JPS61272591A - Heat-flow straightening element and container using same - Google Patents

Heat-flow straightening element and container using same

Info

Publication number
JPS61272591A
JPS61272591A JP11515885A JP11515885A JPS61272591A JP S61272591 A JPS61272591 A JP S61272591A JP 11515885 A JP11515885 A JP 11515885A JP 11515885 A JP11515885 A JP 11515885A JP S61272591 A JPS61272591 A JP S61272591A
Authority
JP
Japan
Prior art keywords
heat
hollow body
container
temperature
rectifying element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11515885A
Other languages
Japanese (ja)
Inventor
Masaki Kida
昌樹 木田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
A WAAKU SHIYOTSUPU KK
Original Assignee
A WAAKU SHIYOTSUPU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by A WAAKU SHIYOTSUPU KK filed Critical A WAAKU SHIYOTSUPU KK
Priority to JP11515885A priority Critical patent/JPS61272591A/en
Publication of JPS61272591A publication Critical patent/JPS61272591A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/14Arrangements for the insulation of pipes or pipe systems
    • F16L59/16Arrangements specially adapted to local requirements at flanges, junctions, valves or the like

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Insulation (AREA)

Abstract

PURPOSE:To provide an element having heat-flow straightening performance and very simple element, by sealing a liquid, which occupies a part of the inner volume of a hollow body, in the thin hollow body, whose top and bottom parts are exposed from the upper and lower surfaces of a heat insulating wall. CONSTITUTION:The titled element is composed of a thin hollow body 1, a small amount of medium liquid 2, which is sealed in the hollow body under the pressure reduced state, and a heat insulating wall 3, which is made to pierce through the hollow body 1 and therein. A space 0 in the hollow body 1 is in the pressure reduced state. When the temperature of a heat output side 4 is low and that of a heat input side 5 is high, the high temperature at the heat input side 5 is transferred to the medium 2 by the heat transfer through a bottom plate 15 of the hollow body 1. The temperature of the medium liquid 2 is increased and the liquid is evaporated. The pressure in the space 0 is increased to a saturated vapor pressure at this temperature. At this time, the temperature of the lower surface of a top plate 14 of the hollow body 1 is low and close to the temperature at the heat output side 4 owing to the heat transfer through the top plate 14. Therefore, the vapor in the space 0, which is contacted with said surface is excessively saturated. Latent heat of vaporization is discharged to the top plate 14, and the vapor is condensed, liquidfied and returned to the well of the medium liquid 2.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、一方向には熱を伝え、その逆方向には熱を
遮断する新規な熱整流素子に関するものである。本発明
において「熱整流」とは前記のような、一方向にのみ熱
を伝え、逆方向には熱を遮断する作用を指称する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a novel thermal rectifying element that transmits heat in one direction and blocks heat in the opposite direction. In the present invention, "thermal rectification" refers to the effect of transmitting heat only in one direction and blocking heat in the opposite direction, as described above.

また、本発明は、前記の熱整流素子を装着した新規な容
器に関するものである。
The present invention also relates to a novel container equipped with the above-mentioned thermal rectifying element.

[従来の技術] 単体として一方向にのみ熱を伝え、その逆方向には熱を
遮断するような作用を有し、かつ構造の簡単な素材は従
来存在しなかった。
[Prior Art] Conventionally, there has been no material with a simple structure that transmits heat only in one direction and blocks heat in the opposite direction.

例えば、断熱容器の中から熱を放出し器内を低温に保つ
用途、あるいは断熱容器内に熱を注入して器内を高温に
保つ用途には、熱を放出あるいは注入する装置と断熱す
る装置(容器)とを併用する必要があった。また、−見
一体的な構成の装置であっても、冷媒や電力などの細い
通路で断熱容器内外を連通させ、この通路より熱の出入
を行っているものであった。卑近な例を示すと、前者の
例としては冷蔵庫があり、冷媒を介して熱の放出を行な
っている。また、後者の例としては魔法瓶とやかんの併
用があり、先ずやかんにより湯を沸かし、やかんから魔
法瓶に湯を移し換えることによって湯の高温を保持して
いる。
For example, for purposes such as releasing heat from inside an insulating container to keep the inside of the container at a low temperature, or injecting heat into an insulating container to keep the inside of the container at a high temperature, there is a device that releases or injects heat and a device that insulates the container. (container). Furthermore, even in devices with a one-piece construction, the inside and outside of the heat insulating container are communicated through narrow passages for refrigerant, electric power, etc., and heat is transferred in and out through these passages. To give a familiar example, a refrigerator is an example of the former type, which releases heat through a refrigerant. Another example of the latter is the combination of a thermos flask and a kettle, where the kettle is used to boil water first, and then the hot water is transferred from the kettle to the thermos flask to maintain the high temperature of the water.

これは、断熱と伝熱とは相反する作用であるから当然の
帰着である。即ち、伝熱性が良くかつ断熱性も良好であ
る素材は従来者えられなかった。
This is a natural outcome since heat insulation and heat transfer are contradictory effects. In other words, it has not been possible to find a material that has good heat conductivity and good heat insulation properties.

[発明の解決しようとする問題点] 熱流(伝導・輻射・対流を含む)の等方向性を考慮する
と、上述のように断熱と伝熱とは相反する現象であるか
ら、別々の装置手段を併せ用いることが必要になる。従
って、断熱と伝熱とを併せて行なうためには、上記のよ
うに手数がかかったり、あるいは機器や装置が複雑にな
るという欠点があった。   ′ 本発明の目的は、前記のような従来技術における欠点に
鑑み、熱整流性能を有し、かつ構造が極めて簡単な素子
を提供することである。
[Problems to be solved by the invention] Considering the isodirectionality of heat flow (including conduction, radiation, and convection), heat insulation and heat transfer are contradictory phenomena as described above, so separate equipment means are required. It is necessary to use them together. Therefore, in order to perform heat insulation and heat transfer at the same time, there is a drawback that it takes time and effort as described above, or the equipment and equipment become complicated. ' In view of the above-mentioned drawbacks of the prior art, an object of the present invention is to provide an element that has thermal rectification performance and has an extremely simple structure.

本発明の他の目的は、この素子を使用して、断熱と一方
向のみの伝熱とを共に果たし得る容器や装置を提供する
ことである。
Another object of the invention is to provide a container or device that uses this element to provide both thermal insulation and unidirectional heat transfer.

また、上述のように断熱容器内に熱を注入し、あるいは
容器内から熱の放出を行なうためには。
Also, as mentioned above, in order to inject heat into the heat insulating container or release heat from the inside of the container.

一般に人工的な他のエネルギー源を必要とするものであ
る。このためエネルギーを得るための手段や装置、また
エネルギーを活用、即ち熱エネルギーの人出に変換する
ための手段や装置、更にこれに付随したエネルギーの制
御手段や装置を従来は必要とした。
Generally, they require other sources of energy, which are man-made. For this reason, conventionally, means and devices for obtaining energy, means and devices for utilizing energy, that is, converting it into thermal energy, and associated energy control means and devices have been required.

すなわち、この発明の他の目的は、自然界に最も豊富に
存在する熱エネルギー自体および普遍の重力エネルギー
のみによって、断熱容器内に熱の注入あるいは容器から
の熱の放出のいずれがのみを行ない得る熱整流素子およ
びそれを利用した容器を提供するものである。
That is, another object of the present invention is to generate heat that can be carried out either by injecting heat into an insulating container or releasing heat from the container using only thermal energy itself, which is most abundant in nature, and universal gravitational energy. The present invention provides a rectifying element and a container using the rectifying element.

