JPS6127146B2 - - Google Patents

Info

Publication number
JPS6127146B2
JPS6127146B2 JP55136189A JP13618980A JPS6127146B2 JP S6127146 B2 JPS6127146 B2 JP S6127146B2 JP 55136189 A JP55136189 A JP 55136189A JP 13618980 A JP13618980 A JP 13618980A JP S6127146 B2 JPS6127146 B2 JP S6127146B2
Authority
JP
Japan
Prior art keywords
mold
molten metal
spout
ingot
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55136189A
Other languages
Japanese (ja)
Other versions
JPS5768252A (en
Inventor
Yasuyuki Kobayashi
Katsuichi Takamura
Takashi Kamyama
Tooru Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP13618980A priority Critical patent/JPS5768252A/en
Publication of JPS5768252A publication Critical patent/JPS5768252A/en
Publication of JPS6127146B2 publication Critical patent/JPS6127146B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はベルトアンドホイール型連続鋳造機に
よる鋳造方法に関するもので、特に鋳塊表面に割
れ等の欠陥を発生することなく、表面品質の高い
鋳塊を連続的に鋳造するためのものである。 従来銅、銅合金、アルミニウム、アルミニウム
合金等の線用素材はベルトアンドホイール型連続
鋳造機により鋳造し、そのまま連設した連続圧延
機により圧延を行なつている。従つて連続鋳造機
により鋳造した鋳塊は表面を面削することなく、
連続圧延機により圧延されるため、鋳塊には表面
割れ等の欠陥のない品質の高いものが要求され
る。ベルトアンドホイール型連続鋳造機では外周
面に凹溝を設けた回転鋳造輪と、その一部外周面
と接動するエンドレスベルトにより鋳型を構成
し、該鋳型の一端に取付けたスパウトを通して鋳
型内に注湯し、他端より鋳塊を連続的に引出して
いるが、鋳塊表面にしばしば割れが発生するた
め、その改善が望まれている。 本発明者等はこれに鑑み連続鋳造における鋳塊
表面の割れ発生について種々検討の結果、鋳塊表
面に発生する割れは下記の要因によつて起ること
を知つた。(1)結晶粒界が弱い。(2)初期固相が凝固
過程で再加熱される。(3)初期固相に張力が掛る。 そしてこれ等(1)〜(3)の基本的要因は鋳型に注湯
する溶湯の状態に関係する。即ち既に鋳型内に充
填されている溶湯と新たに注湯される溶湯の相対
速度比と前記三要因が関係し、相対速度比が小さ
過ぎると前記(1)及び(2)が助長され、大き過ぎると
前記(2)及び(3)が助長され、鋳塊表面に割れが発生
することになる。従つて鋳塊表面の割れを防止す
るためには前記相対速度比を適当な範囲内に維持
する必要があり、この相対速度比は鋳塊内断面積
と注湯スパウト内断面積との比率によつて決ま
る。 ベルトアンドホイール型連続鋳造機では、水平
注湯、傾斜注湯又は垂直注湯が行なわれている
が、水平注湯では前記相対速度比が小さいため核
生成数が小さく、結晶粒が粗大となつて前記要因
(1)が起り、またベルト側での初期冷却過多とな
り、初期固相の凝固収縮によつて前記要因(2)が起
り、鋳塊表面に割れが発生する。また傾斜注湯及
び垂直注湯では前記相対速度比が大きいため、前
記要因(1)に対して有利になるも、注湯流が速いと
ころから、要因(2)を引き起し、かつ初期凝固部と
終期凝固部との温度差が大きく、要因(3)が起り、
鋳塊表面に割れが発生するものと認められる。 本発明は前記知見に基づいて、更に検討を重ね
た結果、鋳塊表面に割れ等の欠陥を発生すること
なく表面品質の高い鋳塊の連続鋳造方法を開発し
たもので、外周面に凹溝を設けた回転鋳造輪とそ
の一部外周面と接動するエンドレスベルトにより
鋳型を構成し、該鋳型の一端に取付けたスパウト
を通して鋳型内に注湯し、他端より鋳塊を連続し
て引出す鋳造方法において、鋳型内の断面積Aと
スパウト内の断面積aとの比率A/aが1.05〜
7.5となるスパウトを用い、スパウト内の溶湯流
速Uと鋳型内の溶湯流速Vとの差U−Vが0.25〜
110m/minとなる鋳造速度で鋳造することを特
徴とするものである。 即ち本発明は第1図に示すように矢印方向に回
転する外周面に凹溝を設けた回転鋳造輪1と、そ
の一部外周面に接動するエンドレスベルト2によ
り鋳型3を構成し、該鋳型3の一端に注湯用スパ
ウト4を取付け、該スパウト4を通して鋳型3内
に溶湯を注湯し、図には示してないが、鋳型3の
他端より鋳塊を連続的に引出す鋳造方法におい
て、スパウト4内の断面積をa、溶湯流速をUと
し、鋳型3内の断面積をA、溶湯流速をVとする
と、A/aが1.05〜7.5となるスパウト4を用
い、溶湯速度差(U−V)が0.25〜110m/min
の範囲内となる鋳造速度で連続鋳造するものであ
る。尚図において5は押えロールを示す。 しかしてA/aを1.05〜7.5、溶湯速度差(U
−V)を0.25〜110m/minとしたのは下記の理
由による。第1図からも明らかなように連続鋳造
を行なうためにはUa=VAとならなければならな
い。従つて相対速度比U/VはA/aとして考え
ることができる。本発明はこのA/aと溶湯速度
差(U−V)について最適条件を実験的に求めた
ものである。 即ち前記要因(1)である結晶粒界の弱さについて
考えると、結晶粒界の強さTは次の二次関数とし
て考えることができる。 T=(Gs,Se) Cs:結晶粒度 Se:偏析の度合 従つてA/aが小さすぎると結晶粒が粗大化と
なつて結晶粒界が少なくなるため、この部分に応
力集中を招きやすく、また溶湯の流れが小さいた
め粒界に排出される溶質富相を分散させることが
できず、粒界偏析の度合が大きくなる。この欠点
を排除するため適度の溶湯速度差(U−V)を与
えることにより適度の乱流効果によつて結晶粒の
微細化をはかり、粒界への応力集中を避け、同時
に偏析を分散させて粒界の高温強度向上をはかつ
たもので、A/aとしては少なくとも1.05以上と
し、溶湯速度差(U−V)としては0.25m/min
以上とする必要がある。 また前記要因(2)である初期固相の再加熱現象は
初期固相形成時の冷却速度過多による鋳塊間のエ
アギヤツプの生成に起因する。従つてこの初期冷
却の程度を小さくすることが必要であるが、これ
は殆んど鋳型の温度によつて決定されるので、何
んらかの方法により鋳型の温度を引き上げればよ
い。このため鋳型内に注湯される溶湯を流動状態
で鋳型内面に接触させるもので、A/aとして
1.05以上、溶湯速度差(U−V)として0.25m/
min以上とする必要がある。 一方A/a及び溶湯速度差(U−V)が大きく
なり過ぎた場合には、別の機構により初期固相の
再加熱現象が起きる。即ち第2図に示すようにス
パウト4からの矢印方向の溶湯流により既に表層
