JPS6127227A - Method of controlling injection molding machine - Google Patents

Method of controlling injection molding machine

Info

Publication number
JPS6127227A
JPS6127227A JP15037284A JP15037284A JPS6127227A JP S6127227 A JPS6127227 A JP S6127227A JP 15037284 A JP15037284 A JP 15037284A JP 15037284 A JP15037284 A JP 15037284A JP S6127227 A JPS6127227 A JP S6127227A
Authority
JP
Japan
Prior art keywords
pressure
nozzle
mold
screw
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15037284A
Other languages
Japanese (ja)
Other versions
JPH0462246B2 (en
Inventor
Yoshinari Sasaki
能成 佐々木
Etsuji Oda
小田 悦司
Naoki Kurita
直樹 栗田
Hirozumi Nagata
永田 博澄
Hiroyuki Maehara
前原 弘之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Machine Co Ltd
Original Assignee
Toshiba Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Machine Co Ltd filed Critical Toshiba Machine Co Ltd
Priority to JP15037284A priority Critical patent/JPS6127227A/en
Priority to US06/753,623 priority patent/US4820464A/en
Priority to CA000486573A priority patent/CA1250718A/en
Priority to AT85108840T priority patent/ATE60543T1/en
Priority to DE8585108840T priority patent/DE3581565D1/en
Priority to EP85108840A priority patent/EP0168804B1/en
Priority to KR1019850005063A priority patent/KR900007344B1/en
Publication of JPS6127227A publication Critical patent/JPS6127227A/en
Publication of JPH0462246B2 publication Critical patent/JPH0462246B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/03Injection moulding apparatus
    • B29C45/07Injection moulding apparatus using movable injection units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • G05B19/21Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device
    • G05B19/23Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device for point-to-point control
    • G05B19/231Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device for point-to-point control the positional error is used to control continuously the servomotor according to its magnitude
    • G05B19/237Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device for point-to-point control the positional error is used to control continuously the servomotor according to its magnitude with a combination of feedback covered by G05B19/232 - G05B19/235
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/42Servomotor, servo controller kind till VSS
    • G05B2219/42094Speed then pressure or force loop
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45244Injection molding

Abstract

PURPOSE:To enable a nozzle to touch a mold smoothly, by measuring the pressure of a nozzle against the mold, and changing the speed control of the nozzle to the pressure control when the measured pressure reaches a prescribed pressure. CONSTITUTION:A nozzle 5 after clamping is advance with the speed controlled by the driving of a motor 13, and after the nozzle 5 toughes a mold 30, the nozzle is pressed under a prescribed pressure. That is, after the hit of the nozzle 5 against the mold 30 (t2), since the speed (v) decreases and the pressure (p) increases gradually in accordance with the characteristics of the speed control system, the speed control is changed to the pressure control when the actual pressure (p) reaches the command pressure pi that has been set by a setting apparatus, etc. If the command pressure pi is lower than the pressure (p) before the hit, since the pressure (p) decreases in accordance with the speed control system by making the speed command value vi nil after the hit (t2), the control is changed to the pressure control when the command pressure pi is attained.

Description

【発明の詳細な説明】 (発明の技術分野) この発明は、射出成形機の射出用ノズルを製品成形用の
金型に円滑に接触させて射出を行なうための射出成形機
の制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a method for controlling an injection molding machine for smoothly bringing an injection nozzle of the injection molding machine into contact with a mold for molding a product to perform injection.

(発明の技術的背景とその問、B点) 射出成形機を設計する場合、#に自動化に際しては成形
品の品質の向上、省エネルギー化及び生産性の向上に留
意しなけiばならなず、これらは特に計量行程において
その重要性を占めている。これらの中で品質の向上とい
う点でみると、成形品の品質は射出速度、圧力、樹脂温
度や射出量等により左右され、バラツキの少ない正確な
射出量を得るには高い精度で計量しなければならない。
(Technical background of the invention and its questions, point B) When designing an injection molding machine, # when automating it, it is necessary to pay attention to improving the quality of molded products, saving energy, and improving productivity. These are particularly important in the weighing process. Among these, from the perspective of improving quality, the quality of molded products is affected by injection speed, pressure, resin temperature, injection amount, etc., and in order to obtain an accurate injection amount with little variation, it is necessary to measure with high precision. Must be.

また、省エネルギー化という点でみると、粒状の樹脂を
均質な溶融状態にするためにヒータで熱を加え、スクリ
ューにより剪断、混練するのであるが、スクリューの回
転数及改背圧を樹脂の種類、温度等に合わせて効果的に
制御することによって、計量に必要なエネルギーを最小
にすることができるし、計量に要する時間を出来る限り
短縮させることにより、生産性の向上を図ることもでき
る。
In addition, from the point of view of energy saving, heat is applied using a heater to make granular resin into a homogeneous molten state, and shearing and kneading is performed using a screw. By effectively controlling the temperature and the like, the energy required for weighing can be minimized, and productivity can be improved by shortening the time required for weighing as much as possible.

