JPS6127209Y2 - - Google Patents

Info

Publication number
JPS6127209Y2
JPS6127209Y2 JP2625779U JP2625779U JPS6127209Y2 JP S6127209 Y2 JPS6127209 Y2 JP S6127209Y2 JP 2625779 U JP2625779 U JP 2625779U JP 2625779 U JP2625779 U JP 2625779U JP S6127209 Y2 JPS6127209 Y2 JP S6127209Y2
Authority
JP
Japan
Prior art keywords
piezoelectric element
input terminal
inverting input
voltage comparator
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2625779U
Other languages
Japanese (ja)
Other versions
JPS55127437U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP2625779U priority Critical patent/JPS6127209Y2/ja
Publication of JPS55127437U publication Critical patent/JPS55127437U/ja
Application granted granted Critical
Publication of JPS6127209Y2 publication Critical patent/JPS6127209Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

この考案は、圧電素子の最低固有振動数で安定
に発振する自励発振回路に関するものである。 第1図は従来の自励発振回路の一例を示し、図
において1,2,3,4は抵抗器、5はコンデン
サ、6は反転入力端子および非反転入力端子を有
する電圧比較器、7は圧電素子、8,9はトラン
ジスタであり、上記抵抗1と2はバイアス回路を
構成し、電圧比較器6の非反転入力端子に接続さ
れバイアス電圧を与えている。抵抗3及びコンデ
ンサ5は遅相帰還回路であり、電圧比較器6の反
転入力端子へ接続される電圧比較器6の出力信号
をこゝへ帰還している。抵抗4は電圧比較器6の
プルアツプ抵抗である。一般的に圧電素子7の共
振時の等価回路は第2図aに示される様に容量性
を示す為に、駆動速度を早める為に相補型のトラ
ンジスタ8,9によるエミツタホロア回路が付加
されている。上記第2図において21はコンデン
サ、22は抵抗、23はコイル、24はコンデン
サである。コンデンサ21の値をcd、抵抗22
の値をrn、コイル23の値をL、コンデンサ24
の値をc/n2、nを整数とする。コンデンサ21
を無視すれば、圧電素子7は、抵抗22、コイル
23、コンデンサ24による直列共振回路を等価
である。nは共振周波数の次数であり、n:1の
時に基本共振周波数となる。第2図bは、圧電素
子7に通ずる共振時の電流波形を示し、基本共振
周波数の電流iは次式により近似的に示される。 つまり、第2図aにおいてコンデンサ21を無
視した時の抵抗22、コイル23、コンデンサ2
4による直列共振回路の、ステツプ電圧Eに対す
るステツプ応答で近似される。 次に遅相回路のコンデンサ5の端子電圧V-
の、ステツプ電圧に対する応答は抵抗3及びコン
デンサ5の時定数で上昇する。この時定数を圧電
素子7の共振振動数に比べて十分大きな値にすれ
ば、第1図の自励発振回路は、エミツタホロワ回
路を介する電圧比較器6の出力信号を非反転入力
端子へ帰還する圧電素子7の共振振動数で発振
し、出力Voutは矩形波となる。第1図各点の電
圧波形図を第3図に示す。 まず出力Voutが高レベルの半サイクルについ
て説明する。抵抗1及び2の値を等しくすると、
圧電素子7の1方の端子の電位はVcc/2であ
り、出力Voutより他の1方の端子へVccに等しい
高レベルが印加される。この時圧電素子7に通ず
る電流は、第2図bに示したものと同様である。
この電流変化が抵抗1と2の接続点へ帰還され、
電圧V+の変化に変換される。この電圧波形は、
第2図bに示した電流波形と相似であり、Vcc/
2を中心に振動する。この電圧V+が電圧比較器
6の非反転入力端子に印加されて帰還する。 同様に、抵抗3及びコンデンサ5よりなる遅相
回路にも、ステツプ電圧が印加され、コンデンサ
5の端子電圧V-が電圧比較器6の反転入力端子
に印加される。この遅相回路の時定数は、前述の
様に十分大きい為に、V-は、ほとんどVcc/2
に近似できる。Voutの高レベルの状態は、V+
再びV-と一致するまで、つまり第2図bに示し
This invention relates to a self-excited oscillation circuit that stably oscillates at the lowest natural frequency of a piezoelectric element. FIG. 1 shows an example of a conventional self-oscillation circuit, in which 1, 2, 3, and 4 are resistors, 5 is a capacitor, 6 is a voltage comparator having an inverting input terminal and a non-inverting input terminal, and 7 is a voltage comparator having an inverting input terminal and a non-inverting input terminal. The piezoelectric elements 8 and 9 are transistors, and the resistors 1 and 2 constitute a bias circuit, which is connected to a non-inverting input terminal of a voltage comparator 6 to provide a bias voltage. The resistor 3 and the capacitor 5 are a slow phase feedback circuit, to which the output signal of the voltage comparator 6 connected to the inverting input terminal of the voltage comparator 6 is fed back. Resistor 4 is a pull-up resistor for voltage comparator 6. In general, the equivalent circuit of the piezoelectric element 7 when it resonates exhibits capacitance as shown in Figure 2a, so an emitter follower circuit using complementary transistors 8 and 9 is added to increase the driving speed. . In FIG. 2, 21 is a capacitor, 22 is a resistor, 23 is a coil, and 24 is a capacitor. The value of capacitor 21 is c d , and the value of resistor 22 is
