JPS61272215A - Production of heat-resistant, solvent-resistant acrylic copolymer - Google Patents

Production of heat-resistant, solvent-resistant acrylic copolymer

Info

Publication number
JPS61272215A
JPS61272215A JP11431885A JP11431885A JPS61272215A JP S61272215 A JPS61272215 A JP S61272215A JP 11431885 A JP11431885 A JP 11431885A JP 11431885 A JP11431885 A JP 11431885A JP S61272215 A JPS61272215 A JP S61272215A
Authority
JP
Japan
Prior art keywords
weight
copolymer
thermal decomposition
resistant
polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11431885A
Other languages
Japanese (ja)
Inventor
Ganichi Tsuruta
鶴田 巖一
Katsuaki Maeda
前田 勝昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP11431885A priority Critical patent/JPS61272215A/en
Publication of JPS61272215A publication Critical patent/JPS61272215A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE:To obtain the titled copolymer having improved thermal decomposition properties, causing a few silver streaking, by polymerizing a methacrylic acid alkyl ester, etc., by the use of an azo compound, etc. as a radically polymerization initiator and a polyfunctional mercaptan as a chain transfer agent. CONSTITUTION:(A) 80-95wt% methacrylic acid alkyl ester is polymerized with (B) 0.5-5wt% acrylonitrile, and (C) 2-15wt% methacrylonitrile in the presence of (D) 0.01-2wt% (based on monomers) of a peroxide (e.g., lauroyl peroxide, etc.) or an azo compound (e.g., azobisisobutyronitrile, etc.) as a polymerization initiator and (E) 0.02-3wt% (based on monomer) of a polyfunctional mercaptan (e.g., thioglycolic ester of pentaerythritol, etc.) as a chain transfer agent preferably by suspension polymerization at 60-95 deg.C, to give the aimed copolymer.

Description

【発明の詳細な説明】 本発明は熱分解性が改善された無着色のメタクリル系共
重合体の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing an uncolored methacrylic copolymer with improved thermal decomposition properties.

さらに詳しくは優れた耐熱分解性、耐溶剤性、透明性お
よび耐熱変形性を有する極めて実用的なメタクリル系共
重合体の製造法(二関するものである。
More specifically, the present invention relates to a very practical method for producing a methacrylic copolymer having excellent heat decomposition resistance, solvent resistance, transparency, and heat deformation resistance.

(産業上の利用分野) 一般にポリメチルメタクリレート樹脂又はメチルメタク
リレートを主成分としたメタクリル系樹脂は、透明性、
表面光沢性、機械強度、成形性などの優れた特性から自
動車部品、電気関係部品、ディスプレイ等の広い分野で
使用されている。メタクリル系樹脂成形品の真空成形品
や熱加工品または射出成形品は、外観が美麗なため、装
飾用としても広く利用されているが、これ(二、塗装、
染色、裁断、表面仕上げ、接着、折り曲げ、かし合、穿
孔、彫刻などの二次加工を施す際、気相状態、液体状態
あるいはミスト状の有機溶剤と接触する機会が多い。こ
のような場合、溶剤の種類によっては、成形品(二亀裂
が発生することがある。これは、溶融成形工程、その後
の加工工程におけるポリマー分子の配向、成形品表面と
内部の熱的不均衡、金型充填、曲げ、圧縮などの際に生
ずる力学的不均衡、さらには吸湿、溶剤侵入による膨潤
(二より生ずる密度的不均衡にもとすく歪みエネルギー
が成形品の表面や内部に蓄積され、この蓄積された箇所
あるいはその付近に溶媒が侵入することにより基材の強
度とこの歪みエネルギーとの均衡が破れるために、そこ
に亀裂を発生させるものと考えられている。これが、い
わゆる環境応力亀裂と呼ばれている現象である。
(Industrial Application Field) Generally, polymethyl methacrylate resin or methacrylic resin containing methyl methacrylate as a main component has transparency,
Due to its excellent properties such as surface gloss, mechanical strength, and moldability, it is used in a wide range of fields such as automobile parts, electrical parts, and displays. Vacuum-formed, heat-processed or injection-molded methacrylic resin molded products have a beautiful appearance and are widely used for decoration.
When performing secondary processing such as dyeing, cutting, surface finishing, adhesion, bending, interlocking, perforation, and engraving, there are many opportunities for contact with organic solvents in a gas phase, liquid state, or mist. In such cases, depending on the type of solvent used, cracks may occur in the molded product (bi-cracks). , mechanical imbalance that occurs during mold filling, bending, compression, etc., as well as swelling due to moisture absorption and solvent intrusion (2) Strain energy is accumulated on the surface and inside of the molded product. It is thought that the intrusion of solvent into or near this accumulated area breaks the balance between the strength of the base material and this strain energy, causing cracks to occur there.This is what is called environmental stress. This is a phenomenon called a crack.