第1図は従来の射出成形機の計量機構を示す図であり、
全周面にネジ溝を付せられた棒状のスクリューlの回転
により、ホッパ3に収納されている樹脂4はネジ溝を伝
わってシリンダ2へ送られ、ヒータ(図示せず)で熱を
加えられながらスクリューlの回転により剪断、混練さ
れて可塑化される。この場合、シリンダ2の先端に設け
られているノズル5は製品の形状が彫り込まれた金型(
図示せず)に押圧されているので、シリンダ2内に満た
され金型を充填した樹脂6の圧力によりスクリューlが
図示Y方向に後退する。つまり、計量時には溶融した樹
脂6が外部に流れ出さない構造となっており、シ引され
ないようにすると共に、正確な樹脂量を計量するために
駆動装置100による駆動でスクリューlに背圧が加え
られる。従って、スクリューlの回転によって生じる樹
脂圧と駆動装置 iooからの背圧との差によって、ス
クリューlは徐々に矢印Y方向に後退させられる。これ
らスクリューlの回転数と背圧は使用する樹脂4の種類
、温度等から経験的に設定され、射出量を決めるスクリ
ュー1の位置はリミットスイッチ等の検出手段によって
設定されている。
FIG. 1 is a diagram showing the measuring mechanism of a conventional injection molding machine.
By the rotation of a rod-shaped screw l with thread grooves on the entire circumference, the resin 4 stored in the hopper 3 is sent to the cylinder 2 along the thread grooves, where it is heated by a heater (not shown). The material is sheared, kneaded, and plasticized by the rotation of the screw 1 while being mixed. In this case, the nozzle 5 provided at the tip of the cylinder 2 is inserted into a mold (
(not shown), the screw l retreats in the Y direction in the figure due to the pressure of the resin 6 that fills the cylinder 2 and fills the mold. In other words, during measurement, the structure is such that the molten resin 6 does not flow out to the outside, and in addition to preventing it from being pulled, back pressure is applied to the screw l by the driving device 100 in order to accurately measure the amount of resin. It will be done. Therefore, the screw 1 is gradually retreated in the direction of the arrow Y due to the difference between the resin pressure generated by the rotation of the screw 1 and the back pressure from the drive device ioo. The rotation speed and back pressure of the screw 1 are set empirically based on the type of resin 4 used, its temperature, etc., and the position of the screw 1, which determines the injection amount, is set by a detection means such as a limit switch.

なお、スクリューlを回転する機構やスクリューlに背
圧を加える機構、リミットスイッチ等は、駆動装置10
0内に装備されている。
Note that the mechanism for rotating the screw l, the mechanism for applying back pressure to the screw l, the limit switch, etc. are included in the drive device 10.
Equipped within 0.

ここで問題となるのは、スクリュー位置を直接決定する
要素がリミットスイッチであり、回転数と背圧の相互関
係によりスクリュー位置を間接的にしか制御できないこ
とである。すなわち、リミットスイッチが動作してから
スクリューlの回転を停止させたのでは、スクリューl
は所望の位置を行き過ぎてしまう。従って、行き過ぎを
無くすためにはスクリューlがリミットスイッチに近づ
くに従い、スクリューlの回転を徐々に下げていくとか
、又はリミットスイッチ作動点に対する行き過ぎ量を見
越して手前に設定しておくなどの対策しかない、このた
め、実際には計量行程の試行錯誤を繰返して決定する必
要があり、更に樹脂4の種類、金型の形状等によって異
なるのみならず、温度変化や樹脂の湿度、ホッパ3から
シリンダ2への移送量等の変化が外乱として加わるとい
う点からすると、リミットスイッチ作動点の設定が煩雑
であるばかりか正確な射出量を得ることも困難であり、
射出量にバラツキが生じ、成形品の品質の低下は免れな
い。更に、このような方式ではリミットスイッチにより
正確な位置で停止させるために、スクリューlの回転数
を定常回転時でも必要量−Hに小さくしなければならず
、計量に要する時間が長くなり、生産性が落ると共にエ
ネルギー効率も低くなってしまっていた。
The problem here is that the element that directly determines the screw position is the limit switch, and the screw position can only be indirectly controlled by the interaction between rotation speed and back pressure. In other words, if the rotation of the screw l is stopped after the limit switch is activated, the rotation of the screw l is
will overshoot the desired position. Therefore, the only way to prevent overshoot is to gradually reduce the rotation of screw l as it approaches the limit switch, or to set it closer to the limit switch activation point in anticipation of the amount of overshoot. Therefore, in reality, it is necessary to repeatedly determine the weighing process through trial and error, and it not only varies depending on the type of resin 4, the shape of the mold, etc. In view of the fact that changes in the transfer amount, etc. to No. 2 are added as disturbances, it is not only complicated to set the limit switch operating point, but also difficult to obtain an accurate injection amount.
Variations occur in the injection quantity, which inevitably leads to a decline in the quality of the molded product. Furthermore, in this type of system, in order to stop at an accurate position using a limit switch, the rotation speed of the screw L must be reduced to the required amount -H even during steady rotation, which increases the time required for weighing and reduces production. As energy efficiency declined, energy efficiency also declined.

このような問題と共に、ノズルと金型とを接触させる場
合、ノズルを速度制御によって金型へ向って前進させ、
ノズルが金型に十分近づいた時に圧力制御に切換えるよ
うにしているが、速度制御を圧力制御に切換える位置又
は時間が分らず、速度制御を圧力制御に切換えた時に速
度又は圧力が不連続に変化してしまい、円滑な制御がで
きないといった問題点があった。
In addition to this problem, when bringing the nozzle into contact with the mold, the nozzle is advanced toward the mold by speed control,
I try to switch to pressure control when the nozzle gets close enough to the mold, but I don't know the position or time to switch speed control to pressure control, and when I switch speed control to pressure control, the speed or pressure changes discontinuously. There was a problem that smooth control could not be achieved.

(発明の目的) この発明は上述のような事情からなされたものであり、
その目的は、射出成形機の構成と相俟ってノズルを円滑
に金型に接触させることができる射出成形機の制御方法
を提供することにある。
(Object of the invention) This invention was made under the above circumstances,
The purpose is to provide a control method for an injection molding machine that, in combination with the configuration of the injection molding machine, allows a nozzle to be brought into smooth contact with a mold.

(発明の概要) この発明は、先端にノズルを穿設されているシリンダ内
に、前後進すると共に回転するスクリューを配設し、シ
リンダ内に溶融されている樹脂をノルゾから、製品の形
状が彫り込まれた金型内に射出するようになっている射
出成形機の制御方法に関するもので、ノズルを速度制御
で金型方向に移動させ、ノズルの金型に対する圧力を測
定し、この測定圧力が設定圧力となった時に」−記ノズ
ルの速度制御を圧力制御に切換え1.ヒ記ノズルを設定
圧力で金型に圧接させるように制御するものである。
(Summary of the Invention) This invention has a cylinder with a nozzle at its tip, which is equipped with a screw that moves forward and backward as well as rotates.The resin molten inside the cylinder is fed from the norzo to the shape of the product. This relates to a control method for an injection molding machine that injects into a carved mold.The nozzle is moved toward the mold under speed control, the pressure of the nozzle against the mold is measured, and this measured pressure is When the set pressure is reached, the nozzle speed control is switched to pressure control.1. This is to control the nozzle mentioned above so that it is brought into pressure contact with the mold at a set pressure.