The value of rn is the value of the coil 23, L is the value of the coil 23, and the value of the capacitor 24 is
Let the value of be c/n 2 and n be an integer. capacitor 21
Ignoring this, the piezoelectric element 7 is equivalent to a series resonant circuit including a resistor 22, a coil 23, and a capacitor 24. n is the order of the resonant frequency, and when n:1, it becomes the fundamental resonant frequency. FIG. 2b shows a current waveform during resonance passing through the piezoelectric element 7, and the current i at the fundamental resonance frequency is approximately expressed by the following equation. In other words, in Fig. 2a, when the capacitor 21 is ignored, the resistor 22, the coil 23, and the capacitor 2
4 is approximated by a step response to a step voltage E of a series resonant circuit according to E.4. Next, the terminal voltage of capacitor 5 of the slow phase circuit V -
The response to the step voltage increases with the time constant of the resistor 3 and capacitor 5. If this time constant is set to a sufficiently large value compared to the resonant frequency of the piezoelectric element 7, the self-excited oscillation circuit of FIG. 1 feeds back the output signal of the voltage comparator 6 via the emitter follower circuit to the non-inverting input terminal. It oscillates at the resonance frequency of the piezoelectric element 7, and the output Vout becomes a rectangular wave. FIG. 3 shows a voltage waveform diagram at each point in FIG. 1. First, a half cycle in which the output Vout is at a high level will be explained. If the values of resistors 1 and 2 are equal,
The potential of one terminal of the piezoelectric element 7 is Vcc/2, and a high level equal to Vcc is applied from the output Vout to the other terminal. The current flowing through the piezoelectric element 7 at this time is similar to that shown in FIG. 2b.
This current change is fed back to the connection point between resistors 1 and 2,
It is converted into a change in voltage V + . This voltage waveform is
It is similar to the current waveform shown in Figure 2b, and Vcc/
It vibrates around 2. This voltage V + is applied to the non-inverting input terminal of the voltage comparator 6 and fed back. Similarly, a step voltage is applied to a slow phase circuit consisting of a resistor 3 and a capacitor 5, and the terminal voltage V - of the capacitor 5 is applied to the inverting input terminal of the voltage comparator 6. Since the time constant of this phase delay circuit is sufficiently large as mentioned above, V - is almost Vcc/2
It can be approximated to The high level condition of Vout remains until V + again matches V- , as shown in Figure 2b.