本発明者らはアクリル樹脂成形品が遭遇することが予想
されるあらゆる状態において十分に対応できる耐溶剤性
をもち、他の性能がアクリル樹脂と同等である共重合体
の研究を行いメタクリル酸アルキルエステル及び不飽和
ニトリル単量体を特定の割合で配合してえた共重合体を
みいだし特許出願した。(特願昭j9−/l/g74を
号)しかしこの共重合体は従来のメタクリル系樹脂と同
様に射出成形または押出成形した場合、成形温度(22
0〜300℃)と熱分解開始温度(2り0〜300℃)
が接近しているため熱分解により成形品中の残存上ツマ
−の量が多くなる傾向がありさらにシルバー発生多い為
成形品外観が著しく損なわれる。
The present inventors conducted research on a copolymer that has sufficient solvent resistance to cope with all the conditions that acrylic resin molded products are expected to encounter, and has other properties equivalent to that of acrylic resin. He discovered a copolymer made by blending ester and unsaturated nitrile monomers in a specific ratio and filed a patent application. (Patent Application No. Shoj9-/l/g74) However, when this copolymer is injection molded or extruded like conventional methacrylic resins, the molding temperature (22
0-300℃) and thermal decomposition start temperature (0-300℃)
Since these are close to each other, the amount of residual residual particles in the molded product tends to increase due to thermal decomposition, and furthermore, the appearance of the molded product is significantly impaired due to the large amount of silver generated.

残存モノマーの増加はその可塑化効果(二より成形品の
耐熱変形温度の低下をもたらし高温での形状安定性が要
求される用途などにおいては、その使用は制限を受けて
いる。またシルバー発生が多    ゛い為高温での大
型成形品用途(;対しては問題を発生する。
An increase in the residual monomer has a plasticizing effect (secondary effect), which lowers the heat deformation temperature of the molded product, and its use is restricted in applications that require shape stability at high temperatures. Due to the large number of parts, problems arise when used for large molded products at high temperatures.

従ってこの共重合体の耐熱変形性を向上させ、シルバー
発生を無くすためにはメタクリル系樹脂の熱分解の抑制
が必要である。
Therefore, in order to improve the heat deformation resistance of this copolymer and eliminate the generation of silver, it is necessary to suppress the thermal decomposition of the methacrylic resin.

(従来の技術) 従来メタクリル系樹脂の熱分解の原因の一つとして分子
鎖末端の二重結合の量が関係すると考えられてきた。得
られたメタクリル系樹脂の分子鎖末端の二重結合はラジ
カル重合における不均化停止により生じ、ラジカルの種
類、量、重合条件による影響を受ける。従って熱分解性
の改良技術として過酸化物の種類、量に関する特許出願
がなされている。(特願昭!3−7♂2ダ0号)。しか
しこの方法による場合に本発明の共重合体の熱分解性の
改善効果は充分とは言えない。
(Prior Art) Conventionally, it has been thought that one of the causes of thermal decomposition of methacrylic resins is related to the amount of double bonds at the end of the molecular chain. The double bond at the end of the molecular chain of the obtained methacrylic resin is generated by disproportionation termination in radical polymerization, and is influenced by the type and amount of radical, and polymerization conditions. Therefore, patent applications have been filed regarding the type and amount of peroxide as a technique for improving thermal decomposition properties. (Tokugansho! 3-7♂2da0). However, when using this method, the effect of improving the thermal decomposition properties of the copolymer of the present invention cannot be said to be sufficient.

また通常は少量の抗酸化物としてアミン系、フェノール
系の添加剤、あるいは芳香族メルカプタンをメタクリル
系樹脂に配合する方法がとられているが、これらの技術
による場合C二は本発明の共重合体樹脂の着色が生じ好
ましくない。
In addition, usually a small amount of an amine-based or phenol-based additive, or an aromatic mercaptan is blended into a methacrylic resin as an antioxidant, but when using these techniques, C2 is the copolymer of the present invention. This is not preferable because the combined resin will be colored.

