面小板凝集
能の定は的判定方法によれば、脳梗塞。
[Advantageous Effects of the Invention 1] As is clear from the above explanation, according to the method for determining platelet aggregation ability of the present invention, cerebral infarction is detected.

心筋梗塞、さらには、老人性痴呆症などの治療に用いる
抗血小板剤の効果の判定、治療管理を確実、かつ、容易
に行い得る利益がある。
There is an advantage that the effectiveness of antiplatelet agents used in the treatment of myocardial infarction, senile dementia, etc. can be determined and the treatment managed reliably and easily.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は面漿にAI)Pを試薬として加えてその光透過
度の変化を時間経過との関連で示す面小板凝集曲線の1
実有り、第2図は標準凝集曲線群を模擬する数式曲線群
を示す。 餉−ユ9 1ど、j−二ンリ15(分り シクzE5D
Figure 1 shows a platelet aggregation curve showing the change in light transmittance over time when AI)P is added to the platelet as a reagent.
In fact, FIG. 2 shows a mathematical curve group simulating the standard agglomeration curve group.餉-yu 9 1do, j-ninri 15 (warishikzE5D

Claims (1)

【特許請求の範囲】[Claims] (1)下記(a)、(b)、(c)、(d)、(e)の
作業による血小板凝集能の定量的判定方法。 (a)多数の正常者について、ある量の試薬に対する血
小板凝集曲線を求め、これらの平均的パターンを定めて
、その試薬量に対する標準凝集曲線とし、試薬量を過少
から適量、さらに過多へと微細に変化させ、それぞれの
量に対応した凝集曲線の平均的パターンを定め、これら
を集めて、試薬量をパラメータとする標準凝集曲線群を
作成する。 (b)次に、1または複数の試薬量に対する患者の凝集
曲線を求め、標準凝集曲線群の中から患者の凝集曲線に
最も近いパターンの標準曲線を選び、それに対するパラ
メータから、それが過少か過多かを知り、過少なら試薬
量を適宜増加し、過多なら減じて、再び1または複数の
試薬量に対する患者の凝集曲線を求める。 (c)さらに、前回と同様にして、凝集曲線を標準曲線
と比較して、最も近いパターンの標準凝集曲線を定めて
、それに対応するパラメータの過少か過多を知り、再び
試薬量を調整して、再度検査を行なう。 (d)以下、同様にして検査を繰返すことにより、患者
の血小板凝集曲線は、標準凝集曲線群の中の適量パラメ
ータの標準曲線に近いパターンとなる。 (e)この時の試薬量を標準曲線のパラメータと比較す
ることにより、患者の血小板凝集能の亢進、正常、抑制
の度合を定量的に判定する。
(1) A method for quantitatively determining platelet aggregation ability by performing the following operations (a), (b), (c), (d), and (e). (a) Obtain platelet aggregation curves for a certain amount of reagent for a large number of normal subjects, determine the average pattern of these and use it as a standard aggregation curve for that reagent amount, and finely adjust the reagent amount from too little to an appropriate amount to too much. The average pattern of the agglutination curve corresponding to each amount is determined, and these are collected to create a standard agglutination curve group using the reagent amount as a parameter. (b) Next, determine the patient's agglutination curve for one or more reagent amounts, select the standard curve with the pattern closest to the patient's agglutination curve from the group of standard agglutination curves, and determine whether it is too small based on the parameters for it. Determine whether the amount is too much, increase the amount of reagent appropriately if it is too much, decrease it if it is too much, and obtain the patient's agglutination curve for one or more reagent amounts again. (c) Furthermore, in the same way as last time, compare the agglutination curve with the standard curve, determine the standard agglutination curve with the closest pattern, find out whether the corresponding parameter is too small or too large, and adjust the reagent amount again. , perform the inspection again. (d) By repeating the test in the same manner, the patient's platelet aggregation curve becomes a pattern close to the standard curve of the appropriate dose parameter in the standard aggregation curve group. (e) By comparing the amount of reagent at this time with the parameters of the standard curve, the degree of enhancement, normality, or inhibition of the patient's platelet aggregation ability is quantitatively determined.
JP11617285A 1985-05-28 1985-05-28 Quantitative discrimination method for platelet agglutination power Granted JPS61272655A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11617285A JPS61272655A (en) 1985-05-28 1985-05-28 Quantitative discrimination method for platelet agglutination power

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11617285A JPS61272655A (en) 1985-05-28 1985-05-28 Quantitative discrimination method for platelet agglutination power

Publications (2)

Publication Number Publication Date
JPS61272655A true JPS61272655A (en) 1986-12-02
JPH0514870B2 JPH0514870B2 (en) 1993-02-26

Family

ID=14680574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11617285A Granted JPS61272655A (en) 1985-05-28 1985-05-28 Quantitative discrimination method for platelet agglutination power

Country Status (1)