[問題点を解決するするための手段] すなわち、本発明の熱整流素子は、断熱壁、該断熱壁を
貫通して水平に取付けられ、かつ天部と底部とをそれぞ
れ該断熱壁の上面と下面に露出させた薄肉の中空体、お
よび該中空体内に封入されて該中空体の内容積の一部を
占める液体がらなり、前記断熱壁の下方から上方へ向か
う熱のみを通過させることを特徴とするものである。
[Means for Solving the Problems] That is, the heat rectifying element of the present invention has an insulating wall, is installed horizontally through the insulating wall, and has a top portion and a bottom portion connected to the upper surface of the insulating wall. It is characterized by a thin hollow body exposed on the lower surface and a liquid sealed in the hollow body and occupying a part of the internal volume of the hollow body, and allowing only heat to pass from below to above the insulating wall. That is.

前記中空体としては、例えば水を減圧下に封入したもの
を使用する。
As the hollow body, for example, one in which water is sealed under reduced pressure is used.

更に、本発明の容器は、断熱性容器、該容器の水平壁部
を貫通して取付けられ、かつ天部と底部とをそれぞれ該
水平壁部の上面と下面に露出させた薄肉の中空体、およ
び該中空体内に封入されて該中空体の内容積の一部を占
める液体からなり、前記水平壁部の下方から上方へ向か
う熱流のみを通過させることを特徴とするものである。
Furthermore, the container of the present invention includes an insulating container, a thin hollow body that is attached through a horizontal wall of the container, and has a top and a bottom exposed on the upper and lower surfaces of the horizontal wall, respectively; and a liquid that is sealed in the hollow body and occupies a part of the internal volume of the hollow body, and is characterized in that only heat flow directed from below to above the horizontal wall portion passes through.

[作 用] 上記のように本発明の熱整流素子は、断熱壁、該断熱壁
を貫通して取付けられた中空体、および該中空体内に封
入された少量の液体からなるものであり、その構成は極
めて簡単である。
[Function] As described above, the heat rectifying element of the present invention consists of a heat insulating wall, a hollow body attached through the heat insulating wall, and a small amount of liquid sealed in the hollow body. The configuration is extremely simple.

前記熱整流素子において、断熱壁の下面、即ち中空体の
底部の温度が高くなると、その熱により中空体中の液体
が蒸発し、断熱壁の上面(低温側)に露出した中空体の
天部に蒸気が接触して凝縮し、中空体の天部に熱を与え
、天部の上面から放熱する。一方、熱整流素子がこのよ
うな作用を行なわないとき、即ち中空体の底部が所定の
温度よりも低い場合には、中空体自体が断熱層として存
在する。従って断熱壁の下方から上方へ向かう熱のみを
一定の条件下に通過させることになる。
In the heat rectifying element, when the temperature of the lower surface of the heat insulating wall, that is, the bottom of the hollow body increases, the liquid in the hollow body evaporates due to the heat, and the top of the hollow body exposed on the upper surface (low temperature side) of the heat insulating wall increases. When the steam comes into contact with the hollow body, it condenses, giving heat to the top of the hollow body, and radiating the heat from the top of the top. On the other hand, when the heat rectifying element does not perform such an action, that is, when the bottom of the hollow body is lower than a predetermined temperature, the hollow body itself exists as a heat insulating layer. Therefore, only heat directed upward from below the heat insulating wall is allowed to pass under certain conditions.

[実施例] 以下にこの発明の熱整流素子およびそれを使用した容器
を図示の実施例に基づいて更に詳細に説明する。
[Examples] The thermal rectifying element of the present invention and a container using the same will be described in more detail below based on illustrated examples.

第1図はこの発明の熱整流素子の基本的構成を示す縦断
面図である。
FIG. 1 is a longitudinal sectional view showing the basic structure of the thermal rectifying element of the present invention.

熱整流素子は、薄肉の中空体l、減圧下に該中空体1に
封入された少量の媒液2、該中空体1を貫通させて保持
する断熱壁3からなる。中空体l内の空間Oは減圧状態
になっている。これが当該熱整流素子の基本的な構造で
ある。
The heat rectifying element consists of a thin hollow body 1, a small amount of liquid medium 2 sealed in the hollow body 1 under reduced pressure, and a heat insulating wall 3 that penetrates and holds the hollow body 1. The space O inside the hollow body 1 is in a reduced pressure state. This is the basic structure of the thermal rectifying element.

なお、同図において符号4は熱流出側、および符号5は
熱流入側を示し、熱整流素子の取付方向は重力方向Gに
対して図示の通り水平である。
In the figure, reference numeral 4 indicates a heat outflow side, and reference numeral 5 indicates a heat inflow side, and the mounting direction of the heat rectifying element is horizontal to the direction of gravity G as shown.

同図において、熱流出側4と熱流入側5とが等温度であ
るとすると、空間0はその温度における媒液2の飽和蒸
気圧に平衡している。使用目的の温度に応じて、媒液2
の物質を選定して、このときの蒸気圧を低く設定すれば
、実質的にこの蒸気による伝熱は無視し得る程度である
。このとき蒸気の対流は起らない、また中空体lの側1
113は肉薄であり、更に容器の材質として熱伝導率の
低い材料を選択することにより、この側壁13の横断面
を通して生ずる伝熱も無視し得る程度となる。従って、
この状態では熱整流素子は断熱状態になっている。
In the figure, assuming that the heat outflow side 4 and the heat inflow side 5 are at the same temperature, the space 0 is in equilibrium with the saturated vapor pressure of the medium 2 at that temperature. Depending on the intended use temperature, medium 2
If a material is selected and the vapor pressure at this time is set low, the heat transfer due to this vapor can be substantially ignored. At this time, no steam convection occurs, and side 1 of the hollow body l
113 is thin, and by selecting a material with low thermal conductivity as the material of the container, the heat transfer that occurs through the cross section of this side wall 13 becomes negligible. Therefore,
In this state, the thermal rectifier is in an adiabatic state.

続いて、熱流出側4が高温で、熱流入側5が低温になっ
た場合には、媒液2の温度は熱流入側5の温度とほぼ同
等になっているので、器内空間0は前記の場合よりも低
い蒸気圧になり、より深いOFF状態となり断熱状態は
良好になっている。
Next, when the heat outflow side 4 is high temperature and the heat inflow side 5 is low temperature, the temperature of the medium 2 is almost the same as the temperature of the heat inflow side 5, so the internal space 0 is The vapor pressure is lower than in the above case, the OFF state is deeper, and the adiabatic state is better.