(本発明の解決しようとする問題点) 本発明者らは従来技術では達成できなかった熱分解性の
良好な共重合体を製造する方法を提案するものである。
(Problems to be Solved by the Present Invention) The present inventors propose a method for producing a copolymer with good thermal decomposition properties, which could not be achieved using conventional techniques.

(問題点を解決するための手段) 本発明者らは特定のラジカル開始剤と多官能メルカプタ
ンを用いることにより飛躍的に熱分解性の向上ができる
ことをみいだし本発明に至ったものである。
(Means for Solving the Problems) The present inventors have discovered that thermal decomposability can be dramatically improved by using a specific radical initiator and a polyfunctional mercaptan, and have thus arrived at the present invention.

また熱分解性の向上の結果としてシルバー発生の少ない
、耐熱変形性の優れた共重合体を製造する方法を提供す
るものである。
The present invention also provides a method for producing a copolymer with excellent thermal deformation resistance and less silver generation as a result of improved thermal decomposition.

すなわち本発明はメタクリル酸アルキルエステル!θ〜
りj重量係 、アクリaニトリル0.5〜!重量係メタ
クリロニトリルa〜ノ!重量%よりなる共重合体を重合
するにさいし、重合開始剤として単量体重量あたり0.
07〜2重量%の過酸化物ノ又(′!アゾ化合物、さら
に連鎖移動剤として単量体あたり0.02〜3重量係の
多官能メルカプタンを添加し重合することを特徴とする
メタクリル系樹脂の製造方法に関するものである。
In other words, the present invention is a methacrylic acid alkyl ester! θ~
Rij Weight Section, Acrylic A Nitrile 0.5~! Weight section methacrylonitrile a~no! When polymerizing a copolymer consisting of 0.0% by weight per monomer weight as a polymerization initiator.
A methacrylic resin characterized in that it is polymerized by adding 0.07 to 2% by weight of a peroxide azo compound and further a polyfunctional mercaptan of 0.02 to 3% by weight per monomer as a chain transfer agent. The present invention relates to a manufacturing method.

本発明の共重合体に用いられるメタクリル酸エステル単
位としてはメタクリル酸メチル、メタクリル酸ヘキシル
、メタクリル酸二−エチルへキシルが好ましい。特に好
ましくはメタクリル酸メチルを用いる。共重合体中のメ
タクリル酸エステル単位は10〜り!重量係であること
が必要であり特に好ましくは!夕〜りθ重量係である。
As the methacrylic acid ester unit used in the copolymer of the present invention, methyl methacrylate, hexyl methacrylate, and 2-ethylhexyl methacrylate are preferred. Particularly preferably, methyl methacrylate is used. The number of methacrylic acid ester units in the copolymer is 10~! It is necessary and especially preferable to be a weight person! In the evening, I was in charge of θ weight.

95重量%を越えた場合、耐溶剤性の改良が困難になり
、♂0重量係未満の場合には無色透明性、耐熱変形性が
損なわれ好ましくない。
If it exceeds 95% by weight, it becomes difficult to improve solvent resistance, and if it is less than 0% by weight, colorless transparency and heat deformation resistance are impaired, which is not preferable.

本発明の共重合体に用いられるアクリロニトリル単位は
0.t〜!重量係であることが必要であり特に好ましく
は/〜3重量係である。j重量係を越えた場合成形品の
赤黄色性が強まり好ましくない。0.!重量係未満であ
る場合には耐溶剤性の改良効果が期待出来ない。
The acrylonitrile unit used in the copolymer of the present invention is 0. T~! It is necessary to have a weight ratio of 1 to 3 weight ratios. If the weight ratio is exceeded, the reddish-yellow color of the molded product will become stronger, which is undesirable. 0. ! If it is less than the weight ratio, no improvement in solvent resistance can be expected.

本発明に共重合体に用いられるメタクリロニトリル単位
は2〜/!重量%であることが必要であり特に好ましく
は3〜/θ重量係である。
The number of methacrylonitrile units used in the copolymer of the present invention is 2~/! It is necessary that the ratio is by weight, and particularly preferably 3 to /θ weight ratio.