(発明の実施例) この発明では、第2図に示すように制御装置15にスク
リューlに対する位置指令Siが入力され、演算された
スクリュー背圧信号Piがスクリューlの位置を移動す
るモータ13に与えられ、演算されたスクリュー回転信
号Riがスクリューlのm1転を行なうモータ7に入力
されている。ここで、スクリュー回転信号Riによりモ
ータ7が回転することによりスクリューlが回転され、
ホッパ3から樹脂4がシリンダ2へ送られ、スクリュー
lにより剪断、混練されて可塑化された樹脂6がシリン
ダ2内に満たされ、この圧力によりスクリューlは矢印
N方向に後退する。このとき、シリンダ2内に空気が吸
引されないようにしながら正確な樹脂量を計量するため
に、スクリューlに背圧が加えられるのであるが、これ
はモータ13がスクリュー背圧信号Piにより駆動され
、モータ13に連結されたポールネジ11が回転するこ
とにより、これに螺合されたポールナラ)12が矢印M
方向のトルクを発生するため、ボールナツト!2に連結
されている駆動台10上に載置赤固定されたモータ7、
スクリュー1などがN方向に後退する力に対して、背圧
として作用するのである。ここで、モータ7に連結され
ている回転数センサ8は、スクリューlの回転数nを検
出してスクリュー回転数フィードバック信号Rfを、ま
た、モータI3に連結されている位置センサ14は、ボ
ールナツト12の位置、つまりスクリューlの位置を検
出して背圧pを示すスクリュー位置フィードバック信号
Sfをそれぞれ制御装置15に入力している。さらに、
ノズル5の前面には溶融された樹脂を射出して、製品を
成形するための金型30の射出口が圧接されている。
(Embodiment of the Invention) In this invention, as shown in FIG. 2, a position command Si for the screw l is input to the control device 15, and the calculated screw back pressure signal Pi is sent to the motor 13 for moving the position of the screw l. The given and calculated screw rotation signal Ri is input to the motor 7 which rotates the screw l by m1. Here, the screw l is rotated by the motor 7 being rotated by the screw rotation signal Ri,
The resin 4 is sent from the hopper 3 to the cylinder 2, and the cylinder 2 is filled with resin 6 which has been sheared, kneaded and plasticized by the screw l, and this pressure causes the screw l to retreat in the direction of arrow N. At this time, back pressure is applied to the screw l in order to accurately measure the amount of resin while preventing air from being sucked into the cylinder 2. This is because the motor 13 is driven by the screw back pressure signal Pi. As the pole screw 11 connected to the motor 13 rotates, the pole screw 12 screwed thereon moves in the direction of the arrow M.
Ball nut to generate directional torque! A red fixed motor 7 mounted on a drive stand 10 connected to 2;
This acts as a back pressure against the force that causes the screw 1 etc. to retreat in the N direction. Here, a rotation speed sensor 8 connected to the motor 7 detects the rotation speed n of the screw l and outputs a screw rotation speed feedback signal Rf, and a position sensor 14 connected to the motor I3 detects the rotation speed n of the screw l. , that is, the position of the screw l, is detected and a screw position feedback signal Sf indicating the back pressure p is inputted to the control device 15, respectively. moreover,
An injection port of a mold 30 for injecting molten resin to mold a product is pressed into contact with the front surface of the nozzle 5.

次に、この制御装置15の内容を具体化した一例を第3
図に示しこの構成について説明すると、位置指令Siと
スクリュー位置フィードバック信号srとの偏差Seが
位置制御要素21に入力され、閉ループ制御の特性を補
償するように演算された信号Soが速度制御要素22に
入力され、スクリューlを制御するに必要な背圧指令旧
と回転数指令Kiを出力する。そして、背圧指令旧は背
圧制御要素18に人力され、この閉ループ制御の特性を
補償するように演算された信号HOが電力増幅器20A
に入力され、モータ13を駆動するために電力増幅され
てスクリュー背圧信号Piとしてモータ13に入力され
る。−・方、回転数桁仝Kiは減算器24に入力され、
この減算器24で求められたスクリュー回転数フィード
バック信号R「との偏差Keが回転数制御要素18に入
力され、この閉ループ制御の特性を補償するように演算
された出力Koが電力増幅器20Bに入力され、モータ
7を駆動するために電力増幅されてスクリュー回転信号
Riとしてモータ7に入力される。
Next, an example embodying the contents of this control device 15 will be explained in the third section.
To explain this configuration as shown in the figure, the deviation Se between the position command Si and the screw position feedback signal sr is input to the position control element 21, and the signal So calculated to compensate for the characteristics of closed loop control is sent to the speed control element 22. , and outputs the back pressure command (old) and rotational speed command (ki) necessary to control the screw l. Then, the back pressure command old is manually inputted to the back pressure control element 18, and a signal HO calculated to compensate for the characteristics of this closed loop control is sent to the power amplifier 20A.
The signal Pi is input to the motor 13, is power amplified to drive the motor 13, and is input to the motor 13 as a screw back pressure signal Pi. - On the other hand, the rotation number digit Ki is input to the subtracter 24,
The deviation Ke from the screw rotation speed feedback signal R obtained by the subtractor 24 is input to the rotation speed control element 18, and the output Ko calculated to compensate for the characteristics of this closed loop control is input to the power amplifier 20B. The signal is then power amplified and input to the motor 7 as a screw rotation signal Ri in order to drive the motor 7.