に形成されている初期固相6が内側から加熱され
ることが起る。従つてこれを防止するためには
A/aを7.5以下、溶湯速度差(U−V)を110
m/min以下とする必要がある。 次に前記要因(3)である初期固相へ応力が掛るこ
とについては前記要因(2)と同様の現象に起因す
る。即ち溶湯流によつて加熱された初期固相部は
他の部分に較べて冷却速度が小さいために、ここ
が最終凝固位置となり、ここに引張応力が集中す
ることになる。従つてこれを防止するためには、
前記要因(2)の対策と同一方法により解決できる。 尚本発明方法は従来の水平注湯のみでなく、垂
直注湯に適用しても鋳塊表面の割れ発生を防止し
得る。また第3図に示すようにスパウト4の注湯
口7の角度θを0〜90゜の範囲で変更しても差支
えない。 次に本発明の実施例について説明する。 外周面に凹溝を設けた外径3mの鋳造輪と、そ
の一部外周面と接動するエンドレスベルトにより
断面積3000mm2の鋳型を形成し、該鋳型の一端に注
湯用スパウトを取付けてアルミニウムの連続鋳造
を行ない、スパウト内断面積と溶湯流速差を変え
た場合の鋳塊表面状況を調べた。 第1表に鋳型内断面積Aとスパウト内断面積a
の比率A/aと鋳型内の溶湯流速Vとスパウト内
の溶湯流速Uの速度差(U−V)と、得られた鋳
塊の表面状況を示す。
The present invention relates to a casting method using a belt-and-wheel type continuous casting machine, and is particularly for continuously casting an ingot with high surface quality without causing defects such as cracks on the ingot surface. Conventionally, wire materials such as copper, copper alloy, aluminum, and aluminum alloy have been cast using a belt-and-wheel type continuous casting machine, and then rolled using a continuous rolling mill connected thereto. Therefore, the ingots cast by a continuous casting machine do not have their surfaces polished.
Since it is rolled using a continuous rolling mill, the ingot must be of high quality and free from defects such as surface cracks. In a belt-and-wheel type continuous casting machine, the mold is made up of a rotary casting wheel with grooves on its outer circumferential surface and an endless belt that partially contacts the outer circumferential surface. Molten metal is poured and the ingot is continuously pulled out from the other end, but cracks often occur on the surface of the ingot, so improvement is desired. In view of this, the inventors of the present invention have conducted various studies on the occurrence of cracks on the surface of an ingot during continuous casting, and have found that cracks that occur on the surface of an ingot are caused by the following factors. (1) Grain boundaries are weak. (2) The initial solid phase is reheated during the solidification process. (3) Tension is applied to the initial solid phase. The basic factors (1) to (3) are related to the state of the molten metal poured into the mold. In other words, the above three factors are related to the relative velocity ratio between the molten metal already filled in the mold and the newly poured molten metal, and if the relative velocity ratio is too small, the above (1) and (2) will be promoted and the If it is too long, the above-mentioned (2) and (3) will be promoted and cracks will occur on the surface of the ingot. Therefore, in order to prevent cracks on the ingot surface, it is necessary to maintain the above-mentioned relative speed ratio within an appropriate range, and this relative speed ratio is determined by the ratio of the ingot internal cross-sectional area to the internal cross-sectional area of the pouring spout. It's decided by then. Belt-and-wheel type continuous casting machines perform horizontal pouring, inclined pouring, or vertical pouring, but in horizontal pouring, the relative velocity ratio is small, so the number of nucleations is small and the crystal grains become coarse. The above factors