75重量%を越えた場合には重合生産性が悪くなり工業
的に安価に供給することが困難になり、しかも射出成形
時に熱分解が激しく成形品中の残存モノマーが増加しH
DTを下げ好ましくない。
If it exceeds 75% by weight, polymerization productivity will deteriorate and it will be difficult to supply the product at a low cost industrially, and furthermore, thermal decomposition will be severe during injection molding, resulting in an increase in residual monomer in the molded product.
This is undesirable because it lowers DT.

2重量係未満の場合には耐溶剤性改良効果が期待できな
い。
If the weight ratio is less than 2, no improvement in solvent resistance can be expected.

共重合体の重量平均分子量は?−20万であることが必
要であり、♂万未満では機械強度の低下が著しく耐溶剤
性も良くない。コθ万を越えた場合には射出成形の際溶
融粘度が高く使用できない。
What is the weight average molecular weight of the copolymer? -200,000, and if it is less than ♂10,000, the mechanical strength will drop significantly and the solvent resistance will not be good. If the value exceeds θ, the melt viscosity becomes too high to be used during injection molding.

本発明の共重合体を得る方法としては懸濁重合乳化重合
、塊状重合を用いるができる。高温重合開始剤を用いて
連続バルク重合することもできるが特に好ましくは懸濁
重合が経済性の良い点で推奨される。
Suspension polymerization, emulsion polymerization, and bulk polymerization can be used to obtain the copolymer of the present invention. Although continuous bulk polymerization can be carried out using a high temperature polymerization initiator, suspension polymerization is particularly preferred from the viewpoint of economical efficiency.

連鎖移動剤としては多官能メルカプタンが分子量調節効
果、共重合体の熱安定性の点で特に好ましい。脂肪族メ
ルカプタンおよびチオグリコール酸エステルを用いたば
あいには得られた共重合体の熱分解性が良くない。懸濁
重合の重合温度としては≦θ〜り5℃が最適である。
As the chain transfer agent, polyfunctional mercaptan is particularly preferred from the viewpoint of molecular weight control effect and thermal stability of the copolymer. When aliphatic mercaptan and thioglycolic acid ester are used, the resulting copolymer has poor thermal decomposition properties. The optimum polymerization temperature for suspension polymerization is ≦θ to 5°C.

重合開始剤としてはアゾ系の開始剤が適しておりラフロ
イルパーオキサイド、t−ブチルパーオキシ2−エチル
ヘキサノエート等のパーオキナイドを用いる場合には熱
分解性の改良効果はアゾビスイソブチロニトリル、ジメ
チル2.2′アゾビスイソブチレート、アゾビス(2,
4tジメチルバレロニトリル)、/、/’アゾビス/−
シクロへキチンカルボニトリル等のアゾ系開始剤に及ば
ない。
Azo-based initiators are suitable as polymerization initiators, and when using peroxides such as lafuroyl peroxide and t-butyl peroxy 2-ethylhexanoate, the effect of improving thermal decomposition is that of azobisisobutyroyl peroxide. Nitrile, dimethyl 2.2'azobisisobutyrate, azobis(2,
4t dimethylvaleronitrile), /, /'azobis/-
It is not as good as azo initiators such as cyclohechitin carbonitrile.

連鎖移動剤としては多官能メルカプタンが分子量調節効
果、樹脂の熱安定性の点で特に好ましい。
As the chain transfer agent, polyfunctional mercaptan is particularly preferred from the viewpoint of molecular weight control effect and thermal stability of the resin.

脂肪族メルカプタンおよびチオグリコール酸エステルを
用いた場合得られる樹脂の熱分解性は著しく大きい。
When aliphatic mercaptans and thioglycolic acid esters are used, the thermal decomposition properties of the resins obtained are significantly high.

本発明において用いることの出来る多官能メルカプタン
としては、ペンタエリスリトール、トリメチロールプロ
パン又はエチレングリコールから選ばれたすくなくとも
一種の、チオグリコール酸エステルもしくはペンタエリ
スリトール、トリメチロールプロパン又はエチレングリ
コールから選ばれたすくなくとも一種の、3−メルカプ
トプロピオン酸エステルを用いる事が好ましい。
The polyfunctional mercaptan that can be used in the present invention includes at least one type of thioglycolic acid ester selected from pentaerythritol, trimethylolpropane, or ethylene glycol, or at least one type selected from pentaerythritol, trimethylolpropane, or ethylene glycol. It is preferable to use 3-mercaptopropionic acid ester.