第4図は上述装置についての動作を説明するn、縦軸に
スクリューlの背圧pをとり、スクリューlの移動速度
vO(小)〜V4(大)をパラメータとして示している
FIG. 4 illustrates the operation of the above-mentioned apparatus, with n and the back pressure p of the screw l plotted on the vertical axis, and the moving speeds of the screw l from vO (small) to V4 (large) as parameters.

ここで、計量行程を説明しながら一連の動作について述
べると、先ず計量すべき樹脂6の量はスクリューlが停
止する位置によって決定されるので、制御装置15に入
力される位置指令Siが計量すべき樹脂6の量となる。
Here, to describe a series of operations while explaining the metering process, first, the amount of resin 6 to be metered is determined by the position where the screw l stops, so the position command Si input to the control device 15 is This is the amount of resin 6 to be used.

そして、位置センサ14がこの位置指令Siに相当する
スクリュー位置フィードバック信号Sfを出力するよう
になるまでスクリューlが移動したとき、計量行程は終
了する。この計量行程が終了するまでの過程は、第3図
において先ず位置制御要素21が偏差Seを入力すると
、所定の周波数特性を有するなどしてこの閉ループ特性
を補償するように制御され、求められた信号Soを速度
制御要素22に入力し、この速度制御要素22は背圧指
令旧と回転数指令Kiとをその組合せにより効率良く、
かつ迅速にスクリューlの回転速度を零にしてる。これ
を第4図の特性図に従って説明すると、先ず計量の開始
時は背圧指令及び回転指令はそれぞれp4及びn4を指
令し、スクリューlの回転数nを出来るだけ高くして計
量の効率を−Lげるようにする。すなわち、第2図にお
ける矢印N方向の速度と矢印M方向の背圧との差でスク
リューlの移動速度はv4となり、この移動速度もかな
り高くなっている。ここで、第4図の破線Llは計量行
程の過程に応じて変化する回転数nと背圧pの組合せを
示しており、この傾斜は自由に選択、設定することがで
きる。上記のように計晴開始時に14とp4の組合せで
始まり、以降順次n3とp3 、 n2とp2.nlと
plと変化していき、最終的にはnsとpsの組合せで
スクリューlの移動速度はvOとなり、スクリューlが
停止トして計量行程は終了する。すなわち、スクリュ、
−回転数ns及びスクリュー移動速度VOに近づくと 
これらは殆ど停止に近い値となり、この計場終了時には
位置指令Siに対して正しい位置にスムーズに停止でき
るので、位置指令Siに対して行き過ぎることなく適正
な値の計量ができ、かつそのときの背圧pも適正な値p
sに選択でき1次の射出行程の準備もできるのである。
Then, when the screw I moves until the position sensor 14 outputs a screw position feedback signal Sf corresponding to this position command Si, the metering process ends. The process up to the end of this weighing process is shown in FIG. 3. First, when the position control element 21 inputs the deviation Se, it is controlled to have a predetermined frequency characteristic to compensate for this closed-loop characteristic. The signal So is input to the speed control element 22, and this speed control element 22 efficiently outputs the back pressure command old and the rotation speed command Ki by combining them.
And the rotational speed of the screw l is quickly brought to zero. To explain this according to the characteristic diagram in Fig. 4, first, at the start of weighing, the back pressure command and rotation command are p4 and n4, respectively, and the rotational speed n of the screw l is made as high as possible to increase the efficiency of the weighing. Try to get L. That is, the moving speed of the screw I is v4 due to the difference between the speed in the direction of arrow N and the back pressure in the direction of arrow M in FIG. 2, and this moving speed is also quite high. Here, the broken line Ll in FIG. 4 indicates the combination of the rotational speed n and the back pressure p that changes according to the process of the metering process, and this slope can be freely selected and set. As mentioned above, it starts with the combination of 14 and p4 at the beginning of the clear weather forecast, and then sequentially n3 and p3, n2 and p2, and so on. nl and pl change, and finally the moving speed of the screw l becomes vO due to the combination of ns and ps, and the screw l stops and the metering process ends. i.e. screw,
-When approaching the rotational speed ns and screw movement speed VO
These values are almost at a stop, and at the end of this weighing station, it can be smoothly stopped at the correct position relative to the position command Si, so it is possible to weigh at an appropriate value without going too far relative to the position command Si, and at the same time The back pressure p is also an appropriate value p
s can be selected and preparations for the first injection stroke can be made.

また、計量中に回転数nが高くとれれば、これによる摩
擦熱が大きくなり、ヒータの容量は小さくても済むとい
う利点も出てくる。
Further, if the rotational speed n is high during measurement, the frictional heat generated by this increases, and there is an advantage that the capacity of the heater can be small.

次に1.ヒ述の原理で制御される射出成形機の具体的な
構造を第5図に示して説明する。
Next 1. The specific structure of an injection molding machine controlled by the above-mentioned principle is shown in FIG. 5 and will be explained.

モータ7及び13は射出成形機の固定された筐体40に
取付けられており、モータ13の回転軸13Aにはギア
41及び42が装着され、モータ7の回転軸7Aにはギ
ア43及び44が装着されており、これらギア41〜4
4は回転軸13A及び7Aの各端部に設けられているク
ラッチ機構45及び48によって駆動力の伝達が断続さ
れるようになっている。
The motors 7 and 13 are attached to a fixed housing 40 of the injection molding machine, gears 41 and 42 are attached to the rotating shaft 13A of the motor 13, and gears 43 and 44 are attached to the rotating shaft 7A of the motor 7. These gears 41-4
4, transmission of driving force is interrupted and interrupted by clutch mechanisms 45 and 48 provided at each end of the rotating shafts 13A and 7A.