次に、熱流出側4が低温で、かつ熱流入側5が高温であ
る場合には、中空体1の底板15を介する伝熱により、
媒液2に熱流入側5の高温が伝えられ、媒液2の温度が
高くなって蒸発し、空間0はこの温度における飽和蒸気
圧まで上昇する。このとき中空体1の天板14の下面は
、天板14を介する伝熱により熱流出側4の温度に近い
低温になっているから、この面に接する空間θ内の蒸気
は過飽和となり、天板14に蒸発潜熱を放出して蒸気自
体は凝縮して液化し媒液2の溜りに戻る0以上の動作は
熱的には、媒液2は熱流入側5から熱を奪って蒸発し、
熱流出側4に熱を放出して凝縮して媒液2へ戻るので、
結果的に熱流入側5から熱流出側4に熱流通を起したこ
とになる。即ち、熱整流素子はONの状態になる。この
蒸発潜熱の受授作用の外に、蒸気圧の上昇による熱伝導
と蒸気の流れによる対流作用も素子のON作用に寄与す
る。
Next, when the heat outflow side 4 is at a low temperature and the heat inflow side 5 is at a high temperature, due to heat transfer through the bottom plate 15 of the hollow body 1,
The high temperature on the heat inflow side 5 is transmitted to the medium 2, the temperature of the medium 2 increases and evaporates, and the space 0 rises to the saturated vapor pressure at this temperature. At this time, the lower surface of the top plate 14 of the hollow body 1 is at a low temperature close to the temperature of the heat outflow side 4 due to heat transfer through the top plate 14, so the steam in the space θ in contact with this surface becomes supersaturated, The operation of 0 or more releases the latent heat of vaporization to the plate 14, and the vapor itself condenses and liquefies and returns to the reservoir of the medium 2. From a thermal perspective, the medium 2 absorbs heat from the heat inflow side 5 and evaporates.
Heat is released to the heat outflow side 4, condensed and returned to the medium 2, so
As a result, heat flow occurs from the heat inflow side 5 to the heat outflow side 4. That is, the thermal rectifying element is in an ON state. In addition to this action of receiving and receiving the latent heat of vaporization, heat conduction due to the increase in vapor pressure and convection effect due to the flow of vapor also contribute to the ON effect of the element.

以上の基本的構造になる熱整流素子の作用を要約すると
、素子の下面が高温で上面が低温である場合にのみ素子
はON状態となり、素子を通して下から上へ熱流が発生
し、他の環境下では、この素子はOFF状態となり、従
って素子は断熱状態になっているものである。
To summarize the operation of the thermal rectifying element with the above basic structure, the element will be in the ON state only when the lower surface of the element is high temperature and the upper surface is cold, heat flow is generated from the bottom to the top through the element, and other environments Below, the element is in the OFF state, so the element is adiabatic.

なお、上記の熱の授受、即ち熱流は、媒液2の蒸発およ
び凝縮により生ずるので、熱流入側5における温度付近
で媒液2が蒸発し、熱流出側4の温度付近で媒液2が凝
縮するようなものであればよい、ごく一般的な例として
水を約0.1 kg/cm2の減圧下に封入した場合に
は、水は約50℃で沸騰し始め、熱流出側4の温度がそ
の温度よりも低い場合には、水蒸気は天板14の下面で
凝縮し天板14に対して熱を放出し、中空体内の蒸気圧
は初期値近傍に保たれ、即ちこの温度において熱の流通
が継続する。また、天板14の温度が高い場合には、媒
液2の蒸気が凝縮しないので中空体1内の蒸気圧は高く
なり、より高い温度の沸騰点をもつようになる。従って
、水を封入した場合であっても、その封入圧を選定する
ことによって、広い温度範囲において、熱流入側5から
熱流出側4へ熱の流通が起こるように設定することがで
きる。更に、封入液体の種類によっても、中空体1内の
媒液2の沸騰点を変えることが可能である。
Note that the above heat exchange, that is, heat flow, is caused by evaporation and condensation of the medium 2, so the medium 2 evaporates near the temperature on the heat inflow side 5, and the medium 2 evaporates near the temperature on the heat outflow side 4. As a very general example, if water is sealed under a reduced pressure of about 0.1 kg/cm2, the water will start to boil at about 50°C, and the water will start to boil at about 50°C. If the temperature is lower than that temperature, the water vapor condenses on the underside of the top plate 14 and releases heat to the top plate 14, and the vapor pressure inside the hollow body is kept near the initial value, i.e., at this temperature, no heat is generated. will continue to be distributed. Further, when the temperature of the top plate 14 is high, the vapor of the medium 2 does not condense, so the vapor pressure inside the hollow body 1 becomes high, and the boiling point becomes higher. Therefore, even when water is sealed, by selecting the sealing pressure, it can be set so that heat flows from the heat inflow side 5 to the heat outflow side 4 over a wide temperature range. Furthermore, it is possible to change the boiling point of the medium 2 within the hollow body 1 depending on the type of liquid enclosed.

なお、特に熱流出側4と熱流入側5の温度差が小さいと
きには、水の過熱、水蒸気の過飽和状態および水蒸気の
境膜や天板14自体の伝熱抵抗などにより、熱の授受は
緩慢なものとなる場合も生じるが、十数時間を対象とす
る本発明の用途では支障となることは少ない。
Note that, especially when the temperature difference between the heat outflow side 4 and the heat inflow side 5 is small, heat transfer is slow due to overheating of water, supersaturation of water vapor, and heat transfer resistance of the water vapor barrier film and the top plate 14 itself. Although this may occur in some cases, it is unlikely to be a problem in the application of the present invention, which is intended for more than 10 hours.

使用可能な媒液2としては、化学的および熱的に安定で
所望の沸騰点を有し、腐食性や毒性がない液体が望まし
く、例えば、前記の水の他、脂肪族炭化水素、芳香族炭
化水素、エーテル類、アルコール類などを使用すること
ができ、用途温度に応じて広範な選択が可能である。
The liquid medium 2 that can be used is preferably a liquid that is chemically and thermally stable, has a desired boiling point, and is not corrosive or toxic. For example, in addition to the water mentioned above, aliphatic hydrocarbons, aromatic Hydrocarbons, ethers, alcohols, etc. can be used, and a wide range of choices are possible depending on the application temperature.

第2図は本発明の第2実施例を示すもので、中空体1は
、ステンレス鋼板からなる側壁13と鋼板製の天板14
と底板15とを溶接組立てされたものである。媒液2と
しては、室温用途にはエーテル等を使用し、温水(80
℃近辺)用途には水を使用し、生活高温用途(煮る、蒸
すなど)にはn−ブタノール、エチルベンゼン等、常圧
下において用途温度よりも10〜30℃程度高い温度に
沸点を持つ液体を使用することができる。
FIG. 2 shows a second embodiment of the present invention, in which the hollow body 1 has a side wall 13 made of a stainless steel plate and a top plate 14 made of a steel plate.
and the bottom plate 15 are assembled by welding. As the medium 2, use ether etc. for room temperature applications, and use warm water (80%
For high-temperature applications (boiling, steaming, etc.), use liquids such as n-butanol and ethylbenzene, which have a boiling point 10 to 30 degrees Celsius higher than the intended temperature under normal pressure. can do.

この実施例の作用は、前記実施例と同様であるが、例示
した構成材料のもつ意味は次の通りである。
The function of this embodiment is similar to that of the previous embodiment, but the meanings of the illustrated constituent materials are as follows.

側壁13の機能は、素子内外の気密を保つこと、内部蒸
気圧の上昇に耐えること、およびこの壁部からの伝熱を
少なく押さえることなどである。
The functions of the side wall 13 are to maintain airtightness inside and outside the element, to withstand increases in internal vapor pressure, and to suppress heat transfer from this wall portion.

従って、高張力耐力で熱伝導率の低い材料が望まれ、ス
テンレス鋼を例示した。
Therefore, a material with high tensile strength and low thermal conductivity is desired, and stainless steel is exemplified.