【式】の半周期に極め て等しい時間続き、低レベルに反転する。Vout
が低レベルへ反転すると、今度は圧電素子7の1
方の端子の電位Vcc/2に対して、他の1方の端
子にはアース電位が印加され、V+はVcc/2を
中心に、上述の振動波形の負の半サイクルをくり
返す。この様にして、Voutには圧電素子7の共
振周波数の矩形波が出力される。 しかしながら上述の自励発振回路では、圧電素
子の高次の共振周波数ででも安定に発振出来る為
に基本周波数のみで安定に発振させる事が困難と
なる欠点があつた。 この考案は上記欠点を解決する為になされたも
ので、圧電素子の基本共振周波数で安定に発振す
る自励発振回路を提供する事を目的としている。 この目的を達成するため、本考案は、上述の自
励発振回路において、電圧比較器の出力信号に応
じて圧電素子へ通ずる圧電素子の基本共振周波数
による電流と同相、かつ、圧電素子の高次共振を
抑圧するのに必要とする一定時間幅の帰還電流を
電圧比較器の出力信号にしたがつて生じ圧電素子
の通電々流へ加算して非反転入力端子へ帰還する
帰還回路を設けたものである。 第4図は、この考案の1実施例を示す電気回路
図で、図において41は抵抗、42はコンデンサ
である。図の様に構成された自励発振回路におい
て、電圧比較器6の非反転入力端子に表われる電
圧V+は、抵抗41、コンデンサ42よりなる帰
還回路による帰還電流の影響を受ける。この様子
を第5図に示す。第5図aは、第2図bに示した
電流波形に等しいが、駆動波形Voutが矩形波で
あり、基本周波数以外にも高周波成分を含んでい
る。この為に、高次の共振波形と、基本共振波
形、また前述の並列コンデンサ21による帰還電
流波形等の加算されたものが真の電流波形とな
り、第5図aの様になる。この電流波形は、圧電
素子7の特性により決定されるが、高次の共振特
性が急唆な場合には、より鋭い高次の振動波形が
重畳され、第5図aの流の零点と、より早く交差
しようとする。電流の零点は、前述のV-波形と
交差する点であるから、基本波で交差する以前に
交差してしまうと、高次の高調波で発振が開始し
て、高次の発振で安定してしまう。 この場合、第5図bのような、同相の帰還電流
を圧電素子7の通電々流へ加算して、零点交差す
る電流を一定時間抑圧する様にすれば、より基本
波で発振しやすく出来る。第4図に示した自励発
振回路のV+電圧波形を第5図c、Voutを第5図
dに示す。 ところで、上記実施例では、電圧比較器6の出
力信号により生ずる抵抗21及びコンデンサ22
による電流を加算して帰還したが、帰還電流波形
としては、種々の波形が可能であり、抵抗、コン
デンサ、コイル等の素子の組合せで、実現出来
る。 又、上記実施例では、圧電素子7を流れる電流
の正・負の両サイクルにわたつて、同相の帰還電
流を加算したが、正あるいは負の半サイクルのみ
に加算したも同等の効果がえられる。第5図eに
示したのは、出力電圧eによつてトリガーされ、
高次共振を抑圧するのに必要とする一定時間幅T
だけ電流を正方向に加算する場合の、加算電流波
形で、この場合でも、上記と同等の効果が期待出
来る。 第6図は、上述の一定時間幅Tの電流を負方向
へ加算する場合の一実施例を示す電気回路図で
あ、同図において61は、Voutの立上りに同期
して、一定時間幅Tの高レベルを出力する単安定
マルチバイブレータ回路、62はダイオード、6
3は抵抗であり、これらによる帰還回路が設けて
ある。第6図に示した自励発振回路は、第5図中
のeで示した加算電流を帰還する場合の実施例で
ある。第6図において、単安定マルチ回路の特性
及びダイオード62の方向を逆転すれば、第5図
中fに相当する帰還電流の帰還回路が得られる事
は言うまでもない。 以上説明した通り、本考案によれば、圧電素子
により帰還される電流と同相の電流を、圧電素子
の高次振動を抑える位相で加算して帰還すると言
う簡単な構成で、圧電素子の基本発振周波数で安
定に発振する自励発振回路を得られる効果があ
る。
It lasts for a time exactly equal to half a period of , and then flips to a low level. Vout
1 of piezoelectric element 7 is reversed to a low level.
In contrast to the potential Vcc/2 of one terminal, a ground potential is applied to the other terminal, and V + repeats the negative half cycle of the above-mentioned vibration waveform around Vcc/2. In this way, a rectangular wave having the resonance frequency of the piezoelectric element 7 is outputted to Vout. However, the above-described self-excited oscillation circuit has the drawback that it is difficult to stably oscillate only at the fundamental frequency because it can oscillate stably even at the high-order resonance frequency of the piezoelectric element. This invention was made to solve the above-mentioned drawbacks, and its purpose is to provide a self-excited oscillation circuit that stably oscillates at the fundamental resonance frequency of the piezoelectric element. To achieve this objective, the present invention provides a self-excited oscillation circuit as described above, which is in phase with the current due to the fundamental resonance frequency of the piezoelectric element, which is conducted to the piezoelectric element according to the output signal of the voltage comparator, and which has a high-order Equipped with a feedback circuit that adds the feedback current of a certain time width required to suppress resonance to the current flowing through the piezoelectric element generated in accordance with the output signal of the voltage comparator and returns it to the non-inverting input terminal. It is. FIG. 4 is an electrical circuit diagram showing one embodiment of this invention, in which 41 is a resistor and 42 is a capacitor. In the self-excited oscillation circuit configured as shown in the figure, the voltage V + appearing at the non-inverting input terminal of the voltage comparator 6 is influenced by a feedback current from a feedback circuit consisting of a resistor 41 and a capacitor 42 . This situation is shown in FIG. FIG. 5a is the same as the current waveform shown in FIG. 2b, but the drive waveform Vout is a rectangular wave and includes high frequency components in addition to the fundamental frequency. Therefore, the addition of the high-order resonance waveform, the fundamental resonance waveform, the feedback current waveform from the parallel capacitor 21, etc. described above becomes the true current waveform, as shown in FIG. 5a. This current waveform is determined by the characteristics of the piezoelectric element 7, but if the high-order resonance characteristics are sudden, a sharper high-order vibration waveform is superimposed, and the zero point of the flow shown in FIG. Try to cross faster. The zero point of the current is the point where it intersects with the V - waveform mentioned above, so if it crosses before it crosses at the fundamental wave, oscillation will start at higher harmonics and stabilize at higher order oscillations. It ends up. In this case, as shown in Fig. 5b, by adding an in-phase feedback current to the current flowing through the piezoelectric element 7 and suppressing the current that crosses the zero point for a certain period of time, oscillation at the fundamental wave can be made easier. . The V + voltage waveform of the self-excited oscillation circuit shown in FIG. 4 is shown in FIG. 5c, and the Vout is shown in FIG. 5d. By the way, in the above embodiment, the resistance 21 and capacitor 22 generated by the output signal of the voltage comparator 6
However, various waveforms are possible as the feedback current waveform, and can be realized by a combination of elements such as resistors, capacitors, and coils. Further, in the above embodiment, the in-phase feedback current is added over both the positive and negative cycles of the current flowing through the piezoelectric element 7, but the same effect can be obtained by adding it only to the positive or negative half cycle. . 5e is triggered by the output voltage e,
Constant time width T required to suppress high-order resonance
In this case, the same effect as above can be expected even in this case. FIG. 6 is an electric circuit diagram showing an embodiment in which the current of the above-mentioned constant time width T is added in the negative direction. In the same figure, 61 is a constant time width T A monostable multivibrator circuit that outputs a high level of , 62 is a diode, 6
3 is a resistor, and a feedback circuit is provided using these resistors. The self-excited oscillation circuit shown in FIG. 6 is an embodiment in which the added current indicated by e in FIG. 5 is fed back. It goes without saying that if the characteristics of the monostable multicircuit and the direction of the diode 62 in FIG. 6 are reversed, a feedback circuit with a feedback current corresponding to f in FIG. 5 can be obtained. As explained above, according to the present invention, the basic oscillation of the piezoelectric element is achieved using a simple configuration in which a current in the same phase as the current fed back by the piezoelectric element is added and fed back at a phase that suppresses higher-order vibrations of the piezoelectric element. This has the effect of obtaining a self-excited oscillation circuit that oscillates stably at the frequency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の自励発振回路の一実施例を示す
電気回路図、第2図aは、圧電素子の共振時の等
価回路図、第2図bは、圧電素子の共振時の電流
のステツプ応答波形図、第3図は第1図各点の電
流波形図、第4図は、本発明の一実施例を示す電
気回路図、第5図は、上記第4図各点及び、帰還
回路の電圧・電流波形図、第6図はこの発明の他
の実施例を示す電気回路図である。 図において、1,2,3,4,41,63は抵
抗、5はコンデンサ、6は電圧比較器、7は圧電
素子、8,9は相補型のトランジスタ、42はコ
ンデンサ、61は単安定マルチイブレータ回路、
62はダイオードである。なお各図中同一符号は
同一または相当部分を示すものとする。
Fig. 1 is an electric circuit diagram showing an example of a conventional self-oscillation circuit, Fig. 2a is an equivalent circuit diagram when the piezoelectric element resonates, and Fig. 2b shows the current flow when the piezoelectric element resonates. Step response waveform diagram, Figure 3 is a current waveform diagram at each point in Figure 1, Figure 4 is an electric circuit diagram showing an embodiment of the present invention, Figure 5 is a diagram of each point in Figure 4 above, and feedback. FIG. 6 is an electric circuit diagram showing another embodiment of the present invention. In the figure, 1, 2, 3, 4, 41, and 63 are resistors, 5 is a capacitor, 6 is a voltage comparator, 7 is a piezoelectric element, 8 and 9 are complementary transistors, 42 is a capacitor, and 61 is a monostable multi-layer ibrator circuit,
62 is a diode. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 反転入力端子および非反転入力端子を有する電
圧比較器と、該電圧比較器の出力信号を前記反転
入力端子へ帰還する抵抗およびコンデンサからな
る遅相帰還回路と、前記電圧比較器の非反転入力
端子へバイアス電圧を与えるバイアス回路と、前
記電圧比較器の出力信号を前記非反転入力端子へ
帰還する圧電素子とを備える自励発振回路におい
て、前記電圧比較器の出力信号に応じて前記圧電
素子へ通ずる該圧電素子の基本共振周波数による
電流と同相かつ前記圧電素子の高次共振を抑圧す
るのに必要とする一定時間幅の帰還電流を前記電
圧比較器の出力信号にしたがつて生じ前記圧電素
子の通電々流へ加算して前記非反転入力端子へ帰
還する帰還回路を設けたことを特徴とする自励発
振回路。
a voltage comparator having an inverting input terminal and a non-inverting input terminal; a slow phase feedback circuit comprising a resistor and a capacitor for feeding back an output signal of the voltage comparator to the inverting input terminal; and a non-inverting input terminal of the voltage comparator. in a self-excited oscillation circuit comprising a bias circuit that applies a bias voltage to the piezoelectric element, and a piezoelectric element that feeds back an output signal of the voltage comparator to the non-inverting input terminal, A feedback current is generated in accordance with the output signal of the voltage comparator, which is in phase with the current due to the fundamental resonance frequency of the piezoelectric element and which is necessary for suppressing higher-order resonance of the piezoelectric element, in accordance with the output signal of the voltage comparator. A self-excited oscillation circuit characterized in that a feedback circuit is provided which adds the current to the energizing current and returns it to the non-inverting input terminal.
JP2625779U 1979-02-28 1979-02-28 Expired JPS6127209Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2625779U JPS6127209Y2 (en) 1979-02-28 1979-02-28

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2625779U JPS6127209Y2 (en) 1979-02-28 1979-02-28

Publications (2)

Publication Number Publication Date
JPS55127437U JPS55127437U (en) 1980-09-09
JPS6127209Y2 true JPS6127209Y2 (en) 1986-08-14

Family

ID=28868172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2625779U Expired JPS6127209Y2 (en) 1979-02-28 1979-02-28

Country Status (1)

Country Link
JP (1) JPS6127209Y2 (en)

Also Published As

Publication number Publication date
JPS55127437U (en) 1980-09-09

Similar Documents

Publication Publication Date Title
JP2002157030A (en) Stabilized dc power supply device
JPS6127209Y2 (en)
JPS59139708A (en) Piezoelectric oscillator
US4215566A (en) Densitometer with voltage driver
JP2553281B2 (en) Oscillation circuit with crystal oscillator
JPS597771Y2 (en) Astable multivibrator
JP2703410B2 (en) Voltage converter circuit
JPH066594Y2 (en) Overtone crystal oscillator circuit
JPS6117363B2 (en)
JPS6117405B2 (en)
JP2505775Y2 (en) Crystal oscillator circuit
JPS6117611Y2 (en)
JPH0520005Y2 (en)
JPS6138264Y2 (en)
JP2004104631A (en) Crystal oscillator circuit
JPH10135736A (en) High stable clock oscillator
JPS5946446B2 (en) self-excited oscillation circuit
JP2686991B2 (en) Overtone oscillator circuit
JP3800253B2 (en) Oscillator
SU1672548A1 (en) Quartz self-excited oscillator
JPS6138265Y2 (en)
SU959256A1 (en) Self-excited crystal oscillator
JP2832377B2 (en) Piezoelectric oscillator
SU1401549A1 (en) Quartz oscillator
JP4190874B2 (en) Piezoelectric oscillation circuit