また、筺体40にはクラッチ機構47及び48で駆動力
の伝達が断続される伝達軸47A及び48Aが軸架され
ており、伝達軸47Aにはギア48及び50が、伝達軸
48Aにはギア51及び52がそれぞれ装着されている
。さらに、筺体40には金型30の移動を行なう駆動軸
30^が軸架され、その端部に設けられているクラッチ
機構31で駆動力の伝達が断続されるようになっている
ギア32〜34が筺体40内で装着され、駆動軸30A
は更に金型30の筺体35に軸架されている。筺体35
内の駆動軸30、Aにはギア36が装着され、ギア37
を介して作動軸38に回転力を伝達し、この回転によっ
て型部材39を摺動軸38A、38B 、、L:で摺動
させて前後進するようになっている。さらに、筐体40
内にはスクリューlに連結された軸IAが設けらており
、この軸IAにギア53が装着され、このギア53の内
胴にベアリングを介して係合された作動軸54には更に
ギア55が装着されている。
Furthermore, transmission shafts 47A and 48A are mounted on the housing 40, and transmission of driving force is interrupted and interrupted by clutch mechanisms 47 and 48. Gears 48 and 50 are mounted on the transmission shaft 47A, and gear 51 is mounted on the transmission shaft 48A. and 52 are respectively attached. Further, a drive shaft 30^ for moving the mold 30 is mounted on the housing 40, and gears 32 to 32 are connected to each other, and a clutch mechanism 31 provided at the end of the drive shaft 30^ is configured to intermittent transmission of driving force. 34 is mounted within the housing 40, and the drive shaft 30A
is further pivoted on a housing 35 of the mold 30. Housing 35
A gear 36 is attached to the inner drive shaft 30, A, and a gear 37
A rotational force is transmitted to the actuating shaft 38 through the rotating shaft 38, and this rotation causes the mold member 39 to slide on the sliding shafts 38A, 38B, . Furthermore, the housing 40
A shaft IA connected to a screw l is provided inside, a gear 53 is attached to this shaft IA, and a gear 55 is further attached to an operating shaft 54 that is engaged with the inner body of this gear 53 via a bearing. is installed.

このような構成において、射出成形機は型部材38を前
進させて金型を合せる型締と、この型、啼の圧力を増加
する昇圧と、ノズル5を金型30の方向に前進させるノ
ズル前進と、溶融された樹脂の金型30内への射出充填
と、樹脂の可塑化を行なう計量及び冷却と、ノズル5を
筐体40方向に後退させるノズル後退と、金型の降圧及
び型開と、金型30内で成型された製品の突落し停止と
を繰返して行雇う。ここにおいて、第5図は射出成形機
の初期状態を示しており、型締及び昇圧を行なう場合に
はモータ13を駆動し、その回転駆動が回転軸13A→
ギア41→図示されないギアーギア33を介して駆動軸
30Aに伝達され、ギア36及び37を介して作動軸3
8が回転されることによって型部材38が前進される。
In such a configuration, the injection molding machine performs mold clamping to advance the mold member 38 to fit the mold together, pressurization to increase the pressure of the mold, and nozzle advancement to advance the nozzle 5 in the direction of the mold 30. Injection and filling of the molten resin into the mold 30, metering and cooling to plasticize the resin, nozzle retraction to retract the nozzle 5 toward the housing 40, pressure reduction of the mold and mold opening. , the product molded in the mold 30 is repeatedly dropped and stopped. Here, FIG. 5 shows the initial state of the injection molding machine, and when performing mold clamping and pressurization, the motor 13 is driven, and its rotational drive is caused by the rotating shaft 13A→
The gear 41 is transmitted to the drive shaft 30A via the gear gear 33 (not shown), and is transmitted to the operating shaft 3 via the gears 36 and 37.
8 is rotated, the mold member 38 is advanced.

こうして型部材39が前進されてストップ位置で停止す
ることにより所定圧まで昇圧されると、クラッチ機構9
01を切換えてギア33からギア3Bへの伝達を遮断し
、クラッチ機構45及び47を切換えて輔47Aのみを
回転させることによって筐体40の金型30方向への移
動を行ない、静止している金型30に対してノズル5を
前進させる。なお、ノズル5の後退はモータ13の回転
を逆にすることによって行なわれる。
In this way, when the mold member 39 is advanced and stopped at the stop position, and the pressure is increased to a predetermined pressure, the clutch mechanism 9
01 to cut off the transmission from the gear 33 to the gear 3B, and switch the clutch mechanisms 45 and 47 to rotate only the lever 47A, thereby moving the casing 40 in the direction of the mold 30 and keeping it stationary. The nozzle 5 is advanced with respect to the mold 30. Note that the nozzle 5 is moved back by reversing the rotation of the motor 13.

また、樹脂の射出を行なう場合にはモータ7及び13を
駆動し、クラッチ機構45及び4Bを切換えてギア41
の回転及びギア42の回転が図示されないギアによりそ
れぞれギア33及び34に伝達されるようにする。更に
クラッチ機構31を切換えることによって、モータ7及
び13の回転駆動がギア55に伝達され、軸54及びI
Aを介してスクリュー1が移動され、上述したような溶
融樹脂の金型30への射出を行なうことができる。さら
に、樹脂の計量を行なう場合にはモータ7のみを駆動し
、この回転駆動をギア43→図示されないギア→ギア5
2→軸48A→ギア51→ギア49→ギア32→ギア5
3を介してスクリューlに伝え、このスクリューlを回
転させると共にモータ1′3を駆動し、この回転駆動を
ギア42→図示されないギア→ギア33→クラッチ31
→ギア55→軸54→軸IAを介してスクリュー1に伝
え、スクリューlに背圧が加えられることによって計量
を行なう。そして、型開は上記型締の場合と逆にモータ
13を回転し、型部材39を後退させることによって行
なわれる。
Furthermore, when injecting resin, the motors 7 and 13 are driven, and the clutch mechanisms 45 and 4B are switched so that the gear 41
and the rotation of gear 42 are transmitted to gears 33 and 34, respectively, by gears not shown. Furthermore, by switching the clutch mechanism 31, the rotational drive of the motors 7 and 13 is transmitted to the gear 55, and the rotational drive of the motors 7 and 13 is transmitted to the gear 55.
The screw 1 is moved via A, and the molten resin can be injected into the mold 30 as described above. Further, when measuring resin, only the motor 7 is driven, and this rotational drive is caused by gear 43 → gear not shown → gear 5.
2 → shaft 48A → gear 51 → gear 49 → gear 32 → gear 5
3 to the screw l, which rotates the screw l and drives the motor 1'3, and this rotational drive is transmitted to the gear 42 → gear not shown → gear 33 → clutch 31
-> Gear 55 -> Shaft 54 -> Transmitted to screw 1 via shaft IA, and metering is performed by applying back pressure to screw 1. The mold opening is performed by rotating the motor 13 and retracting the mold member 39 in the opposite manner to the mold clamping described above.