天板14および底板15の機能は、気密耐圧性は側壁1
3と同じであるが、板厚の方向に熱伝導の良好なことが
望まれる。熱伝導に着目すれば、銅、アルミニウムなど
が好ましく、耐圧性をも考慮する場合にはアルミニウム
メッキ鋼板なども使用できる。
The function of the top plate 14 and the bottom plate 15 is that the side wall 1 has airtightness and pressure resistance.
Although it is the same as No. 3, good heat conduction in the direction of the plate thickness is desired. If we pay attention to heat conduction, copper, aluminum, etc. are preferable, and if pressure resistance is also considered, aluminum plated steel plates etc. can be used.

なお、側壁13と、天板14および底板15とでは、熱
伝導率の要求に相反するものがあるが、熱伝導の方向は
板厚に直角の方向と板厚方向との相違があるので、著し
く高耐力の材質1例えば析出硬化型ステンレス鋼、アモ
ルファス金属などを極〈薄板にして共用する方策も採り
得るものである。
Note that the side wall 13, the top plate 14, and the bottom plate 15 have contradictory requirements for thermal conductivity, but since the direction of heat conduction is different between the direction perpendicular to the plate thickness and the direction of the plate thickness, It is also possible to use a material 1 with extremely high yield strength, such as precipitation hardening stainless steel or amorphous metal, in an extremely thin plate.

媒液2の特性を常圧沸点が用途温度よりもlO℃〜30
℃高温にある物質としている理由は、実用上において、
上記天板14および底板15を介する熱勾配温度差がl
θ℃〜30℃になる場合が多いので、要するに器内蒸気
圧を一気圧近辺で動作せしめ、上記容器板材にかかる応
力を小さくしようと計画するための理由である。勿論、
この設定は素子の用途目的および要求される素子特性に
よって種々の設計が可能である。
The characteristics of medium 2 are that the normal pressure boiling point is 10°C to 30°C higher than the application temperature.
The reason why it is a substance that is at a high temperature of ℃ is that for practical purposes,
The thermal gradient temperature difference through the top plate 14 and bottom plate 15 is l
Since the temperature is often between θ°C and 30°C, this is the reason for planning to operate the steam pressure in the vessel at around 1 atmosphere to reduce the stress applied to the container plate material. Of course,
This setting can be designed in various ways depending on the intended use of the device and required device characteristics.

第3図は第3実施例の縦断面図である。FIG. 3 is a longitudinal sectional view of the third embodiment.

この実施例は構造上の工夫を織り込んだものであり、先
ず側壁は上側壁131.下側壁132よりなり、外gt
si 、 182と内壁18と共に環状の構造体として
組立てられ、その内部は真空にしである。
This embodiment incorporates some structural improvements, first of all, the side wall is the upper wall 131. Consisting of the lower wall 132, the outer gt
si, 182 and the inner wall 18 are assembled as an annular structure, the interior of which is evacuated.

次に天板14と底板15には放射状に多数のフィン10
゜16.17を一体化しである。
Next, a large number of fins 10 are arranged radially on the top plate 14 and the bottom plate 15.
゜16.17 are integrated.

この構成によれば、側壁を介する伝熱は上側壁131お
よび下側壁132の経路と外壁181 、182の経路
と並列になり、両路から伝熱することになるが、構造体
の剛性が上昇するので応力は低下し、より薄板の使用が
可能になって横断断面積が減少すると共に、上側壁13
1 、下側壁132.外壁181および182の経路距
離が長くなり、その内部は真空にして熱伝導を遮断しで
あるので、全体として伝熱量を低減することができる。
According to this configuration, the heat transfer through the side walls is parallel to the paths of the upper wall 131 and the lower wall 132 and the paths of the outer walls 181 and 182, and heat is transferred from both paths, but the rigidity of the structure increases. This reduces stress, allows the use of thinner plates, reduces the cross-sectional area, and reduces the stress on the upper wall 13.
1, lower wall 132. The path length of the outer walls 181 and 182 is increased, and the inside thereof is kept in a vacuum to block heat conduction, so that the amount of heat transfer can be reduced as a whole.

フィン10.113.17は、天板14および底板15
の表面と、空間0、熱流出側14.熱流入側15のそれ
ぞれの間の境界層の熱勾配の低減を図るもので、特に気
相の側との熱交換に好適な構造である。
The fins 10.113.17 are connected to the top plate 14 and the bottom plate 15.
surface, space 0, heat outflow side 14. This is intended to reduce the thermal gradient of the boundary layer between the heat inflow sides 15, and is particularly suitable for heat exchange with the gas phase side.

なお、上側壁131および下側壁132によって空間0
の中央部に小径部を形成するこの構造を採ったときは、
熱整流素子を一時的に傾斜転倒する必要のある用途(熱
流出側4または熱流入側5に入れて冷熱保存する対象が
液体であるとき、この液体を流し出す場合の操作用途)
で、媒液2が天板14へ接触することを防止し、よって
一時的な媒液の移動に伴う断熱破れを防止することが可
能となる。勿論この目的には、上記の構成による剛性は
不要であるから、中央に孔を明けた単なる開孔板を中空
体1の中央に水平に取付けても同様な機能を与えること
が可能である。
Note that the space 0 is created by the upper wall 131 and the lower wall 132.
When this structure is adopted in which a small diameter part is formed in the center of the
Applications that require the thermal rectifying element to be temporarily tilted and turned over (when the object to be cooled and stored in the heat outflow side 4 or heat inflow side 5 is a liquid, operation application when this liquid is poured out)
This prevents the medium 2 from coming into contact with the top plate 14, thereby making it possible to prevent the insulation from breaking due to temporary movement of the medium. Of course, for this purpose, the rigidity provided by the above-mentioned structure is not required, so it is possible to provide the same function even if a simple perforated plate with a hole in the center is mounted horizontally in the center of the hollow body 1.

第4図はこの発明の熱整流素子の特性の説明図である。FIG. 4 is an explanatory diagram of the characteristics of the thermal rectifying element of the present invention.

以下、熱整流素子を同図(左)に示す記号を用いて表す
こととし、−これを電気回路の等価回路で表現すれば、
同図(中)のように表すことができる。この図で熱エネ
ルギーの準位(温度)は電位(電圧)に、通過熱量は電
流に置き換えて考察するものとすれば、Dは薄肉容器内
の作用を表すダイオードであり、R14、R15、R1
3はそれぞれ天板14、底板15、側壁13の熱抵抗で
ある。
Hereinafter, the thermal rectifying element will be represented using the symbols shown in the same figure (left), and if this is expressed as an equivalent circuit of an electric circuit,
It can be expressed as shown in the same figure (middle). In this figure, if we consider that the level of thermal energy (temperature) is replaced with potential (voltage) and the amount of heat passing is replaced with current, then D is a diode representing the action inside the thin-walled container, and R14, R15, R1
3 is the thermal resistance of the top plate 14, bottom plate 15, and side wall 13, respectively.

第4図(右)は等側口路中の熱ダイオードDそのものの
特性の比較である。横軸は電圧・温度軸。
FIG. 4 (right) is a comparison of the characteristics of the thermal diode D itself in the isolateral path. The horizontal axis is the voltage/temperature axis.