Country Link
JP (1) JPS61272655A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH034168A (en) * 1989-06-01 1991-01-10 S S R Eng Kk Method and device for deciding flocculationability of blood platelet and means for deciding flocculationability
US6101449A (en) * 1995-06-07 2000-08-08 Akzo Nobel N.V. Method for predicting the presence of congenital and therapeutic conditions from coagulation screening assays
US6321164B1 (en) 1995-06-07 2001-11-20 Akzo Nobel N.V. Method and apparatus for predicting the presence of an abnormal level of one or more proteins in the clotting cascade
US6429017B1 (en) 1999-02-04 2002-08-06 Biomerieux Method for predicting the presence of haemostatic dysfunction in a patient sample
US6502040B2 (en) 1997-12-31 2002-12-31 Biomerieux, Inc. Method for presenting thrombosis and hemostasis assay data
US6898532B1 (en) 1995-06-07 2005-05-24 Biomerieux, Inc. Method and apparatus for predicting the presence of haemostatic dysfunction in a patient sample
US7179612B2 (en) 2000-06-09 2007-02-20 Biomerieux, Inc. Method for detecting a lipoprotein-acute phase protein complex and predicting an increased risk of system failure or mortality
US7211438B2 (en) 1999-02-04 2007-05-01 Biomerieux, Inc. Method and apparatus for predicting the presence of haemostatic dysfunction in a patient sample

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH034168A (en) * 1989-06-01 1991-01-10 S S R Eng Kk Method and device for deciding flocculationability of blood platelet and means for deciding flocculationability
US6101449A (en) * 1995-06-07 2000-08-08 Akzo Nobel N.V. Method for predicting the presence of congenital and therapeutic conditions from coagulation screening assays
US6269313B1 (en) 1995-06-07 2001-07-31 Akzo Nobel N.V. Method for predicting the presence of congenital and therapeutic conditions from coagulation screening assays
US6321164B1 (en) 1995-06-07 2001-11-20 Akzo Nobel N.V. Method and apparatus for predicting the presence of an abnormal level of one or more proteins in the clotting cascade
US6564153B2 (en) 1995-06-07 2003-05-13 Biomerieux Method and apparatus for predicting the presence of an abnormal level of one or more proteins in the clotting cascade
US6898532B1 (en) 1995-06-07 2005-05-24 Biomerieux, Inc. Method and apparatus for predicting the presence of haemostatic dysfunction in a patient sample
US6502040B2 (en) 1997-12-31 2002-12-31 Biomerieux, Inc. Method for presenting thrombosis and hemostasis assay data
US6429017B1 (en) 1999-02-04 2002-08-06 Biomerieux Method for predicting the presence of haemostatic dysfunction in a patient sample
US7211438B2 (en) 1999-02-04 2007-05-01 Biomerieux, Inc. Method and apparatus for predicting the presence of haemostatic dysfunction in a patient sample
US7179612B2 (en) 2000-06-09 2007-02-20 Biomerieux, Inc. Method for detecting a lipoprotein-acute phase protein complex and predicting an increased risk of system failure or mortality

Also Published As

Publication number Publication date
JPH0514870B2 (en) 1993-02-26

Similar Documents

Publication Publication Date Title
Brundage et al. Assessing the reliability of two toxicity scales: implications for interpreting toxicity data
Taves Determination of submicromolar concentrations of fluoride in biological samples
Uebersax A generalized kappa coefficient
JPS61272655A (en) Quantitative discrimination method for platelet agglutination power
Lin Proportional means regression for censored medical costs
Vega Cross-validation of four MMPI scales for alcoholism
Cost Nonlinear regression least‐squares method for determining relaxation time spectra for processes with first‐order kinetics
Guo Does higher concordance in monozygotic twins than in dizygotic twins suggest a genetic component?
Valladares-Neto Effect size: A statistical basis for clinical practice
Morgan et al. Intensity-response nonlinearities and the theory of edge localization
Raasch et al. Errors in the determination of particle size distributions caused by coincidences in optical particle counters
Duewer et al. Forensic data analysis by pattern recognition. Categorization of white bond papers by elemental composition
Lundahl et al. Use of contrasts for the evaluation of panel inconsistency 1
Kopp-Schneider et al. Distinguishing between models of carcinogenesis: the role of clonal expansion
Bagheri et al. Value of children: attitudinal factors influencing childbearing desire of Iranian women
Suwa et al. Morphometrical method to estimate the parameters of distribution functions assumed for spherical bodies from measurements on a random section
Bower Statistics for food science III: sensory evaluation data. Part A–Sensory data types and significance testing
Tomsey et al. Case work guidelines and interpretation of short tandem repeat complex mixture analysis
Kojro Influence of statistical errors on size distributions obtained from dynamic light scattering data. Experimental limitations in size distribution determination
Nakhaeizadeh The causality direction in consumption–income process and sensitivity to lag structures
Julious et al. Sample sizes for cancer trials where Health Related Quality of Life is the primary outcome
Upton et al. On auditory intensity discrimination
Ross Testing patterned hypotheses in multi-way contingency tables using weighted kappa and weighted chi square
Nascimento Barros et al. Effect size: a statistical basis for clinical practice.
Lew et al. A User’s Guide to the T-Test