本発明の樹脂には可塑剤、離型剤等を本発明の効果を損
なわない範囲で用いる事ができる。
Plasticizers, mold release agents, and the like can be used in the resin of the present invention as long as they do not impair the effects of the present invention.

共重合体の残存モノマーはガスクロマトグラフィー法に
より常法(二従って測定した。
The residual monomers in the copolymer were determined by a conventional gas chromatography method.

耐熱変形温度(HDT)の測定はA8TM−6グ♂に定
められた条件に従って行った。
The heat distortion temperature (HDT) was measured in accordance with the conditions specified in A8TM-6 G♂.

(GPCによる分子量の測定) G P CCよる分子量の測定は、一般には、例えば文
献〔ゲルクロマトグラフィ(基礎編)武田他著:講談社
発行、97〜72.2ページ〕記載のよう(二行われる
(Measurement of Molecular Weight by GPC) Molecular weight measurement by GPC is generally carried out as described in the literature [Gel Chromatography (Basic Edition) by Takeda et al., published by Kodansha, pp. 97-72.2].

例えば、本発明の共重合体の分子量は次のようにして測
定した。
For example, the molecular weight of the copolymer of the present invention was measured as follows.

カラムとしてH2O−2θ、夕0(高滓製作所■製)、
2本を使用し、プレッシャケミカル社製の標準ポリスチ
レンを用いて検量線を作った。共重合体75■をメチル
エチルケトン3θ−に溶解した試料溶液を用いて得られ
た溶出曲線を等分割し、分割点における高さを測定し次
式によりMwを求める。
As a column, H2O-2θ, Yu0 (manufactured by Takasugi Seisakusho ■),
A calibration curve was created using two standard polystyrene tubes manufactured by Pressure Chemical Co., Ltd. The elution curve obtained using a sample solution in which copolymer 75■ is dissolved in methyl ethyl ketone 3θ- is divided into equal parts, the height at the division points is measured, and Mw is determined by the following formula.

ただしHiは分割点(:おける溶出曲線の高さ、Mi(
p)は分割点iにおける標準ポリスチレンの分子量、Q
m、Qpは共重合体とポリスチレンのQ因子であり、そ
れぞれダ0とグ/とした。
However, Hi is the height of the elution curve at the dividing point (:), Mi (
p) is the molecular weight of standard polystyrene at dividing point i, Q
m and Qp are the Q factors of the copolymer and polystyrene, and are expressed as da0 and g/, respectively.

(熱分解性指数αの測定) 熱分解ガスクロマトグラフィーを用い、4t−t0℃で
共重合体をN2雰囲気下で分解させ60分間(二分解す
る全分解ガスを検出積算しこれを又とし、270℃で3
0分間に分解発生するガスを積算試これをYとし、熱分
解指数α=Y/Xとしてαを計算する。
(Measurement of thermal decomposition index α) Using pyrolysis gas chromatography, the copolymer was decomposed in an N2 atmosphere at 4t-t0°C for 60 minutes (all the decomposed gases decomposed into two were detected and integrated, and this was also 3 at 270℃
Accumulate the gas decomposed and generated in 0 minutes.Let this be Y, and calculate α by setting the thermal decomposition index α=Y/X.

成形品の耐溶剤試験は成形品を、23℃、相対湿度!0
チの雰囲気下で状態調整し成形品中の水分を0.3〜0
.6重量%にして行った。
Solvent resistance tests for molded products are carried out at 23°C and relative humidity! 0
The moisture in the molded product is adjusted to 0.3 to 0 in an atmosphere of
.. The concentration was set to 6% by weight.

23℃、一定時間、各溶剤に浸漬しクラックの発生状況
を観察した。
The specimens were immersed in each solvent at 23° C. for a certain period of time, and the occurrence of cracks was observed.