縦軸は電流・熱流軸で表すとすると、理想ダイオードの
特性は(イ)に示すようになる。これに比べて現実の半
導体ダイオードは(ロ)に示す特性であり、エンハンス
メント(ε)とON4[抗(γ)をもっている、熱ダイ
オードDの特性は、これらに比べ、特性(ハ)に示すよ
うにON抵抗も大きく逆方向リークもあり、かつ非直線
である。しかしく口)に示させているようなエンハンス
メント(ε)は持たないので、小さな温度差であっても
通過熱量が少ない場合にはダイオード特性(熱流の一方
流通特性)を発揮する。
Assuming that the vertical axis represents the current/heat flow axis, the characteristics of an ideal diode are shown in (a). In comparison, an actual semiconductor diode has the characteristics shown in (b), and the characteristics of the thermal diode D, which has enhancement (ε) and ON4[resistance (γ), are as shown in characteristic (c). The ON resistance is large, there is also reverse leakage, and it is non-linear. However, since it does not have the enhancement (ε) shown in (1), it exhibits diode characteristics (one-way heat flow characteristics) when the amount of heat passing through it is small even if there is a small temperature difference.

このことを定性的に解釈すると、 ON側では緩慢な温
度変化で通過熱量が小さくてもよい用途、または大きな
温度差で大きな通過熱量を得たい用途に適当な特性であ
り、OFF側では長期間ではなく数時間から数日の期間
を対象とする保熱保冷に適合する特性であることが理解
される。
Interpreting this qualitatively, on the ON side, it is suitable for applications that require a small amount of heat to pass due to a slow temperature change, or for applications that require a large amount of heat to pass due to a large temperature difference, and on the OFF side, it is suitable for applications that require a small amount of heat to pass through due to a slow temperature change. Rather, it is understood that the characteristics are suitable for heat and cold preservation for a period of several hours to several days.

理想的にはR14およびR15はO,R13は■である
ことが望ましいが、基本的構造の説明で述べたようにR
14,R15の値は比較的大きく、R13の値は比較的
小さい、上述の第2および第3の実施例は、R14およ
びR15の低減方策およびR13の向上方策を示したも
のであり、完全ではないが、その点を容認しながらも、
本発明を応用して多大の利益を得られる用途は多々存在
するので、その若干例を示すこととする。
Ideally, R14 and R15 should be O, and R13 should be ■, but as mentioned in the explanation of the basic structure, R
The second and third embodiments described above, in which the values of R14 and R15 are relatively large and the value of R13 is relatively small, show measures to reduce R14 and R15 and measures to improve R13, but are not perfect. However, while accepting that point,
Since there are many applications in which the present invention can be applied with great benefits, a few examples will be presented.

885図に太陽熱蓄熱器3を示す。Figure 885 shows the solar heat storage device 3.

同図において、断熱材92で被った圧力容器91の中に
は油、水などの熱媒体90を密封し、また圧力容器91
の下面には熱整流素子1を設け、反射鏡8によって太陽
光を集光してその下面を加熱する。
In the figure, a heat medium 90 such as oil or water is sealed inside a pressure vessel 91 covered with a heat insulating material 92, and a pressure vessel 91
A thermal rectifying element 1 is provided on the lower surface of the device, and sunlight is focused by a reflecting mirror 8 to heat the lower surface.

圧力容器91内には熱交換器93を設けてあり、これを
通して給水口94より給水し、出口95から熱湯を取出
して利用に供する。
A heat exchanger 93 is provided in the pressure vessel 91, through which water is supplied from a water supply port 94, and hot water is taken out from an outlet 95 for use.

熱整流素子のこの応用例では、 (a)太陽光が無いとき(夜間、曇天時)には。In this application example of thermal rectifier, (a) When there is no sunlight (at night or on cloudy days).

熱整流素子は自然に断熱状態に復帰するので、全く操作
を必要としない。
Since the heat rectifying element naturally returns to its adiabatic state, no operation is required.

(b)太陽光の強度(熱整流素子の下面温度)と熱媒体
90の温度比較も自然に行われており、蓄熱量などとの
関連における考慮は全く不要である。
(b) Comparison of the intensity of sunlight (lower surface temperature of the heat rectifying element) and the temperature of the heat medium 90 is also performed naturally, and there is no need to consider the relationship with the amount of heat storage.

このことは利用に供した熱量も天然自然に計測制御され
ていることに相当する。
This corresponds to the fact that the amount of heat used is also measured and controlled naturally.

(C)熱整流素子は気密性および耐圧性を充分に持って
いるから、圧力容器91内を高圧に保つことができ、従
って熱媒体として入手しやすい水を用いても 100℃
を越える温度に蓄熱し得られ、蓄熱熱量も大きくかつ沸
脹水を利用に供することもできる。
(C) Since the heat rectifying element has sufficient airtightness and pressure resistance, it is possible to maintain the pressure inside the pressure vessel 91 at a high pressure, and therefore even if water, which is easily available as a heat medium, is used, the temperature can reach 100°C.
It is possible to store heat at temperatures exceeding

(d)熱整流素子のON抵抗は(R14+R15)は、
前述の通り少々大きい値であるが、集光された太陽光の
温度は生活用高温(煮炊き、蒸し、揚げ温度)よりも充
分に高温にできるのでこの特性は問題にならない。また
、リーク抵抗(RlG)は低い値であるが、翌日まで保
温されれば良いこの用途では実用上問題とならない。
(d) The ON resistance of the thermal rectifier is (R14+R15),
As mentioned above, this is a slightly large value, but this characteristic does not pose a problem because the temperature of the concentrated sunlight can be made sufficiently higher than the high temperatures used in daily life (boiling, steaming, and frying temperatures). Furthermore, although the leak resistance (RlG) is low, it does not pose a practical problem in this application, where the temperature can be kept until the next day.

(e)利用に供する水を熱交換器93に供給する動力お
よび必要に応じて反射鏡が太陽を追跡するだめの動力な
どを別にすれば、蓄熱器は太陽熱エネルギーだけで自然
に動作する。従って蓄熱器自体のランニングコストは零
である。
(e) Apart from the power for supplying the water for use to the heat exchanger 93 and, if necessary, the power for the reflector to track the sun, the heat storage device operates naturally using solar thermal energy alone. Therefore, the running cost of the heat storage device itself is zero.

(f)全くの放置使用に耐える(利用湯水の蛇口の開閉
だけは当然行う)。
(f) It can withstand being used completely unattended (of course, only the faucet for hot water and water must be opened and closed).

第6図に示す実施例は保冷器である。The embodiment shown in FIG. 6 is a cooler.

これは断熱容器6の天蓋に熱整流素子1を設けた構成で
あって、断熱容器6は器体81と蓋62とに分離し、器
内60への保存物の出し入れに便を図っている。熱整流
素子1の天板141は蓋全面を覆うまで拡開され、更に
符号1131で示す多数の放熱フィンまたは連続気泡発
泡体あるいは織布なと、外気に触れる面積を増大させる
手段を用い、熱交換し易くしている。勿論、着下にも同
様の手段を構じる方策も有効である。
This is a configuration in which a heat rectifying element 1 is provided on the canopy of a heat insulating container 6, and the heat insulating container 6 is separated into a container body 81 and a lid 62 to facilitate the loading and unloading of stored items into the container 60. . The top plate 141 of the heat rectifying element 1 is expanded until it covers the entire surface of the lid, and is further heated using means to increase the area exposed to the outside air, such as a large number of heat dissipating fins indicated by reference numeral 1131, open-cell foam, or woven fabric. Makes it easy to replace. Of course, it is also effective to provide similar means for putting on clothes.