(1) occurs, and the initial cooling on the belt side becomes excessive, and the solidification shrinkage of the initial solid phase causes factor (2), which causes cracks to occur on the surface of the ingot. In addition, tilt pouring and vertical pouring have a large relative velocity ratio, which is advantageous for factor (1), but the fast pouring flow causes factor (2) and causes initial solidification. There is a large temperature difference between the final solidification zone and the final solidification zone, causing factor (3).
It is recognized that cracks occur on the surface of the ingot. The present invention is based on the above knowledge, and as a result of further studies, we have developed a continuous casting method for ingots with high surface quality without causing defects such as cracks on the ingot surface. A mold is made up of a rotary casting wheel equipped with a rotary casting wheel and an endless belt that comes in contact with a part of the outer circumferential surface. Molten metal is poured into the mold through a spout attached to one end of the mold, and the ingot is continuously drawn out from the other end. In the casting method, the ratio A/a between the cross-sectional area A in the mold and the cross-sectional area a in the spout is 1.05 to
7.5, and the difference U-V between the molten metal flow velocity U in the spout and the molten metal flow velocity V in the mold is 0.25 ~
It is characterized by casting at a casting speed of 110 m/min. That is, as shown in FIG. 1, the present invention comprises a mold 3 consisting of a rotary casting wheel 1 which rotates in the direction of the arrow and has a concave groove on its outer circumferential surface, and an endless belt 2 that partially moves in contact with the outer circumferential surface of the rotary casting wheel 1. A casting method in which a pouring spout 4 is attached to one end of the mold 3, molten metal is poured into the mold 3 through the spout 4, and the ingot is continuously drawn out from the other end of the mold 3, although not shown in the figure. In the above, the cross-sectional area in the spout 4 is a, the molten metal flow rate is U, the cross-sectional area in the mold 3 is A, and the molten metal flow rate is V. Using the spout 4 where A/a is 1.05 to 7.5, the molten metal speed difference is (U-V) is 0.25 to 110m/min
Continuous casting is performed at a casting speed within the range of . In the figure, 5 indicates a presser roll. Therefore, A/a is 1.05 to 7.5, molten metal velocity difference (U
-V) was set to 0.25 to 110 m/min for the following reason. As is clear from Figure 1, in order to perform continuous casting, Ua = VA must be satisfied. Therefore, the relative speed ratio U/V can be considered as A/a. In the present invention, the optimum conditions for this A/a and the molten metal velocity difference (U-V) have been experimentally determined. That is, considering the weakness of grain boundaries, which is the factor (1), the strength T of grain boundaries can be considered as the following quadratic function. T = (Gs, Se) Cs: Grain size Se: Degree of segregation Therefore, if A/a is too small, the crystal grains will become coarse and the number of grain boundaries will decrease, which will easily lead to stress concentration in this area. Furthermore, since the flow of the molten metal is small, the solute-rich phase discharged to the grain boundaries cannot be dispersed, and the degree of grain boundary segregation increases. In order to eliminate this drawback, by providing an appropriate molten metal velocity difference (U-V), the crystal grains are refined by an appropriate turbulent flow effect, avoiding stress concentration at grain boundaries, and at the same time dispersing segregation. A/a is at least 1.05 or more, and the molten metal velocity difference (U-V) is 0.25 m/min.
It is necessary to do more than that. Furthermore, the reheating phenomenon of the initial solid phase, which is the factor (2), is caused by the formation of an air gap between the ingots due to an excessive cooling rate during the initial solid phase formation. Therefore, it is necessary to reduce the degree of this initial cooling, but since this is mostly determined by the temperature of the mold, it is sufficient to raise the temperature of the mold by some method. For this reason, the molten metal poured into the mold is brought into contact with the inner surface of the mold in a fluid state, and is referred to as A/a.
1.05 or more, molten metal velocity difference (U-V) 0.25m/
Must be greater than or equal to min. On the other hand, if A/a and the molten metal velocity difference (U-V) become too large, a reheating phenomenon of the initial solid phase occurs due to another mechanism. That is, as shown in FIG. 2, the initial solid phase 6 already formed on the surface layer is heated from the inside by the molten metal flow from the spout 4 in the direction of the arrow. Therefore, to prevent this, A/a should be 7.5 or less, and the molten metal velocity difference (U-V) should be 110.
It is necessary to keep it below m/min. Next, factor (3), which is stress applied to the initial solid phase, is caused by the same phenomenon as factor (2). That is, since the initial solid phase portion heated by the molten metal flow has a lower cooling rate than other portions, this becomes the final solidification position, and tensile stress is concentrated here. Therefore, to prevent this,
This can be solved using the same method as the countermeasure for factor (2) above. The method of the present invention can be applied not only to the conventional horizontal pouring but also to vertical pouring to prevent cracks on the surface of the ingot. Further, as shown in FIG. 3, the angle θ of the spout 7 of the spout 4 may be varied within the range of 0 to 90 degrees. Next, examples of the present invention will be described. A mold with a cross-sectional area of 3000 mm 2 is formed by a casting wheel with an outer diameter of 3 m with a groove on its outer circumferential surface and an endless belt that partially contacts the outer circumferential surface, and a pouring spout is attached to one end of the mold. Continuous casting of aluminum was carried out, and the surface condition of the ingot was investigated when the internal cross-sectional area of the spout and the difference in molten metal flow velocity were varied. Table 1 shows the mold internal cross-sectional area A and the spout internal cross-sectional area a.
The ratio A/a, the velocity difference (UV) between the molten metal flow velocity V in the mold and the molten metal flow velocity U in the spout, and the surface condition of the obtained ingot are shown.