実施例/ メタクリル酸メテルタ!、θ重量部、メタクリロニトリ
ル先θ重量部、アクリロニトリル7.0重量部、t−ブ
チルパーオキシ2−エチルヘキサノエートθ、グ0重量
部、ペンタエリスリトールテトラキス(チオグリコレー
ト) 0.4t 3重量部からなる単量体溶液を、ジャ
ケット付き重合機中で水2夕θ重量部、ポリメタクリル
酸カリクム7重量部からなる懸濁相に懸濁させ、ジャケ
ットに温水を通し重合温度!θ℃で重合を開始した。重
合開始後300分で重合温度を9t℃(二昇温し、さら
に乙θ分反応を続は反応を完結させた。得られた重合体
を冷却、洗浄、乾燥し0.3 +m径のビーズを得た。
Example/Methacrylic acid methacrylic acid! , θ parts by weight, θ parts by weight of methacrylonitrile, 7.0 parts by weight of acrylonitrile, t-butylperoxy 2-ethylhexanoate θ, 0 parts by weight, pentaerythritol tetrakis (thioglycolate) 0.4t 3 A monomer solution consisting of 2 parts by weight of water is suspended in a suspension phase consisting of 2 parts by weight of water and 7 parts by weight of potassium polymethacrylate in a jacketed polymerization machine, and hot water is passed through the jacket to maintain the polymerization temperature. Polymerization was initiated at θ°C. 300 minutes after the start of polymerization, the polymerization temperature was raised to 9t°C (2 t°C), and the reaction was continued for another θ minute to complete the reaction. The obtained polymer was cooled, washed, and dried to form beads with a diameter of 0.3 + m. I got it.

成形品中の共重合体組成をガスクロマトグラフィを用い
分析した結果、メタクリル酸メチル単位95重量係、メ
タクリロニトリル単位グ、Q重量%、アクリロニトリル
単位/、θ重量係であり仕込み七ツマー組成と同じであ
った。
As a result of analyzing the copolymer composition in the molded product using gas chromatography, it was found that the weight ratio was 95 methyl methacrylate units, 95% methacrylonitrile units, Q% by weight, acrylonitrile units/, θ weight ratio, which was the same as the seven-mer composition. Met.

このビーズを3θteaf3ベント付き押出機で押出温
度、260℃、ベントの真空度30mHgの条件下にベ
レット化した。得られたベレットを射出成形機(多機製
作所製M−20θ/♂0θDM)を用いて射出成形を行
い/θθ×/θ0×3ffi11角の平板状の成形品を
得た。射出成形時に熱分解によるシルバーを観察した。
These beads were pelletized using a 3θteaf3 vented extruder at an extrusion temperature of 260° C. and a vent vacuum of 30 mHg. The obtained pellet was injection molded using an injection molding machine (M-20θ/♂0θDM manufactured by Taki Seisakusho) to obtain a flat plate-shaped molded product with dimensions /θθ×/θ0×3ffi11. Silver was observed due to thermal decomposition during injection molding.

成形品中の残存上ツマ−を測定した結果、0.3/重量
%であった。
As a result of measuring the residual upper mass in the molded article, it was found to be 0.3/wt%.

耐熱変形温度(HDT)は9夕、9℃であった。The heat distortion temperature (HDT) was 9°C on September 9th.

重量平均分子量Mwは/θ、!万、熱分解指数αは1.
0であった。
The weight average molecular weight Mw is /θ,! 1,000, and the thermal decomposition index α is 1.
It was 0.

(耐溶剤性試験) 成形品を23℃、相対湿度!σ係の雰囲気下で状態調整
した。成形品中の水分はO,S重量係であった。23℃
でガソリン、イソプロピルアルコール、キシレンに各5
時間、3時間、3分浸漬しクラックの発生状況を観察し
た。
(Solvent resistance test) Molded products at 23℃ and relative humidity! Conditions were adjusted in a σ-related atmosphere. The moisture content in the molded product was in the O, S weight ratio. 23℃
5 each for gasoline, isopropyl alcohol, and xylene.
The samples were immersed for 3 hours and 3 minutes, and the occurrence of cracks was observed.

結果を表/に示す。The results are shown in Table/.

実施例2〜夕 共重合体組成、連鎖移動剤の種類と檄を変える他は実施
例と同様な装置、条件下に重合を実施し表1の結果を得
た。いずれも熱分解性指数αは!〜乙係と比較的小さく
、コ♂0℃での射出成形片の外観も良好であった。浸漬
法による耐溶剤性評価も良好な結果を示した。
Example 2 Polymerization was carried out using the same apparatus and conditions as in Example, except that the copolymer composition, type of chain transfer agent, and temperature were changed, and the results shown in Table 1 were obtained. The thermal decomposition index α of both is! The injection-molded pieces had a relatively small size, and the appearance of the injection molded pieces at 0°C was also good. Solvent resistance evaluation by dipping method also showed good results.