この保冷器は1例えば早朝の低温時に器内60から放熱
し、終日この低温を維持するものである。
This cooler radiates heat from the inside 60 when the temperature is low, for example in the early morning, and maintains this low temperature throughout the day.

その用途は果実や野菜などの鮮度維持、ゼリー、チョコ
レート、生菓子、牛乳などの保冷、夏期における調理材
料や食品の保存などに供するものである。また、高温低
湿度の環境や風のある場所、野外、砂漠などでは、器上
放熱部161を水で濡らし、その蒸発によって放熱部1
61を外気よりも低温にし、熱整流素子を介して器内を
保冷することができ、このときは水が乾いても当分の間
保冷される。更に、登山やピクニックなどの携帯用途で
は、残雪や香水などでより低温に冷却することも可能で
あり、この場合、熱整流素子に気密性があるので、汚水
°や土、雪などを使用して包装しない裸の食品を冷却し
ても心理的鎌悪感がない、上記の場合、熱整流素子1の
天板141の曝される温度により、熱整流素子1内の媒
液の種類を適宜に選択すればよい。
Its uses include maintaining the freshness of fruits and vegetables, keeping jelly, chocolate, fresh sweets, and milk cold, and preserving cooking materials and foods during the summer. In addition, in environments with high temperature and low humidity, windy places, outdoors, deserts, etc., the on-board heat dissipation section 161 may be wetted with water, and the evaporation of the heat dissipation section 161 may cause the heat dissipation section to
61 can be kept at a lower temperature than the outside air, and the inside of the container can be kept cool through a heat rectifying element. Furthermore, in portable applications such as mountain climbing and picnics, it is possible to cool the device to a lower temperature using residual snow or perfume. In the above case, the type of medium in the heat rectifier 1 can be adjusted appropriately depending on the temperature to which the top plate 141 of the heat rectifier 1 is exposed. Just choose.

第7図に示す実施例は保温器である。The embodiment shown in FIG. 7 is a heat insulator.

これは前記の実施例とは逆であるが、構造は同様である
から同様の符号を付した。なお、図では省略しであるが
熱整流素子1の上面または下面に放熱フィンなどの表面
積拡大手段を設けることは任意である。この実施例は第
6図の保冷器とは反対に外気あるいは適宜の熱源から吸
熱し、器内60を温暖または高温に保つものである。
Although this is the opposite of the previous embodiment, the structure is similar, so the same reference numerals are given. Although not shown in the figure, it is optional to provide surface area enlarging means such as radiation fins on the upper or lower surface of the thermal rectifying element 1. This embodiment, contrary to the cooler shown in FIG. 6, absorbs heat from the outside air or an appropriate heat source to keep the inside of the cooler 60 warm or high temperature.

この保温器を放置使用するときは1日中の最高温度の時
に吸熱し終日器内を温暖に保つもので、糀やイースト菌
の発酵などに利用することができる。更に温泉水や焚火
の残り火、懐炉、化学反応熱などにより器内を高温に保
つ使用法も可能であり、その場合には靜卵器や食品の保
温あるいは低温長時間の煮込み調理などの用途に用いら
れる。
When this insulator is left unused, it absorbs heat during the highest temperature of the day, keeping the inside of the insulator warm throughout the day, and can be used for fermentation of koji and yeast. Furthermore, it is also possible to use hot spring water, the embers of a bonfire, a pocket warmer, heat from a chemical reaction, etc. to keep the inside of the container at a high temperature. used.

更に、より積極的には、調理ガス炎にて加熱し、煮炊き
、蒸し、沸しなどの調理を行い、その高温のままで保温
して食卓に供する用途もある。
Furthermore, more aggressively, there is also a use in which food is heated with a cooking gas flame to be cooked by boiling, steaming, boiling, etc., and then kept at that high temperature and served at the table.

この実施例では、熱源は氷雪に比べて得易いので、野外
用の携帯保温器とした場合は広汎な用途が開けている。
In this embodiment, since the heat source is easier to obtain than ice and snow, it has a wide range of uses when used as a portable outdoor heat insulator.

また、熱源を別にすれば、ランニングコストが零なので
、使用済みの浴槽に浸けて「たる柿」を製造するなどと
いう、残存エネルギーの活用など特殊な用途も可能とな
る。
In addition, since the running cost is zero apart from the heat source, special uses such as making ``taru persimmons'' by soaking them in used bathtubs become possible, making use of remaining energy.

第8図に示す実施例は携帯用保冷瓶である。The embodiment shown in FIG. 8 is a portable cold bottle.

この実施例の構造は、上述の保温器と保冷器とを熱整流
素子を中央にして縦に重ねたものである。
The structure of this embodiment is such that the above-described heat insulator and cold insulator are stacked vertically with the heat rectifying element in the center.

断熱容器8は蓋62と上器体63と下器体64とで構成
され、土器体63の底に熱整流素子1を設けである。
The heat insulating container 8 is composed of a lid 62, an upper container body 63, and a lower container body 64, and the heat rectifying element 1 is provided at the bottom of the earthenware container 63.

従って、上器内65は保温室、下器内86は保冷室とし
て動作する。そこで使用法としては、(a)下器内66
に発熱源を入れ、上器内65を保温器とする、および (b)上器内65に吸熱源を入れ、下器内66を保冷器
とする、 D二者を選択し得るが、前述のように発熱源である火種
などの高温物は自然環境では得やすいので、後者の使用
法を選んだときに利用価値がより高い。
Therefore, the upper chamber interior 65 operates as a cold storage room, and the lower chamber interior 86 operates as a cold storage chamber. Therefore, as a usage, (a) Lower vessel 66
(b) A heat absorbing source is inserted into the upper container 65 and the lower container 66 is used as a cold insulator.Although the two options D can be selected, the above-mentioned Since high-temperature substances such as sparks that are heat sources are easily obtained in the natural environment, the latter method of use has higher utility value.

携帯保冷瓶としては、上器内65に氷雪などの吸熱物を
入れ、下器内6Bに飲食物を保管する。この、用途では
、先の保冷器の用途と重畳するものであるが、野外では
得難い吸熱物を上器体と蓋とで断熱し、外気への無駄な
放熱を制限し、有効に冷却作用に寄与させ得るものであ
る。また吸熱物の汚清に関係なく食品を清浄に保管でき
る上に、下室に食品を包装することなくバラ入れできて
手軽に使用できる利便もある。
As a portable cold bottle, heat-absorbing substances such as ice and snow are placed in the upper container 65, and food and drinks are stored in the lower container 6B. This application overlaps with the use of the cooler mentioned above, but the upper body and lid insulate the heat absorbing material, which is difficult to obtain outdoors, to limit wasteful heat radiation to the outside air and effectively provide a cooling effect. This is something that can be contributed to. In addition, food can be stored cleanly regardless of contamination from endothermic substances, and food can be placed in bulk without packaging in the lower chamber, making it easy to use.

第9図に示す実施例は永続電池である。The embodiment shown in Figure 9 is a permanent battery.