ここにおいて、上述の型締後のノズル5の前進はモータ
13の駆動による速度制御によって行・なわれ、ノズル
5が金型30に接触した後は所定圧力で圧接する必要が
ある。したがって、モータ13を第6図に示すような速
度指令viに対する速度制御系から、圧力指令Piの圧
力制御系に切換えるのにどのようにするかが問題となる
。すなわち、第6図の速度制御系は速度偏差マeをルー
プ系60(Gs)でトルク指令Tiに変換し、このトル
ク指令T1に従って電力増幅器61を介してモータ13
を制御するようになっており、第7図(A)。
Here, the advance of the nozzle 5 after the mold clamping described above is performed by speed control driven by the motor 13, and after the nozzle 5 contacts the mold 30, it is necessary to press the mold 30 with a predetermined pressure. Therefore, the problem is how to switch the motor 13 from a speed control system for the speed command vi as shown in FIG. 6 to a pressure control system for the pressure command Pi. That is, the speed control system shown in FIG. 6 converts the speed deviation ma into a torque command Ti in a loop system 60 (Gs), and outputs the motor 13 through a power amplifier 61 according to this torque command T1.
7(A).

(B)に示す如く時点toからtlまでを指令速度vi
の一定速度で制御し、時点t1以隆を指令圧力piの一
定圧力で制御するようにすると、制御モードが切換わる
時点t1において速度V及び圧力Pが共に不連続となり
、射出等を円滑に行なうことができない。
As shown in (B), the command speed vi from time to to tl
If the pressure is controlled at a constant speed of , and the pressure after time t1 is controlled with a constant pressure of command pressure pi, both the speed V and pressure P become discontinuous at time t1 when the control mode is switched, and injection etc. can be performed smoothly. I can't.

このため、この発明では速度制御でノズル5を前進させ
、ノズル5が金型30に衝突した時点では、移動距離X
が−・定になると共に速度Vが0になることを利用して
衝突を検知し、この衝、突検知後に実際の圧力pが指令
圧力piとなった時に圧力制御に切換えるようにする。
Therefore, in this invention, the nozzle 5 is advanced by speed control, and when the nozzle 5 collides with the mold 30, the moving distance
A collision is detected by utilizing the fact that the speed V becomes 0 as soon as becomes constant, and after the collision is detected, the pressure control is switched to when the actual pressure p becomes the command pressure pi.

第8図(A)及び(B)はノズル5の金型30への衝突
の様rを示すもので、時点t2までは一定の指令速度マ
iで移動されているので、ノズル5の移動距離Xも線形
に増加するが、ノズル5が金型30に衝突すると速度V
が0にがると共に、移動距離Xも増加せず=一定値xO
を保持することになる。したがって、移動距離Xの変化
の様子又は速度VのOを何らかの手段によっ−C検出す
ることによって、ノズル5の金型30への衝突時点t2
を検出することができる。ノズル5の金型30への衝突
後(時点t2)、速度Vは減少し、圧力pが速度制御系
の特性に従って次第にト昇するので、第9図(八)及び
(B)に示す如く実際の圧力pが設定器等で設定されて
いる指令圧力piとなった時(時点t3)に圧力制御に
切換える。もし、指令圧力piが衝突前の圧力pよりも
低いときは、衝突後(時点t2)、速度指令値viを零
にすることによって圧力pは速度制御系の特性に従って
次第に下降するので、指令圧力piとなった時に圧力制
御に切換える。このようにすれば、時点t2までは速度
指令マiによる一定速度の速度制御が実現され、ノズル
5が金型30に衝突した時点t2から以後の短い過渡期
間内に指令圧力piとなるのを待ち、指令圧力piとな
った時(t3)に圧力制御に切換えられるので、速度制
御から圧力制御への切換を円滑に行なうことができる。
FIGS. 8(A) and 8(B) show how the nozzle 5 collides with the mold 30. Since the nozzle 5 is moved at a constant command speed i until time t2, the nozzle 5 travels a distance X also increases linearly, but when the nozzle 5 collides with the mold 30, the velocity V
decreases to 0, and the moving distance X also does not increase = constant value xO
will be retained. Therefore, by detecting the change in the moving distance
can be detected. After the nozzle 5 collides with the mold 30 (time t2), the speed V decreases and the pressure p gradually increases according to the characteristics of the speed control system, so that the actual When the pressure p reaches the command pressure pi set by a setting device or the like (time t3), the control is switched to pressure control. If the command pressure pi is lower than the pressure p before the collision, by setting the speed command value vi to zero after the collision (time t2), the pressure p will gradually decrease according to the characteristics of the speed control system, so the command pressure Switch to pressure control when pi. In this way, speed control at a constant speed is realized by the speed command mi until time t2, and the command pressure pi is prevented from reaching the command pressure pi within a short transient period from time t2 when the nozzle 5 collides with the mold 30. Since the pressure control is switched to the pressure control when the command pressure reaches the command pressure pi (t3), it is possible to smoothly switch from the speed control to the pressure control.

なお。In addition.

ノズル5の金型30への衝突は、ノズル5又は金型30
が破壊されない程度の速度で行なわれる。
The collision of the nozzle 5 with the mold 30 is caused by the collision between the nozzle 5 or the mold 30.
This is done at a speed that does not cause damage.