【表】【table】

【表】 第1表から判るようにA/aが1.05〜7.5、U
−Vが0.25〜110m/minの範囲内にある本発明
方法により連続鋳造した鋳塊には割れ等の欠陥が
全く認められなかつた。これに対しA/aが1.05
よりも小さい比較方法No.9、A/aが7.5よりも
大い比較方法No.10では鋳塊表面に割れが発生し、
またU−Vが0.25m/minより小さい比較方法No.
11、U−Vが110m/minより大い比較方法No.12
も鋳塊表面に割れが発生した。 このように本発明方法によれば、結晶粒界が弱
いこと、初期固相が再加熱されること及び初期固
相に張力が掛ること等によつて引き起されるベル
トアンドホイール型連続鋳造機による鋳塊の表面
欠陥をその根本から改善し、表面割れ等の発生を
防止し得る顕著な効果を奏するものである。
[Table] As you can see from Table 1, A/a is 1.05 to 7.5, U
-V was within the range of 0.25 to 110 m/min, and no defects such as cracks were observed in the ingots that were continuously cast by the method of the present invention. On the other hand, A/a is 1.05
In comparison method No. 9, where A/a is smaller than 7.5, and comparison method No. 10, where A/a is larger than 7.5, cracks occur on the ingot surface.
Comparison method No. 1 where UV is less than 0.25m/min.
11, U-V is greater than 110m/min Comparison method No. 12
Cracks also occurred on the surface of the ingot. As described above, according to the method of the present invention, the belt-and-wheel type continuous casting machine, which is caused by weak grain boundaries, reheating of the initial solid phase, tension applied to the initial solid phase, etc. This method has the remarkable effect of improving the root of the surface defects of the ingot caused by molding, and preventing the occurrence of surface cracks, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の一実施例を示す要部拡大
説明図、第2図は比較方法における欠陥発生状況
を示す要部拡大説明図、第3図は本発明の他の実
施例を示す要部拡大説明図である。 1……鋳造輪、2……エンドレスベルト、3…
…鋳型、4……スパウト、5……押えロール、6
……初期固相、7……注湯口。
FIG. 1 is an enlarged explanatory diagram of the main part showing one embodiment of the method of the present invention, FIG. 2 is an enlarged explanatory diagram of the main part showing the defect occurrence situation in the comparative method, and FIG. 3 is a diagram showing another embodiment of the present invention. FIG. 2 is an enlarged explanatory diagram of main parts. 1... Casting wheel, 2... Endless belt, 3...
...Mold, 4...Spout, 5...Press roll, 6
...Initial solid phase, 7...Pouring port.

Claims (1)

【特許請求の範囲】[Claims] 1 外周面に凹溝を設けた回転鋳造輪とその一部
外周面と接動するエンドレスベルトにより鋳型を
構成し、該鋳型の一端に取付けたスパウトを通し
て鋳型内に注湯し、他端より鋳塊を連続して引出
す鋳造方法において、鋳型内の断面積Aとスパウ
ト内の断面積aとの比率A/aが1.05〜7.5とな
るスパウトを用い、スパウト内の溶湯流速Uと鋳
型内の溶湯流速Vとの差U−Vが0.25〜110m/
minとなる鋳造速度で鋳造することを特徴とする
連続鋳造方法。
1 A mold is constructed of a rotary casting wheel with grooves on its outer circumferential surface and an endless belt that partially contacts the outer circumferential surface. Molten metal is poured into the mold through a spout attached to one end of the mold, and cast from the other end. In a casting method in which a lump is drawn out continuously, a spout is used in which the ratio A/a of the cross-sectional area A in the mold to the cross-sectional area a in the spout is 1.05 to 7.5, and the flow rate U of the molten metal in the spout and the molten metal in the mold are The difference U-V from the flow velocity V is 0.25 to 110 m/
A continuous casting method characterized by casting at a casting speed of min.
JP13618980A 1980-09-30 1980-09-30 Continuous casting method Granted JPS5768252A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13618980A JPS5768252A (en) 1980-09-30 1980-09-30 Continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13618980A JPS5768252A (en) 1980-09-30 1980-09-30 Continuous casting method

Publications (2)

Publication Number Publication Date
JPS5768252A JPS5768252A (en) 1982-04-26
JPS6127146B2 true JPS6127146B2 (en) 1986-06-24

Family

ID=15169420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13618980A Granted JPS5768252A (en) 1980-09-30 1980-09-30 Continuous casting method

Country Status (1)

Country Link
JP (1) JPS5768252A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7404991B2 (en) * 2020-04-21 2023-12-26 株式会社プロテリアル Copper wire manufacturing equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3805877A (en) * 1972-09-15 1974-04-23 Southwire Co Continuous casting apparatus employing an oval-ended pouring spout
US3903954A (en) * 1971-08-31 1975-09-09 Southwire Co Apparatus for pouring molten metal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3903954A (en) * 1971-08-31 1975-09-09 Southwire Co Apparatus for pouring molten metal
US3805877A (en) * 1972-09-15 1974-04-23 Southwire Co Continuous casting apparatus employing an oval-ended pouring spout

Also Published As

Publication number Publication date
JPS5768252A (en) 1982-04-26

Similar Documents

Publication Publication Date Title
CA1135476A (en) Ingot casting method
JP2995519B2 (en) Light reduction of continuous cast strand
JPS6127146B2 (en)
JPH0375256B2 (en)
JPS5949081B2 (en) Method for improving ingot quality in continuous casting
JPS606254A (en) Continuous casting method
JPH0550201A (en) Light rolling reduction method in continuous casting
JPS61119360A (en) Continuous casting method of steel
JP3022277B2 (en) Pouring nozzle for belt wheel type continuous casting machine
JPS63108955A (en) Continuous casting method
JPH0390263A (en) Continuous casting method
JPS5857262B2 (en) Spheroidal graphite cast iron centrifugal casting casting
JPS6216722B2 (en)
JPS6127148B2 (en)
JP3348667B2 (en) Manufacturing method of round billet slab by continuous casting
JPS6228056A (en) Continuous casting method
KR100356176B1 (en) Cooling roll for twin roll sheet casting machine
JP2790420B2 (en) Carbon steel slab by twin roll continuous casting and its manufacturing method
JPH05212517A (en) Method for executing light rolling reduction in continuous casting
JP3615482B2 (en) Light reduction method in billet caster
JPH0255606A (en) Manufacture of very thick steel plate of excellent internal quality
JPS63126651A (en) Belt type continuous casting method
JPH0390259A (en) Continuous casting method
JPS6121142Y2 (en)
JP3317260B2 (en) Manufacturing method of round billet slab by continuous casting