この実施例では、密閉断熱容器6は電気絶縁性の断熱壁
67で上下2室に仕切られており、この断熱壁67を貫
通して多数の直列接続されたサーモパイルT(熱電対)
が設けられている。断熱容器6の外面全面を覆って放熱
部7を設け、その内部に密着し且つ断熱容器6の天部6
8と底部89を貫通して2個の熱整流素子1を嵌装する
。放熱部7は吸放熱フィンを付けてもよいし、上下に二
分して電極とするも良い。また上部の熱整流素子の天板
14、下部の熱整流素子の底板15と共用することも好
ましい、また上部の熱整流素子の底板および下部の熱整
流素子の天板に放熱フィンを付けることもできる。更に
断熱容器の上室、下室のいずれかまたは双方を絶縁油な
どの液体で満たす手段も採り得る。
In this embodiment, the sealed insulated container 6 is partitioned into two upper and lower chambers by an electrically insulating heat insulating wall 67, and a large number of thermopiles T (thermocouples) are connected in series through this insulating wall 67.
is provided. A heat radiating part 7 is provided covering the entire outer surface of the heat insulating container 6, and is in close contact with the inside of the heat dissipating part 7, and the top part 6 of the heat insulating container 6
8 and the bottom part 89, and two heat rectifying elements 1 are fitted therein. The heat dissipation section 7 may be provided with heat absorption and dissipation fins, or may be divided into upper and lower halves to serve as electrodes. It is also preferable to use the top plate 14 of the upper heat rectifying element and the bottom plate 15 of the lower heat rectifying element, and it is also possible to attach radiation fins to the bottom plate of the upper heat rectifying element and the top plate of the lower heat rectifying element. can. Furthermore, it is also possible to fill either or both of the upper and lower chambers of the heat-insulating container with a liquid such as insulating oil.

この永続電池を放置使用するときは、日周温度の最高の
ときに下部の熱整流素子がONになって下室を暖め、最
低温のときに上部の熱整流素子がONになって上室を冷
やす。従って、日周温度差に近い温度差を上下2室に得
て終日維持されるものである。この温度差はサーモパイ
ルに起電力を発生せしめるので、これを器外に導出して
利用すれば電池として使用することができる。
When this permanent battery is left unused, the lower heat rectifier turns on to warm the lower room when the diurnal temperature is highest, and the upper heat rectifier turns on to warm the upper room when the diurnal temperature is the lowest. cool down. Therefore, a temperature difference close to the diurnal temperature difference is obtained between the upper and lower rooms and maintained throughout the day. This temperature difference causes the thermopile to generate an electromotive force, which can be used as a battery by leading it out of the device.

この実施例では大きな電力を取り出すことはできないが
、その代り電池の消耗はなく、半永久的に持続する永続
電池としての特性がある。この特性を活用する用途とし
ては、僻地に設置した測定機器類や水晶発振時計などの
電源、半導体メモリ素子のバックアップ電源、夜間暗所
の標識光源用電源などがあり、これらの用途に用いたと
きは、対象とする電子電気機器の寿命よりもこの電池の
寿命の方が長いことが期待されるから、事実上永久電池
と言えるものであり、しかもメンテナンス等の特別な処
理操作も何ら不要であるから極めて有用である。
Although this embodiment cannot extract a large amount of electric power, it does not consume the battery and has the characteristics of a permanent battery that lasts semi-permanently. Applications that take advantage of this characteristic include power supplies for measuring instruments and crystal oscillation clocks installed in remote areas, backup power supplies for semiconductor memory devices, and power supplies for beacon light sources in dark places at night. Since the lifespan of this battery is expected to be longer than the lifespan of the electronic and electrical equipment in question, it can effectively be said to be a permanent battery, and furthermore, no special processing operations such as maintenance are required. It is extremely useful.

なお、より積極的な使用法として、前述の各実施例の使
用法を適用し、例えば、水で濡らして蒸発冷却したり、
使用済み浴槽の湯や工場の高温廃水の熱などの廃エネル
ギーを利用するなどして電力を大きく取り出す用法も勿
論可能である。
In addition, as a more active usage method, the usage method of each of the above-mentioned examples is applied, for example, by wetting it with water and cooling it by evaporation,
Of course, it is also possible to use waste energy such as hot water from used bathtubs or heat from high-temperature waste water from factories to extract a large amount of electricity.

[効 果] この発明においては、熱流の方向が反重力方向に限定さ
れるが、その効果は熱の整流作用を持つ素子あるいは容
器が得られることに要約できる。
[Effects] In the present invention, the direction of heat flow is limited to the anti-gravity direction, but the effect can be summarized in that an element or container having a heat rectifying effect can be obtained.

これより派生する効果は次のようなものである。The effects derived from this are as follows.

(a)自然界に最も豊富な熱エネルギーと普遍の重力エ
ネルギーのみを利用し、蓄熱と温度維持の動作を行い得
る。
(a) It is possible to store heat and maintain temperature by using only the most abundant thermal energy and universal gravitational energy in nature.

(b)熱の作用自体により熱エネルギーの蓄積が可能な
ので、何らの制御操作も要しない自然の動作を期待でき
る。
(b) Since thermal energy can be accumulated by the action of heat itself, natural operation can be expected without requiring any control operations.

(C)質の悪い(エントロピーの大きい)、または汚染
された熱エネルギー源をも利用できる。
(C) Poor quality (high entropy) or contaminated thermal energy sources can also be used.

(d)人工のエネルギーまたは加工されたエネルギーの
併用も可能である。
(d) Combined use of artificial or processed energy is also possible.

(e)少量で永続的なエネルギー使用に特に適合してい
る。
(e) Particularly suited for low-volume, permanent energy use.

(f)用途レベルでの効果は、若干の応用例を通して詳
述した通り、非常に多岐、広汎にわたるものがあり、実
生活に密接した利便をもたらす所が多大である。
(f) As explained in detail through some application examples, the effects at the application level are very diverse and wide-ranging, and there are many places where it brings convenience that is closely related to real life.

また、直接の説明は省略するが、ランニングコストが零
である点から、工業用の保温保冷用途、特に化学工業の
仕掛品の一時保管には廃エネルギーの様態とも関連して
多様な応用用途があり、多大な省エネルギー効果を期待
できる。
In addition, although a direct explanation will be omitted, since the running cost is zero, it has a variety of applications in industrial heat and cold storage applications, especially temporary storage of work-in-progress in the chemical industry, in relation to the form of waste energy. Therefore, a significant energy saving effect can be expected.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の熱整流素子の第1実施例の縦断面図、
第2図は同第2実施例の縦断面図、第3図は同第3実施
例の縦断面図、第4図は熱整流素子の特性説明図、第5
図及至第9図は本発明の整流素子を応用した実施例を示
すもので、第5図は太陽熱蓄熱器の縦断面図、第6図は
保冷器の縦断面図、第7図は保温器の縦断面図、第8図
は携帯用保冷瓶の縦断面図および第9図は永続電池の縦
断面図である。 図中の符号は下記の通りである。なお多桁の付号は最上
桁が下表の通りのものを表わし、下桁はその部分、部品
もしくは変形例である。 00.容器内空間   16.中空体 20.媒 液     31.断熱壁 48.熱流出側    59.熱流入側60.断熱容器
    70.放熱缶 898反射鏡     83.圧力容器特許出願人 有
限会社瑛ワークショップ代  理  人 弁理士 前 
  島     肇第1図 第2図 第3図 第4図 第5図 第7図
FIG. 1 is a longitudinal cross-sectional view of a first embodiment of the thermal rectifying element of the present invention;
Fig. 2 is a longitudinal sectional view of the second embodiment, Fig. 3 is a longitudinal sectional view of the third embodiment, Fig. 4 is a characteristic explanatory diagram of the thermal rectifying element, and Fig. 5
Figures 9 to 9 show examples to which the rectifying element of the present invention is applied. Figure 5 is a vertical cross-sectional view of a solar heat storage device, Figure 6 is a vertical cross-sectional view of a cooler, and Figure 7 is a vertical cross-sectional view of a heat insulator. 8 is a longitudinal sectional view of a portable cold bottle, and FIG. 9 is a longitudinal sectional view of a permanent battery. The symbols in the figure are as follows. For multi-digit numbers, the top digit represents the item as shown in the table below, and the bottom digit is the part, component, or modification. 00. Space inside the container 16. Hollow body20. Medium 31. Insulated wall 48. Heat outflow side 59. Heat inflow side 60. Insulated container 70. Heat dissipation can 898 reflector 83. Pressure vessel patent applicant Ei Workshop Co., Ltd. Agent Former patent attorney
Hajime ShimaFigure 1Figure 2Figure 3Figure 4Figure 5Figure 7

Claims (6)

【特許請求の範囲】[Claims] (1)断熱壁、該断熱壁を貫通して水平に取付けられ、
かつ天部と底部とをそれぞれ該断熱壁の上面と下面に露
出させた薄肉の中空体、および該中空体内に封入されて
該中空体の内容積の一部を占める液体からなり、前記断
熱壁の下方から上方へ向かう熱流のみを通過させること
を特徴とする熱整流素子。
(1) an insulating wall, installed horizontally through the insulating wall;
and a thin hollow body whose top and bottom parts are exposed on the upper and lower surfaces of the insulating wall, respectively, and a liquid sealed in the hollow body and occupying a part of the internal volume of the hollow body, and the insulating wall A thermal rectifying element that allows only heat flow from below to above to pass through.
(2)前記中空体は水を減圧下に封入したものである特
許請求の範囲第1項に記載の熱整流素子。
(2) The heat rectifying element according to claim 1, wherein the hollow body is one in which water is sealed under reduced pressure.
(3)断熱性容器、該容器の水平壁部を貫通して取付け
られ、かつ天部と底部とをそれぞれ該水平壁部の上面と
下面に露出させた薄肉の中空体、および該中空体内に封
入されて該中空体の内容積の一部を占める液体からなり
、前記水平壁部の下方から上方へ向かう熱流のみを通過
させることを特徴とする容器。
(3) A heat-insulating container, a thin hollow body that is installed through the horizontal wall of the container and has a top and bottom exposed on the top and bottom surfaces of the horizontal wall, respectively, and inside the hollow body. A container characterized in that it is made of a liquid that is sealed and occupies a part of the internal volume of the hollow body, and that only heat flow from below to above the horizontal wall is allowed to pass through.
(4)前記中空体が、前記容器の底部の水平壁部に取付
けられ、容器外の温度が高い場合にのみ外部から熱を容
器内へ導入することを特徴とする、特許請求の範囲第3
項に記載の保温容器。
(4) The hollow body is attached to a horizontal wall at the bottom of the container, and heat is introduced into the container from the outside only when the temperature outside the container is high.
Thermal containers listed in section.
(5)前記容器内に熱媒体を封入し、かつ熱交換器を装
着し、容器の下に集光用反射鏡を設けてなる特許請求の
範囲第4項に記載の太陽熱蓄熱器。
(5) The solar heat storage device according to claim 4, wherein a heat medium is sealed in the container, a heat exchanger is installed, and a light collecting reflector is provided under the container.
(6)前記中空体が、前記容器の上部の水平壁部に取付
けられ、容器外の温度が低い場合にのみ容器内から熱を
外部へ排出することを特徴とする、特許請求の範囲第3
項に記載の保冷容器。
(6) Claim 3, wherein the hollow body is attached to the upper horizontal wall of the container and discharges heat from inside the container to the outside only when the temperature outside the container is low.
Insulated containers listed in section.
JP11515885A 1985-05-28 1985-05-28 Heat-flow straightening element and container using same Pending JPS61272591A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11515885A JPS61272591A (en) 1985-05-28 1985-05-28 Heat-flow straightening element and container using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11515885A JPS61272591A (en) 1985-05-28 1985-05-28 Heat-flow straightening element and container using same

Publications (1)

Publication Number Publication Date
JPS61272591A true JPS61272591A (en) 1986-12-02

Family

ID=14655765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11515885A Pending JPS61272591A (en) 1985-05-28 1985-05-28 Heat-flow straightening element and container using same

Country Status (1)

Country Link
JP (1) JPS61272591A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013224781A (en) * 2012-04-20 2013-10-31 Toyota Central R&D Labs Inc Thermal rectification device
WO2015030239A1 (en) 2013-09-02 2015-03-05 日本碍子株式会社 Thermal diode

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5919901U (en) * 1973-12-05 1984-02-07 ジヨン・イ−・ホリ−マン compressed air power plant
JPS59119188A (en) * 1982-12-26 1984-07-10 Sanai Yoshitaka Method for collecting and transporting energy and heat accumulator used therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5919901U (en) * 1973-12-05 1984-02-07 ジヨン・イ−・ホリ−マン compressed air power plant
JPS59119188A (en) * 1982-12-26 1984-07-10 Sanai Yoshitaka Method for collecting and transporting energy and heat accumulator used therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013224781A (en) * 2012-04-20 2013-10-31 Toyota Central R&D Labs Inc Thermal rectification device
WO2015030239A1 (en) 2013-09-02 2015-03-05 日本碍子株式会社 Thermal diode

Similar Documents

Publication Publication Date Title
US6032481A (en) Thermoregulating container
US5505046A (en) Control system for thermoelectric refrigerator
US5088302A (en) Portable cooler using chemical reaction
JP2000147161A (en) Thermal generation electronic equipment
JP2003161566A (en) Heat conduction method, device and product
US3257821A (en) Self-contained beverage cooler
JPS61272591A (en) Heat-flow straightening element and container using same
JPH0821679A (en) Electronic refrigeration type drinking water cooler
KR101960166B1 (en) Portable thermal cold water bottle with LED and thermoelectric element
JPH05264153A (en) Refrigerator
FR2544842A1 (en) Device for continuous heating with adsorption, desorption and condensation
JPH02198519A (en) Electric hot water pot
JP2000007056A (en) Cool box
CN216089932U (en) Heat insulation cup
KR960003710Y1 (en) Device to keep foods hot
KR200167101Y1 (en) Cold-hot storage fixtures
JPS623085Y2 (en)
JPH05168556A (en) Thermoelectric cooling type pot
CN211212619U (en) Electric pressure cooker and cooker body structure thereof
JP3172502B2 (en) Thermoelectric converters such as coolers, heaters, temperature regulators, and generators using Peltier modules, coolers using Peltier modules, heaters using Peltier modules, and generators using Peltier modules
RU2181468C2 (en) Self-contained thermoelectric refrigerating unit
RU2252374C1 (en) Solar heat accumulator
JPS62138666A (en) Cooling and heating device
JPS62138665A (en) Cooling and heating device
RU1814007C (en) Combination absorption refrigerator