第1θ図はこの発明方法を実現する装置の一例を示すも
のであり、モータ】3の駆動電流や位置センサ14から
のパルス数を検出することによって、ノズル5と金型3
0との衝突を検出して衝突信号CLを出力する衝突検出
回路70を設け、更にループ系60からのトルクTを設
定回路72からの指令圧力piと比較して切換信号SW
を出力するトルク検出回路71を設けている。また、ル
ープ系60と電力増幅器61との間には切換信号Swに
よってトルクT(接点a)、圧力pi (接点b)を切
換えるスイッチ回路73設けられている。
FIG. 1θ shows an example of a device for realizing the method of the present invention, in which the nozzle 5 and the mold 3 are connected by detecting the drive current of the motor 3 and the number of pulses from the position sensor 14.
A collision detection circuit 70 is provided which detects a collision with 0 and outputs a collision signal CL, and further compares the torque T from the loop system 60 with the command pressure pi from a setting circuit 72 and outputs a switching signal SW.
A torque detection circuit 71 is provided to output the torque. Further, a switch circuit 73 is provided between the loop system 60 and the power amplifier 61 to switch between torque T (contact a) and pressure pi (contact b) in response to a switching signal Sw.

このような構成において、衝突検出回路70は常にノズ
ル5と金型30との衝突を検出するようになっており、
衝突を検知した時に衝突信号CLをトルク検出回路71
に入力して実際のトルクT(圧力P)と設定回路72で
設定されている指令圧力piとの比較を行なう、もし、
指令圧力piが衝突前の圧力Pよりも低いときは、衝突
を検知した時に速度指令マiを零にする。そして、トル
クTが設定圧力piと等しくなった時に切換信号S―を
出力し、スイッチ回路71の接点をaからbに切換えて
指令圧力piの圧力制御とする。
In such a configuration, the collision detection circuit 70 always detects a collision between the nozzle 5 and the mold 30,
When a collision is detected, the collision signal CL is sent to the torque detection circuit 71.
The actual torque T (pressure P) is compared with the command pressure pi set in the setting circuit 72.
When the command pressure pi is lower than the pressure P before the collision, the speed command mi is set to zero when the collision is detected. Then, when the torque T becomes equal to the set pressure pi, a switching signal S- is outputted, and the contact point of the switch circuit 71 is switched from a to b to control the pressure at the command pressure pi.

なお、上述では、スクリューlの回転数nをモータ7に
連結された回転数センサ8で検出するようにしているが
、ギヤ等を介して検出したり、モータ電流を検出するよ
うにしても良く、スクリューlの位置も駆動台10やボ
ールナツト12等の位置から求めるようにしても良い。
In addition, in the above description, the rotation speed n of the screw l is detected by the rotation speed sensor 8 connected to the motor 7, but it may be detected via a gear or the like, or the motor current may be detected. , the position of the screw l may also be determined from the position of the drive base 10, the ball nut 12, etc.

また、モータは直流でも交流制御でも良く、スクリュー
の位置移動はボールスクリューとボールナツトの組合せ
の他、モータ駆動でガイド上を走行させたりすることも
可能である。
Further, the motor may be controlled by direct current or alternating current, and the position of the screw can be moved by a combination of a ball screw and a ball nut, or by driving the screw by driving it on a guide.

(発明の効果) 以上のようにこの発明の射出成形機の制御方法によれば
、単純な衝突の検出又は他の手段によって速度制御から
圧力制御に切換えることができるので、安価で簡易な制
御を実現することができる。また、速度制御から圧力制
御への切換えを、実際の圧力が設定圧力となったことを
検出した時に行なうようにしているので、制御系の切換
えを円滑に行なうことができる。
(Effects of the Invention) As described above, according to the injection molding machine control method of the present invention, it is possible to switch from speed control to pressure control by simple collision detection or other means. It can be realized. Furthermore, since the speed control is switched to the pressure control when it is detected that the actual pressure has reached the set pressure, the control system can be switched smoothly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の射出成形機の一例を示す図、第2図はこ
の発明を適用できる射出成形機の一実施例を示す図、第
3図はその制御装置の一実施例を示すブロック図、第4
図はその動作を説明するための回転数と背圧の関係を示
す特性図、第5Fgiは射出成形機の具体的な構造を示
す構成図、第6図は速度制御系のブロック図、第7図(
A)及び(B)は速度制御から圧力制御への不連続性を
説明する図、第8図(A) 、 (B)及び第9図(A
)、(B)はこの発明の詳細な説明するための図、第1
0図はこの発明による回路系の一例を示すブロック図で
ある。 1・・・スクリュー、2・・・シリンダ、3・・・ホッ
パ、4,6・・・樹脂、5・・・ノズル、7,13・・
・モータ、8・・・回転数センサ、10・・・駆動台、
11・・・ボールスクリュー、12・・・ボールナツト
、14・・・位置センサ、15・・・制御装置、3G・
・・金型、40.35・・・筐体。 70・・・衝突検出回路、71・・・トルク検出回路、
72・・・設定回路、73・・・スイッチ回路。 出願人代理人   安 形 雄 三 条 l 図
Fig. 1 is a diagram showing an example of a conventional injection molding machine, Fig. 2 is a diagram showing an embodiment of the injection molding machine to which the present invention can be applied, and Fig. 3 is a block diagram showing an embodiment of its control device. , 4th
The figure is a characteristic diagram showing the relationship between rotation speed and back pressure to explain its operation, 5th Fgi is a configuration diagram showing the specific structure of the injection molding machine, 6th is a block diagram of the speed control system, 7th figure(
A) and (B) are diagrams explaining the discontinuity from speed control to pressure control, Figures 8 (A), (B) and Figure 9 (A
), (B) are diagrams for detailed explanation of this invention, the first
FIG. 0 is a block diagram showing an example of a circuit system according to the present invention. 1... Screw, 2... Cylinder, 3... Hopper, 4, 6... Resin, 5... Nozzle, 7, 13...
・Motor, 8... Rotation speed sensor, 10... Drive base,
11...Ball screw, 12...Ball nut, 14...Position sensor, 15...Control device, 3G
...Mold, 40.35...Casing. 70... Collision detection circuit, 71... Torque detection circuit,
72... Setting circuit, 73... Switch circuit. Applicant's agent Yu Yasugata Sanjo l Figure