比較例/〜j 連鎖移動剤として単官能性メルカプタン(EHTG、n
−OM)を用いた場合の結果を表/に示す。熱分解性指
数αは極めて大きく、成形時の熱分解のため成形片中の
残存上ツマー徽が多く、耐熱変形温度(HDT)も低か
った。又、210℃での射出成形片にシルペーストリー
クスが見られた。
Comparative Example/~j Monofunctional mercaptan (EHTG, n
-OM) results are shown in Table/. The thermal decomposition index α was extremely large, and due to thermal decomposition during molding, there was a large amount of residual slag in the molded piece, and the heat distortion temperature (HDT) was low. Further, silpa streaks were observed in the injection molded piece at 210°C.

比較例6 共重合体組成においてVAN含有率が3重量%未満では
耐溶剤性は極めて悪い。
Comparative Example 6 When the VAN content in the copolymer composition is less than 3% by weight, the solvent resistance is extremely poor.

実施例6〜/3 開始剤としてAIBNを用いる以外は実施例/〜よと同
様にして実験した結果を表−2(二示す。
Examples 6 to 3 The results of experiments carried out in the same manner as in Examples 6 to 3 are shown in Table 2, except that AIBN was used as the initiator.

いずれも熱分解指数αはグル6チと小さく、2♂θ℃で
の射出成形片の外観は良好であった。
In all cases, the thermal decomposition index α was as small as 6°, and the appearance of the injection molded pieces at 2♂θ°C was good.

比較例7〜? 連鎖移動剤として単官能性メルカプタン(n−OM)を
用いた場合の結果を表−2に示す。熱分解性指数αは大
きく、成形片中の残存上ツマー量が多く、コ♂θ℃射出
成形片にシルバーストリークスが発生した。
Comparative example 7~? Table 2 shows the results when monofunctional mercaptan (n-OM) was used as the chain transfer agent. The thermal decomposition index α was large, the amount of residual slag in the molded piece was large, and silver streaks were generated in the injection molded piece at ♂θ°C.

比較例り 共重合体組成としてニトリル系モノマー(MAN、AN
)を含有しない一般のアクリル樹脂では耐溶剤性は不良
である。
As a comparative example, nitrile monomers (MAN, AN
) General acrylic resins that do not contain these compounds have poor solvent resistance.

(以下余白) 試薬一覧表 耐溶剤性評価 短ざく型の成形片を溶剤中に所定時間浸漬し、微小クラ
ックの発生状況を観察、評価する。
(Left below) Reagent list Solvent resistance evaluation A short piece of molded piece is immersed in a solvent for a predetermined period of time, and the occurrence of microcracks is observed and evaluated.

成形条件:240℃ 射出成形Molding conditions: 240℃ injection molding

Claims (1)

【特許請求の範囲】 1)メタクリル酸アルキルエステル80〜95重量%、
アクリロニトリル0.5〜5重量%、メタクリロニトリ
ル2〜15重量%よりなる共重合体を重合するにさいし
、重合開始剤として単量体重量あたり0.01〜2重量
%の過酸化物又はアゾ化合物、さらに連鎖移動剤として
単量体あたり0.02〜3重量%の多官能メルカプタン
を添加し、重合することを特徴とするメタクリル系樹脂
の製造方法 2)多官能メルカプタンとしてペンタエリスリトール、
トリメチロールプロパン又はエチレングリコールから選
ばれたすくなくとも一種の、チオグリコール酸エステル
を用いることを特徴とする特許請求の範囲第1項記載の
製造方法 3)多官能メルカプタンとしてペンタエリスリトール、
トリメチロールプロパン又はエチレングリコールから選
ばれたすくなくとも一種の、3−メルカプトプロピオン
酸エステルを用いる事を特徴とする特許請求の範囲第1
項記載の製造方法
[Claims] 1) 80 to 95% by weight of methacrylic acid alkyl ester,
When polymerizing a copolymer consisting of 0.5 to 5% by weight of acrylonitrile and 2 to 15% by weight of methacrylonitrile, 0.01 to 2% by weight of peroxide or azole per monomer weight is used as a polymerization initiator. A method for producing a methacrylic resin characterized by adding a compound and further 0.02 to 3% by weight of a polyfunctional mercaptan per monomer as a chain transfer agent and polymerizing 2) Pentaerythritol as a polyfunctional mercaptan;
3) The production method according to claim 1, characterized in that at least one thioglycolic acid ester selected from trimethylolpropane or ethylene glycol is used. 3) Pentaerythritol as the polyfunctional mercaptan;
Claim 1, characterized in that at least one type of 3-mercaptopropionic acid ester selected from trimethylolpropane or ethylene glycol is used.
Manufacturing method described in section
JP11431885A 1985-05-29 1985-05-29 Production of heat-resistant, solvent-resistant acrylic copolymer Pending JPS61272215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11431885A JPS61272215A (en) 1985-05-29 1985-05-29 Production of heat-resistant, solvent-resistant acrylic copolymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11431885A JPS61272215A (en) 1985-05-29 1985-05-29 Production of heat-resistant, solvent-resistant acrylic copolymer

Publications (1)

Publication Number Publication Date
JPS61272215A true JPS61272215A (en) 1986-12-02

Family

ID=14634845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11431885A Pending JPS61272215A (en) 1985-05-29 1985-05-29 Production of heat-resistant, solvent-resistant acrylic copolymer

Country Status (1)

Country Link
JP (1) JPS61272215A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5212739A (en) * 1975-07-21 1977-01-31 Maezawa Kogyo Elevator for gate
JPS5556112A (en) * 1978-10-23 1980-04-24 Asahi Chem Ind Co Ltd Novel copolymer and its preparation
JPS6060119A (en) * 1983-08-18 1985-04-06 レーム・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Manufacture of impact-resistant molding material by two-step polymerization
JPS6088014A (en) * 1983-09-20 1985-05-17 レーム・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Radiation sensitive polymer material and manufacture

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5212739A (en) * 1975-07-21 1977-01-31 Maezawa Kogyo Elevator for gate
JPS5556112A (en) * 1978-10-23 1980-04-24 Asahi Chem Ind Co Ltd Novel copolymer and its preparation
JPS6060119A (en) * 1983-08-18 1985-04-06 レーム・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Manufacture of impact-resistant molding material by two-step polymerization
JPS6088014A (en) * 1983-09-20 1985-05-17 レーム・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Radiation sensitive polymer material and manufacture

Similar Documents

Publication Publication Date Title
KR20070034466A (en) Molding Compounds for High Weatherability Molded Products
TW200804496A (en) Resin composition having good scratch resistance
KR100377604B1 (en) Methyl methacrylate polymer
US3154600A (en) Methacrylate sirups and their preparation, and preparation of reinforced plastic articles employing same
JPH0219843B2 (en)
JPS61272215A (en) Production of heat-resistant, solvent-resistant acrylic copolymer
JPS5815490B2 (en) Acrylic resin molding material with excellent solvent resistance
JP3817993B2 (en) Methyl methacrylate resin composition
JPS58455B2 (en) Method for manufacturing solvent-resistant acrylic resin
JPS6256170B2 (en)
JPH0578570B2 (en)
JPH0221402B2 (en)
JPS61272206A (en) Production of methacrylic resin having improved resistance to thermal decomposition
JPS6121112A (en) Heat-resistant and solvent-resistant acrylic copolymer and its production
JP3929229B2 (en) Heat-resistant poly (meth) acryl styrene resin composition, sheet and packaging container
JPS6234046B2 (en)
JPS61151212A (en) Methacrylate copolymer and its production
JPS63154712A (en) Production of transparent heat-resistant resin
JP7482762B2 (en) Methacrylic resin composition, molded body, and method for producing methacrylic resin composition
JPH07100725B2 (en) Method for producing new methyl methacrylate-styrene resin with excellent heat resistance and transparency
JPS6214565B2 (en)
JPH07216007A (en) Production of methacrylic resin
JP7139670B2 (en) METHACRYLIC RESIN COMPOSITION AND METHOD FOR MANUFACTURING SAME
JPH0696658B2 (en) Heat resistant resin composition
JPH04227613A (en) Production of methacrylic resin excellent in heat-resistance, colorlessness and transparency