Claims (2)

【特許請求の範囲】[Claims] (1)先端にノズルを穿設されているシリンダ内に、前
後進すると共に回転するスクリューを配設し、前記シリ
ンダ内に溶融されている樹脂を前記ノズルから、製品の
形状が彫り込まれた金型内に射出するようになっている
射出成形機の制御方法において、前記ノズルを速度制御
で前記金型方向に移動させ、前記ノズルの前記金型に対
する圧力を測定し、この測定圧力が設定圧力となった時
に前記ノズルの速度制御を圧力制御に切換え、前記ノズ
ルを前記設定圧力で前記金型に圧接させるように制御す
ることを特徴とする射出成形機の制御方法。
(1) A screw that moves forward and backward and rotates is placed inside a cylinder with a nozzle at its tip, and the molten resin inside the cylinder is passed through the nozzle into a metal molded with the shape of the product engraved on it. In a method for controlling an injection molding machine that is configured to inject into a mold, the nozzle is moved toward the mold by speed control, the pressure of the nozzle against the mold is measured, and this measured pressure is the set pressure. 1. A method for controlling an injection molding machine, comprising: switching the speed control of the nozzle to pressure control when the nozzle reaches the set pressure, and controlling the nozzle so as to press the nozzle into contact with the mold at the set pressure.
(2)前記速度制御から圧力制御への切換時間を自由に
変更できるようにした特許請求の範囲第1項に記載の射
出成形機の制御方法。
(2) A method for controlling an injection molding machine according to claim 1, wherein the switching time from speed control to pressure control can be freely changed.
JP15037284A 1984-07-19 1984-07-19 Method of controlling injection molding machine Granted JPS6127227A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP15037284A JPS6127227A (en) 1984-07-19 1984-07-19 Method of controlling injection molding machine
US06/753,623 US4820464A (en) 1984-07-19 1985-07-09 Method for controlling injection molding machine
CA000486573A CA1250718A (en) 1984-07-19 1985-07-10 Methods for controlling injection molding machine
AT85108840T ATE60543T1 (en) 1984-07-19 1985-07-15 METHOD OF CONTROLLING AN INJECTION MOLDING MACHINE.
DE8585108840T DE3581565D1 (en) 1984-07-19 1985-07-15 METHOD FOR CONTROLLING AN INJECTION MOLDING MACHINE.
EP85108840A EP0168804B1 (en) 1984-07-19 1985-07-15 Methods for controlling injection molding machine
KR1019850005063A KR900007344B1 (en) 1984-07-19 1985-07-16 Methods for controlling injection molding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15037284A JPS6127227A (en) 1984-07-19 1984-07-19 Method of controlling injection molding machine

Publications (2)

Publication Number Publication Date
JPS6127227A true JPS6127227A (en) 1986-02-06
JPH0462246B2 JPH0462246B2 (en) 1992-10-05

Family

ID=15495549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15037284A Granted JPS6127227A (en) 1984-07-19 1984-07-19 Method of controlling injection molding machine

Country Status (1)

Country Link
JP (1) JPS6127227A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61195819A (en) * 1985-02-26 1986-08-30 Niigata Eng Co Ltd Pressure control device in injection molding machine
JPS63300114A (en) * 1987-05-30 1988-12-07 Fudo Constr Co Ltd Soil covering work using light-weight material
JPH04112184U (en) * 1991-03-20 1992-09-29 三菱重工業株式会社 Roller structure for vehicles traveling on rough terrain

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61195819A (en) * 1985-02-26 1986-08-30 Niigata Eng Co Ltd Pressure control device in injection molding machine
JPH0520258B2 (en) * 1985-02-26 1993-03-19 Niigata Engineering Co Ltd
JPS63300114A (en) * 1987-05-30 1988-12-07 Fudo Constr Co Ltd Soil covering work using light-weight material
JPH04112184U (en) * 1991-03-20 1992-09-29 三菱重工業株式会社 Roller structure for vehicles traveling on rough terrain

Also Published As

Publication number Publication date
JPH0462246B2 (en) 1992-10-05

Similar Documents

Publication Publication Date Title
CN108068282B (en) Forming machine
JP4038226B2 (en) Measuring method and control device for injection molding machine
US4780256A (en) Methods for controlling injection molding machines
US4820464A (en) Method for controlling injection molding machine
US7125232B2 (en) Controller of injection molding machine
US5102587A (en) Injection mold using screw thrust control
JP5351307B1 (en) Pressure control device for injection molding machine
KR20010091897A (en) Method and apparatus for controlling injection molding machine capable of reducing variations in weight of molded products
US11911944B2 (en) Injection device and injection control method
JPH0693962A (en) Driving device
JPS6127227A (en) Method of controlling injection molding machine
JPH0126857B2 (en)
JP3542541B2 (en) Injection molding method
JPS6127226A (en) Method of controlling injection molding machine
JPS61202813A (en) Control method of injection molding machine
JP4039460B1 (en) Weighing method in injection molding machine
JPH0544896B2 (en)
JP2744331B2 (en) Electric injection molding machine
JPH0592461A (en) Measurement controlling method for injection molding machine of in-line screw type
JPH0544892B2 (en)
JPH0372453B2 (en)
JP2015066736A (en) Controller of injection molding machine and control method
JPH0358818A (en) Back pressure adjusting method for injection molding machine
JPH11115022A (en) Weighing method of injection molding machine
JPH0357618A (en) Device for controlling screw thrust of injection molder

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees